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Abstract: Let H = (qi,...¢,) be a finite set of coprime integers and let 1y, no, ... denote
the multiplicative semigroup generated by H and arranged in increasing order. The dis-
tribution of such sequences has been studied intensively in number theory and they have
remarkable probabilistic and ergodic properties. For example, the asymptotic properties
of the sequence {njx} are very similar to those of independent, identically distributed ran-
dom variables; here {-} denotes fractional part. However, the behavior of this sequence
depends sensitively on the generating elements of (n;) and the combination of probabilistic
and number-theoretic effects results in a unique, highly interesting asymptotic behavior,
see e.g. [6], [8]. In particular, the properties of {nzz} are not permutation invariant, in
contrast to i.i.d. behavior. The purpose of this paper is to show that {n,x} satisfies a
strong independence property ("interlaced mixing"), enabling one to determine the precise
asymptotic behavior of permuted sums Sy (o) = Z,ivzl f(ne@x). As we will see, the be-
havior of Sy(o) still follows that of sums of independent random variables, but its growth
speed (depending on o) is given by the classical Gal function of Diophantine approximation
theory. Some examples describing the class of possible growth functions are given.
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1 Introduction

Let q1, . .., g be a fixed set of coprime integers and let (ny) be the set of numbers ¢7'* - - - ¢,
a; > 0 integers, arranged in increasing order. Such sequences are called (sometimes)
Hardy-Littlewood-Pélya sequences and their distribution has been investigated extensively
in number theory. Thue [23] showed that ng.; — ngy — oo and this result was improved
gradually until Tijdeman [24] proved that

N

— >
Nkg+1 — Ng =2 (lognk)a

for some o > 0, i.e. the growth of (n;) is almost exponential. Except the value of the
constant «, this result is best possible. Hardy-Littlewood-Pdlya sequences also have re-
markable probabilistic and ergodic properties. In his celebrated paper on the Khinchin
conjecture, Marstrand [14] proved that if f is a bounded measurable function with period
1, then

N—oo N

1o G
lim —;f(nkx)—/o ft)dt a.e.

and Nair [15] showed (cf. Baker [2]) that this remains valid if instead of boundedness of f
we assume only f € L'(0,1). Letting {-} denote fractional part, it follows that {n,z} is
not only uniformly distributed mod 1 for almost all x in the sense of Weyl [25], but satisfies
the "strong uniform distribution" property of Khinchin [12]|. Letting

%#{kSN:aéxmb}—(b—a)

Dy = Dy(zq,...,xN) := sup
0<a<bd<1

denote the discrepancy of a sequence (xy)1<k<y in (0, 1), Philipp [18] proved, verifying a
conjecture of R.C. Baker, that

N
1/8 <1i —D <C .e. 1.1
/8 < lglj;p\/moglog]v N{nericeen) < a.e., (1.1)

with a constant C' depending on the generating elements of (ny), establishing the law of
the iterated logarithm for the discrepancies of {nyz}. Note that if (&) is a sequence of
independent random variables with uniform distribution over (0, 1), then

/ N 1
li — D e = - 1.2
ljf\lffljolip 21og log N N5 En) 5 (1.2)

with probability one by the Chung-Smirnov LIL (see e.g. [22], p. 504). A comparison of (1.1)
and (1.2) shows that the sequence {n;z} behaves like a sequence of independent random
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variables. In the same direction, Fukuyama and Petit [9] showed that under mild assump-
tions on the periodic function f, >, -\ f(ngz) obeys the central limit theorem, another
remarkable probabilistic property of Hardy-Littlewood-Polya sequences. Surprisingly, how-
ever, the limsup in (1.1) is different from the constant 1/2 in (1.2) and, as Fukuyama [6]
and Fukuyama and Nakata [8] showed, it depends sensitively on the generating elements
q,- - -, q. For example, for ny = a*, a > 2 the limsup X, in (1.1) equals

Yo = V42/9 ifa=2
1 —2
Yo = \/(a + Dala—2) if a > 4 is an even integer,
2y/(a—1)3
va+1

Yy = if a > 3 is an odd integer,

2va —1

and if all the generating elements ¢; of (n;) are odd, then the limsup in (1.1) equals

e | 1/2
g +
()
Even more surprisingly, Fukuyama |7| showed that the limsup > in (1.1) is not permutation-
invariant: changing the order of the (ny) generally changes the value of . This is quite

unexpected, since {ngz} are identically distributed in the sense of probability theory and
the asymptotic properties of i.i.d. random variables are permutation invariant. The purpose
of this paper is to give a detailed study of the structure of {nzz} in order to explain
the role of arithmetic effects and the above surprising deviations from i.i.d. behavior.
Specifically, we will establish an "interlaced" mixing condition for normed sums of {nyz},
expressed by Lemmas 4 and 6, implying that the sequence {n;z} has mixing properties
after any permutation of its terms. This property is considerably stronger than usual
mixing properties of lacunary sequences, which are always directed, i.e. are valid only
in the "natural" order of elements. In particular, we will see that for any permutation
o : N — N of the positive integers, >, -y f(nom)®) still behaves like sums of independent
random variables and the observed pathological properties of these sums are due to the
unusual behavior of their L2 norms which, as we will see, is a purely number theoretic effect.
For example, in the case f(z) = {x} the growth speed of the above sums is determined by
G(nsy, - - - No(n)), Where

(mi, my)

[, ] (1.3)

G(my,...,my) = Z

1<i<j<N

is the Gal function in Diophantine approximation theory; here (a,b) and [a,b] denote the
greatest common divisor, resp. least common multiple of a and b. While this function is



completely explicit, the computation of its precise asymptotics for a specific permutation
o is a challenging problem and we will illustrate the situation only by a few examples.

As noted, the basic structural information on {ngz} is given by Lemmas 4 and 6, which
are rather technical. The following result, which is a simple consequence of them, describes
the situation more explicitly.

Theorem 1. Let f : R — R be a measurable function satisfying the condition

flz+1) / f(x =0, Varpy f < +oo (1.4)
and let o : N — N be a permutation of N. Assume that
1 M+N
A?VvM::/ (Z fngk)x> dx > CN, N >Ny, M>1 (1.5)
k=M+1
for some constant C' > 0. Then letting Ay = An,o we have
N
AR f (o) —a N(0,1) (1.6)
k=1
and
1
li i) =1 ae. 1.7
ljr\lfﬂjolip (242 log log A%)1/2 ; J (o) a.¢ (L.7)

As the example f(z) = cos2mz — cos4nz, n, = 2¥ shows, assumption (1.5) cannot be
omitted in Theorem 1. It is satisfied, e.g., if all Fourier coefficients of f are nonnegative.
Theorem 1 shows that the growth speed of Z,ivzl f(no@x) is determined by the quantity

2
A2 = A%(o / (Zf N (k)T ) dz.
0

In the harmonic case f(x) = sin 2wz we have Ay (c) = \/N/2 for any o and thus the partial
sum behavior is permutation-invariant. For trigonometric polynomials f containing at least
two terms the situation is different: for example, in the case f(z) = cos2mx + cos4mx the
limits limy_o Ay(c)/V/N for all permutations o fill an interval. In the case f(x) =
{z} — 1/2 we have, by a well known identity of Landau (see [13], p. 170)

/fax f(bx)d (a b)/|a, b

Hence in this case 1
A?V = EG(HU(I), e ,nU(N))
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where G is the Gal function defined by (1.3). The function G plays an important role
in the metric theory of Diophantine approximation and it is generally very difficult to
estimate; see the profound paper of Gél [10] for more information on this point. Clearly,
G(No@1), - - - No(ny) = N and from the proof of Lemma 2.2 of Philipp [18] it is easily seen
that

G(ng(l), e ,nU(N)) < N.

Here, and in the sequel, < means the same as the O notation. In the case of the identity
permutation o the value of limy_,oo N"*G(ny,...,ny) was computed by Fukuyama and
Nakata [8], but to determine the precise asumptotics of G(n,q),...,nv)) for general o
seems to be a very difficult problem. Again, in Section 3 we will see that in the case of
ni = 2F the class of limits limy_ o N7*G(nyqy, - -, nyny) for all o fills an interval.

Corollary. Let f : R — R be a measurable function satisfying (1.4) and assume
that the Fourier coefficients of f are monnegative. Let o be a permutation of N. Then
N-1/2 Zszl f(nomwyx) has a nondegenerate limit distribution iff

1/ n 2
A2 = A}im N1 (Z f(na(k)$)> dr > 0 (1.8)
—00 0 =
exists, and then
N
NN (o) —a N(0,7°), (1.9)
k=1

Also, if condition (1.8) is satisfied, then

lim sup

N
1

Y — e. 1.10

N—oo 2N loglog N kz_;ﬂn (k)x> Toae ( )

As mentioned, for the original, unpermuted sequence (ny), the value of v = v, in (1.8)
was computed in [8]. Given an f satisfying condition (1.4), let Iy denote the set of limiting
variances in (1.8) belonging to all permutations o. (Note that the limit does not always
exist.) Despite the simple description of I'; above, it seems a difficult problem to determine
this set explicitly. In analogy with the theory of permuted function series (see e.g. Nikishin
[16]), it is natural to expect that I'; is always a (possibly degenerate) interval. In Section
3 we will prove that for ny = 2% and functions f with nonnegative Fourier coefficients, I'f
is identical with the interval determined by || f||* and 7. For f with negative coefficients
this is false, as an example in Section 3 will show.



2 An interlaced mixing condition

The crucial tool in proving Theorem 1 is a recent deep bound for the number of solutions
(ki,..., k) of the Diophantine equation

aing, + ...+ apng, =b. (2.1)

Call a solution of (2.1) nondegenerate if no subsum of the sum on the left hand side equals
0. Amoroso and Viada [1]| proved the following result, improving the quatitative subspace
theorem of Schmidt [20] (cf. also Evertse et al. [5]).

Lemma 1. For any nonzero integers ay, . .., a,, b the number of nondegenerate solutions of
(2.1) is at most exp(cp®), where c is a constant depending only on the number of generators

of (nk)

For the rest of the paper, C' will denote positive constants, possibly different at different
places, depending (at most) on f and (ng). Similarly, the constants implied by O and by
the equivalent relation < will depend (at most) on f and (ny).

Most results of this paper are probabilistic statements on the sequence {f(nyx), k =
1,2,...} and we will use probabilistic terminology. The underlying probability space for
our sequence is the interval [0, 1], equipped with Borel sets and the Lebesgue measure; we
will denote probability and expectation in this space by P and E.

Given any finite set I of positive integers, set

Sr = Zf(nkx), or = (]ES?)I/Q.

kel

From Lemma 1 we deduce

Lemma 2. Assume the conditions of Theorem 1 and let I be a set of positive integers with
cardinality N. Then we have for any integer p > 3

ES? = (p72)!2 P2g7 + O(Ty) if p is even
O(Twn) if p is odd

where
Tn = exp(Cp )N®=D/2(log N)P.

Proof. Let C, = exp(cp®) be the constant in Lemma 1. We first note that
or < K|\ fIIV?)1172, (2.2)

where K is a constant depending only on the generating elements of (ng). This relation
is implicit in the proof of Lemma 2.2 of Philipp [18]. Next we observe that for any fixed
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p > 3 and any fixed nonzero coefficients ay, . .., a,, the number of nondegenerate solutions
of (2.1) such that b = 0 and ky,...,k, € I is at most C,,_; N. Indeed, the number of choices
for k, is at most N, and thus taking a,n;, to the right hand side and applying Lemma 1,
our claim follows.

Without loss of generality we may assume that f is an even function and that || f||o < 1,
Varjg 1) [ < 1; the proof in the general case is the same. (Here, and in the sequel, | - ||,
denotes the L, norm; for p = 2 we simply write || - ||.) Let

f~ Zaj cos 2mjx
j=1
be the Fourier series of f. Varjgy) f < 1 implies (see Zygmund [26, p. 48])
la;| <571 (2.3)
and, writing
NP

= Zaj cos2mjx, r(z) = f(r) — g(x),

we have
19l < Varpa f+ [[fllo <2, [I7lloc < [[flloc + N9l < 3
For any positive integer n, (2.3) yields

()| = (e ||2—§ 3

By Minkowski’s inequality,

| /\

151]lp <

Y

S glna)

kel

Z r(ngr)

kel

p p

and

Z r(ngx)

kel

<3 |lr(ma)/3ll, <3 |lr(ni) /377 <3 N2 <3, (2.4)

kel kel kel

p

By expanding and using elementary properties of the trigonometric functions we get

—9-p Z aj, - aj, Z I{+jink, £ ... £ jpng, = 0}, (2.5)

1< v fip SN2P Ky, kpel



with all possibilities of the signs 4+ within the indicator function. Assume that ji,...,J,
and the signs & are fixed, and consider a solution of &jiny, £.. .2 jyni, = 0. Then the set
{1,2,...,p} can be split into disjoint sets A1, ..., A; such that for each such set A we have
> iea £Jink, = 0 and no further subsums of these sums are equal to 0. By the monotonicity
of C}, and the remark at the beginning of the proof, for each A with |A| > 3 the number of
solutions is < Cjq-1 N < Cp—1N; trivially, for |A| = 2 the number of solutions is at most
N. Thus if s; = |A;| (1 <i < p) denotes the cardinality of A;, the number of solutions of
tjing, £ ... % jpyng, = 0 admitting such a decomposition with fixed Ay,..., A4; is at most

H C, 1N H N < (CpilN)Z{i:siZfi} 14+ sy =23 1
{i:s;>3} {izs;=2}

< (Cp_lN)%z{stZB} Si+%z{i:si:2} Si__ (Cp_lN)%z{zs,LZS} Si+%(p_z{i:si23} S’i)
D
= (Cp-1N)?

—5 Lpis;28) S0

If there is at least one ¢ with s; > 3, then the last exponent is at most (p — 1)/2 and since
the number of partitions of the set {1,...,p} into disjoint subsets is at most p! 27, we see
that the number of solutions of +jing, £ ... £ jyng, = 0 where at least one of the sets A;
has cardinality > 3 is at most p! 2?(C,_1 N)®~1/2_If p is odd, there are no other solutions
and thus using (2.3) the inner sum in (2.5) is at most p! 27(C,_; N)P~Y/2 and consequently,
taking into account the 2P choices for the signs +1,

E (Z g(nkx)>p

kel

<PL(Cp )PP N ay, -, < exp(CPT)NETD2(log NP,

1<, 0p SNP

If p is even, there are also solutions where each A has cardinality 2. Clearly, the contribution
of the terms in (2.5) where A; = {1,2}, Ay = {3,4},...is

p/2 2 p/2
1
1 Z Z a;a;1{xiny £ jn, = 0} =|E (Z g(nkx))
1<i,j<N2P klel kel
p p
= Zg(nka:) = ||S; — Zr(nkx) = (o7 +O(1))"
kel kel
= o} +p(or+0(1))" " O1)
=0} +0 (p2r7?) (o + O(1) )
= 0P + 027 )NP-1/2, (2.6)



using the mean value theorem and the relation

m

(i %) <max(1,m*)> 2%, (a>0, z;>0). (2.7)

J=1

Here the constants implied by the O are absolute. Since the splitting of {1,2,...,p} into

pairs can be done in #!2)!2*”/ 2 different ways, we proved that

T[22 EeT + O(T)
E (nkx)> = {(p/2). (2.8)
(; ’ O(T)

according as p is even or odd; here
Ty = exp(Cp )N®=D/2(log N)P.

Now, letting G; = >, .; 9(nxx), Rr = >, c; r(ngx), we get, using the mean value theorem,
Holder’s inequality and (2.7),
ES? — EGY| (2.9)
< E|<G1 + R])p - G];| = E|pR[(G1 + GR[)pill
< PURII(Gr + ORI/ -1y = PR, Gr + 0[5
< 3p([|Grlly + 3771 < 3p2P (|Gl + 3771,
for some 0 < 6§ = 0(x) < 1. For even p we get from (2.8), together with (2.7) with o = 1/p,

that
1G1ll, < por + exp(C’p6)\/Nlog N.

For p odd, we get the same bound, since |G|, < ||G|lp+1. Thus for any p > 3 we get
from (2.9)

ES} <EGY + 3p2° (|G |I5~ + 377
< EGY + 3p2P % [(poy exp(Cp®))P~ 4+ 3771 O(1)>~!
< EGY + exp(Cp") (C\/N)

p—1
)

completing the proof of Lemma 2.

Lemma 3. Let .

f= Z(ak cos 2mkx + by, sin 2wkx)
k=1
be a trigonometric polynomial and let I, J be disjoint sets of of positive integers with
cardinality M and N, respectively, where M/N < C with a sufficiently small constant
0 < C < 1. Assume o > |I|'2, o7 > |J|Y/2. Then for any integers p > 2, ¢ > 2 we have

E(S1/or)"(S5/04)" = (2.10)



P! q!
o2 (q]2)207
O(Tu.n) otherwise

+O(Tun) if p,q are even

where
Tary = Cpig (M2 + (M/N)'?),

and C, = exp(cp®) is the constant in Lemma 1.

Proof. To simplify the formulas, we assume again that f is a cosine polynomial, i.e.

d

flx) = Z a;j cos 2mjz.

j=1
The general case requires only trivial changes. Clearly

1
poe _ _* E , ;
SISJizp—i-q a]l"'aJp+qX
1<g15050p+q<d
% E coS 27T(:|:]1nk1 +--- £ jp+anp+q)$

ki,....kp€l
kpt1yekptg€J

and thus
ES?S? = (2.11)
1 . .
:ﬁ Z Ajy - A Z [{j:]mkl:l:---:l:jpﬂnkﬁq :O}.
1<j1,00sJp+q=<d ki,....,kp€l
kp+1,...,kp+q€J
Assume that ji,..., jp+q and the signs £ are fixed and consider a solution of

£jing & - % prglhy,, = 0. (2.12)

Clearly, the set {1,2,...,p+q} can be split into disjoint sets Ay, ..., Ay such that for each

such set A we have ) £7j;n;, = 0 and no further subsums of these sums are equal to 0. Call
i€A

a set A type 1 or type 2 according as A intersects {1,2,...,p}or AC{p+1,...,p+q}.

Similarly as in the proof of Lemma 2, the number of solutions of the equation ), , +jini, =

0 is at most Cpyq—1M or Cpyq—1N according as A is of type 1 or type 2. Thus the number

of solutions of (2.12) belonging to a fixed decomposition {41, ..., A} is at most
(Op+q—1M)R(Cp+q—1N)S (2.13)

where R and S denote, respectively, the number of A;’s with type 1 and type 2. Let R*
and S* denote the total cardinality of sets of type 1 and type 2. Then R = R*/2 or
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R < (R* —1)/2 according as all sets of type 1 have cardinality 2 or at least one of them
has cardinality > 3. A similar statement holds for sets of type 2 and thus if there exists at
least one set A; with |A4;] > 3, the expression in (2.13) can be estimated as follows, using
also R* +S*=p+gq, S* <q,

(Cp+q—1M)R(Op+q—1N) ( ptq— IM)R*/Q( pt+q— IN) /2 (Cp+q—1M)_1/2
LM Pta=57)/2 Corq1 N S /20, M)TY?
p+q p+q
(v MY (Cyry ) 2
< (Cp+q—1M)(p+q /2(N/M)q/2<cp+q—1M) 1/2
< Cpglj’r';‘J)/QMp/2Nq/2M—l/2

< C’p+q0;ﬁ;q)/20§03M_1/2,

where in the last step we used (1.5). Since the total number of decompositions of the set
{1,2,...,p+ ¢} into subsets is < (p+ ¢)!12PT7 < 2(P+9)* it follows that the contribution of
those solutions of (2.12) in (2.11) where |A4;| > 3 for at least one set A; is

< 2t (logd)erqC;(,T;q)ﬂM 1/20?03

We now turn to the contribution of those solutions of (2.12) where all sets A;,..., Ay
have cardinality 2. This can happen only if p + ¢ is even and then ¢ = (p + ¢)/2. Fixing
Ay, ... Ay, the sum of the corresponding terms in (2.11) can be written as

oot N gy, {Z:I:jz N, _0} { > ijmki:O}

1§j1,...,jp+q<d €AY i€A<p+q>/2

and this is the product of (p + ¢)/2 such sums belonging to Ai,..., Apiqe. For an
A; CH{1,...,p} we get
1 . .
1 Z aiaj]{j:mki + jng, = O} = ES? = a?.
1<i,j<d
ki kj €T
Similarly, for any A; C {p+1,...,p+q} the corresponding sum equals £S5% = ¢2. Finally, if
a set A; is “mixed”; i.e. if one of its elements is in {1,...,p}, the otherin {p+1,...,p+q},
then we get ES;S; := o7 (cf. (2 11) with p = ¢ = 1). Thus, if we have t; sets A; C
{1,...,p}, tasets A; C{p+1,...,p+ q} and t3 “mixed” sets, we get 02t103t2a§3j Clearly
ts = 0 can occur only if p and ¢ are both even and then t; = p/2, to = ¢/2, i.e. we get oj0’
Which taking into account the fact that {1,2,...,p} can be split into 2-element subsets in
W /2) —PL-9-P/2 different ways, gives the contribution
P! q!
(p/2)12¢/% (q/2)129/

11
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Assume now that t3 =, 1 < s <pAgq. Thent; = (p—5)/2, to = (¢ — $)/2; clearly if p
and ¢ are both even, then s can be 0,2,4,... and if p and ¢ are both odd, then s can be

1,3,5,.... Thus the contribution in this case is
o} "o "ot ;. (2.14)
From ]
or1g = 1 Z aiajf{imk + gn, = O}
1<i,5<d
kel e

we see that o7 ; < (|I| A|J|) = M and thus dividing with o7c% and summing for s, (2.14)
yields, using again (1.5),

Z O'I_SO'JSO';J < Z 025<MN>—3/2M3 _

s>1 s>1
= " CRM/N)T < (MNP,
s>1
provided C' is small enough. ]

Lemma 4. Under the conditions of Lemma 3 we have for any 0 < § < 1

E (exp (itS;/or + i8Sy /0)) — o~ (E+)/2| o

< 676'(logM)‘s +€C(logM)75 (M71/2_|_ M/N)
for It Is] < 4 (1og ).

Lemma 4 (and also Lemma 6 below) show that the random variables S;/o; and S;/o;
are asymptotically independent if |/| — oo, |J| — oo, |I|/|J| — 0. Note that I and J are
arbitrary disjoint subsets of N: they do not have to be intervals, or being separated by some
number € R, they can be also "interlaced". Thus {niz} obeys an "interlaced" mixing
condition, an unusually strong near independence property introduced by Bradley [3]. Note
that this property is permutation-invariant, explaining the permutation-invariance of the
CLT and LIL in Theorem 1.

It is easy to extend Lemma 4 for the joint characteristic function of normed sums
Sn/on,...Sr,/or, of d disjoint blocks Iy,...1;, d > 3. Since, however, the standard
mixing conditions like a-mixing, [S-mixing, etc. involve pairs of events and the present
formulation will suffice for the CLT and LIL for f(n,mx), we will consider only the case
d=2.

: \p k
Proof. Using |e®® — Z;ﬁ;é (m') < %, valid for any x € R, k£ > 1 we get for any L > 1
p! !
, < (it)”
exp (itS/oy) = ' (St/or)P+
=0 P
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L
0t D) 15 o1 =
G

= UL(t,$,[)+9L(t,ZL‘,I) |S]/U ‘L

where |0 (t,z,I)] < 1. Writing a similar expansion for exp(isS;/o,;) and multiplying, we
get

E (exp(itSy/or +1sS;/0y)) =

=E(UL(t,z,)UL(s,z,J)) +E(UL(t,:U,I)0L(s,a:,J)| ’L|S /oy \L)
+E <UL(8 x, J)0(t, x I)|—||S Jor ]L>

tL L
‘|‘E(‘£' | ‘ |S /O’]| |SJ/UJ|L0L(t Z, I)QL(S X J))

=L+ L+ 13+ 1,

We estimate Iy, I, I3, I, separately. We choose L = 2[(10g M)ﬂ and use Lemma 3 to get

= @y (@)
L= D e (ga)en

p,g=0
p,q even
Z ’t‘ |5 C2L 1/2—|—(M/N)1/2)
2L
P,q=0 2
=11+ I
Here
e—(t2+82)/2 Iy =
—(i (at)” >(i (is)" )+(i (it)” )(i (i) )
o (p/2)202 )\ = (a/2)207 ) "\ & (0/2)207 )\ £ (4/2)2° )
p even q even p even q even

Using n! > (n/3)" and t* < L/24 < p/24 we get

(it)P YA
 (p/2)27 = Z (p/3)P% Z (p/3)

p even



and similarly

< 6—(log M)‘S )

= (is)?

q even
Thus o
P B D s
+ —— 7 | <9
1op/2 | = 1op/2| =
2 TR 2 (p/2)2
P even p even
and a similar estimate holds for -
Z() q/2 |2Q/2
qqeven
Consequently
I — e*(t2+82)/2 < e*(logM)‘s_

On the other hand,

|I1,2| < <Z |;_|'p> <Z| ) 1/2+ (M/N)I/Q)

<<e|t|+|s|€C(2L) (M 1/2+(M/N)1/2)
< ecaogM)” (M’1/2 + (M/N)1/2).

Thus we proved
‘1—1 _ ef(t2+32)/2| < o~ Cllog M) + oC(log M)™ (M’1/2 + (M/N)1/2).

Next we estimate I;. Using Lemma 3 and ¢* < /24 we get, since L is even,

11 ISIL L
Iy < 7] E’SI/UH 1S5/0 ;]
" |5’L L! ’ 2L (3 ;—1/2 1/2
<7 DRE + O3 (M2 + (M/N)'?)
tL L t L
< [t]7]s] 4 | | E C’ ( 1/2+(M/N)1/2)

((Léz)!)jﬂ (2) L/2
<(z5) (%)

* (Lt—;ﬁyp (és—/zes)m N (M2 4 (M/N)'P?)
< AP 4O (A 4 (M N)?)

14



< e—C(logMyS + eC(logM)75 (M—1/2 + (M/N)l/Q)'
Finally we estimate I, and I5. Clearly
|UL(t,z,I)| < |exp(itS;/or)| + |2—|!L\SI/UI|L
1"

<1+—|S/U |-

and thus
L tL L
il < (risi/ot) + 8 (s o1, /0,1).

Here the second summand can be estimated exactly in the same way as I, and the first
one can be estimated by using Lemma 2. Thus we get

’[2’ < efC(logM)‘s +60(1ogM)75 (M’l/Q + (M/N)I/Q).
A similar bound holds for I3 and this completes the proof of Lemma 4. ]

Lemma 5. Let F' and G be probability distributions on R? with characteristic functions
@ and v, respectively and let T > 0. Then there exists a probability distribution H on R?
such that H (|z| > T7?log T) < e~/ and for any Borel set B C [T, T]?

|(Fx H)(B) — (G H)(B)| < T* / () — (u)|du + 18T/,

[_TvT]Z

The constants implied by < are absolute.

Proof. Let (y be a standard N(0,I) random variable in R? and ¢ = logTC Clearly we have

P(1d2 55 ) = Plal 2 VD) <"

Letting ¢ and H denote, respectively, the characteristic function and distribution of (, we
get

IA

/ () — () du + 2 / ()|,

[-T.,T]? ug[-T,T]?

15



where fr.g, fa«m denote the density functions corresponding to the distributions F x H
and G« H, respectively. Letting 7 = 7' log T, we clearly have ¢(u) = e~ /2 for u € R?
and a simple calculation shows

/ ()| du < e~ (oB T3,
ug[-T,T)
Thus
| fron(z) = faun(z)| < / lp(w) = Y(u)|du+ e D/ for all w € R?

[7T7T]2

whence for B C [-T,T]* we get
(F = H)(B) — (G = H)(B)| < T* / [p(u) =y (u)|du + T,
[7T»T}

proving Lemma 5. UJ

Lemma 6. Under the conditions of Lemma 3 we have for any 0 < § < 1 and for |z, |y| <
s (log M)°/2,

[P (Si/or <, S5/05 <y) — (2)2(9)] < (2.15)
< efC(IOglogM)Q + 60(1ogM)75 (M’1/2 + (M/N)I/Q)

where ® 1is the standard normal distribution function and Z, § are suitable numbers with
12 — 2| < C(log M)™98, |§ — y| < C(log M)~%/8.

Proof. Let
F =dist (S;/07,S5/0;), G=N(0,I), T = (logM)*?

By Lemmas 4 and 5 we have for any Borel set B C [T, T]?
|(F+ H)(B) — (G* H)(B)|
< T? / lo(u) — (u)|du + e~ 18T/
[7T9T]2
< (log M)? [e—C(logM)5 | (Cllog )78 (M—1/2 i (M/N)1/2>] | oclloglog M)?
< e—C(logM)5 + eC(logM)” (M—1/2 + (M/N)l/z) + e—C(loglogM)2

where H is a distribution on R? such that

5/2

H(l’ : |:)3| > C(logM)_a/g) < e—C(logM)

16



Applying Lemma 2 with p = 2[log log M] and using the Markov inequality, we get

_ N /2
P(1Si/or] 2 T) < TE(S: o) < 70 K2

)
< 4P(log M)=P/2pP = 4P exp (plogp — Ep log log M>
< exp(—C(loglog M)?)

and a similar inequality holds for P(|S;/o,;| > T). Convolution with H means adding
an (independent) r.v. which is < C(log M)7%/® with the exception of a set with proba-
bility e~ " Thus choosing B = [T, z] x [~T,y] with |z| < C(log M2, |y| <
C(log M)°/? we get
\P (St/or <z, S;/o; <y)—2(2)P(9)| < (2.16)
< e—C’(loglogM)2 + eC(logM)” (M—1/2 + (M/N)1/2>

where | — 2| < C(log M)~*/%, [ — y| < C(log M)~*/*. 0
Remark. The one-dimensional analogue of Lemma 6 can be proved in the same way (in
fact, the argument is much simpler):

|P(S;/o; < ) — B(#)| < e CloglosM)?

for |z] < %(log M)*/?, where |& — x| < C(log M)™*/8. Using this fact, the statement of
Lemma 6 and simple algebra show that for |z|, [y| < %(log M)*/? we have

[P (St/o1 >, Sylo;>y) = V(2)V(9)] <

< e—C'(loglogM)2 + eC(logM)” (M—1/2 + (M/N)1/2>

where &, 7 are suitable numbers with |# —z| < C(log M)™/8, |§—y| < C(log M)~%/%. Here
U(r) =1—d(z).

3 Proof of Theorem 1

The CLT (1.6) in Theorem 1 follows immediately from Lemma 6; see also the remark after
Lemma 6. To prove the LIL (1.7), assume the conditions of Theorem 1 and let 0 : N — N
be a permutation of N. Clearly for p = O(loglog N) we have exp(Cp”) < N'* and thus
Lemma 2 implies

1 / M+N 2p (2p)!
/0 ( Z f(ng(k)x> dr ~ #2”’(1 + O(N’1/4))A’]’\,’M as N — oo

k=M+1 p:

17



uniformly for p = O(loglog N) and M > 1. Using this fact, the upper half of the LIL
(1.7) can be proved by following the classical proof of Erdds and Gal [4] of the LIL for
lacunary trigonometric series. (The observation that the upper half of the LIL follows from
asymptotic moment estimates was already used by Philipp [17] to prove the LIL for mixing
sequences.) To prove the lower half of the LIL we first observe that the upper half of the
LIL and relation (2.2) imply

N
lim sup (N loglog N)~1/2 Z f(n ) < K| f||*® a.e. (3.1)
k=1

N—o0

where K is a constant depending on the generating elements of (ny). Given any f satisfying
(1.4) and € > 0, f can be written as f = f; + fo where f; is a trigonometric polynomial
and || f2]] < e, and thus applying (3.1) with f = f5 it is immediately seen that it suffices
to prove the lower half of the LIL for trigonometric polynomials f.

Let 8 > 2 be an integer and set

o X9n+1 —|— ct + X9n+1
" T

where X; = f(nq;z), 72 = Var(X9n+1 4+t X9n+1). Fix ¢ > 0 and put

A, —{nn_ (1 —¢)(2loglog,) 1/2}

We will prove that P(A, i.0.) = 1; we use here an idea of Révész [19] and the following
generalization of the Borel-Cantelli lemma, see Spitzer [21], p. 317.

Lemma 7. Let A,, n =1,2,... be events satisfying Y -, P(A,) = 0o and
N—oo 2
(20 PAw)

Then P(A, i.0.) = 1.

=0.

By the one-dimensional version of Lemma 6 (see the remark at the end of Section 2)
we have

P(A,) = U((1 - &)(2loglog7,)? + 2,) + O(e~Clos™?) (3.2)

5/8 ~12p7 exp(—2?/2) and

where |z,| < Cn™%°. By the mean value theorem, ¥(z) ~ (27)
0" < v2 < 0" we have

U((1—e)(2loglogy,)"? + 2,) (3.3)

=V ((1—¢)(2loglog %>1/2) + exp (—% [(1—¢)(2loglog V)% O(l)né/g}2> O(n=%/%)

18



(1 —¢)(2loglog ’yn)l/z) +exp (—(1 — )’ loglog v, + O(1)) O(n~%/%)

v
U((1—e)(2loglog,)'?) + O(1)¥ ((1 — &)(2loglogv,)"/?) (logn)'/*n /8,

In particular,

\Il((l —¢)(2log log'yn)l/2 + zn) ~ \I/((l —¢)(2loglog %)1/2)
and thus (3.2) implies

1
n(1—e)? (log n) 1/2°

P(A4,) ~ T ((1—e)(2loglogya)?) > (3.4)

Hence the estimates in (3.3) yield
U((1—e)(2loglogy,)/? + z,) = ¥((1 — ) (2loglog yn)"/?) + O(P(A,)n~1%).  (3.5)
Now by Lemma 6 for m < n (see the Remark at the end of Section 2)
P(An, N A,) =T ((1—e)(2loglogym)? 4+ 21) ¥ ((1 — £)(2loglog v,) "/ + 22)  (3.6)
+0O(1) [e*C(logm)Q + ecmm(efcm + e’c(”’m))} ,
provided logn < m®/?2. The expression ¥(...)¥(...) in (3.6) equals by (3.4), (3.5),
U((1 - ¢)(2loglog ym) )T ((1 — £)(2loglog 7,)'/?) + O (P(A,,) P(A,)m™/16) .
Hence, assuming also n —m > m® we get from (3.6),
P(A,NA,) =T((1-¢)(2log logym)l/Q)\If((l —¢)(2loglogy,)"?) (3.7)
+ O (P(An) P(Ay)m 1) + O (e Cosm?)
Further, by (3.2) and the above estimates
P(A,)P(A,) =¥ ((1—¢)(2loglog 7m)1/2)\11((1 —¢)(2loglog %)1/2)
+ O (P(A) P(Ay)m %) 4+ O (e Clom?)
and thus we obtained
Lemma 8. We have
|P(An N Ay) — P(An)P(A,)| < P(A)P(A,)m /16 4 g=Cllosm)?
provided n —m > m® and logn < m?°.

We can now prove

19



Lemma 9. We have

. > cmmen | P(Am N Ay) — P(A,)P(Ay)]
o (20 Pan)

Proof. By Lemma 8 we have

ST [P(An N A) = P(An)P(A)
1§m7n§1\§
n—m>m?8

m>CN?

N

N
< (Z P(Ay)m™" 16) <Z P(An)> + N2ecllogN)?
m=1 n=1

— ox(l) (é P(Am>> (Z]:; P(An)) +0(1) = on(1) (i:l

N
since Y P(A,) = 400 by (3.4). Further

n=1

S |P(An N A — P(A)P(A)
1<m,n<N
0<n—m<m8?®

=0.

P(Am>)2,

N N
< > 2P(An)<2) m*¥P(A,) <2N%® ) P(A,)
1<m,n<N m=1 m=1
m§n§m+m85

and

> |P(AnNA,) = P(A)P(A)] < ) 2P(A,) <2N° ) " P(A,).

1<m<n<N 1<m<n<N
m<CN? m<CN?

The previous estimates imply

> |P(An N A,) = P(A)P(A,))|

1<m,n<N

< on(1) (Z P(An)> + N® (Z P(An)> .

n=1
Since

nl—s
n=1

N N
1 1 )
2 P> Z_l =" (logm)172 ~ Z_l > N

20



choosing § < £/8 we get

P(A,,NA,) — P(A,,)P(A, N8O
Licmnzy| Pl ) = PR )|<<0N(1)+N——>0-

(S Pean) ¥ (A

]

We can now complete the proof of the lower half of the LIL. By Lemmas 7 and 9 and
we have with probability 1

| Xoni1 + -+ Xgner| > (1 —€)(27; loglog Y )/ i.o. (3.8)
where v,, = ||X9n+1 + -+ Xt || By the already proved upper half of the LIL we have
| X1+ -+ Xon| < (1+€)(245. loglog Agn)/? a.s. (3.9)
and (2.2) and the assumptions of Theorem 1 imply
Agnir [Agn > COY?, (3.10)
whence

Yn = HX1 + -+ X9n+1|| — HXl + -+ Xgn” = Agn+1 — Agn (3.11)
> Apn+r (1 — 0(9_1/2)) .

Thus using (3.8), (3.9), (3.10) and (3.11) we get with probability 1 for infinitely many n

| X1+ -+ Xgns |
> (1 —€)(2v2loglog )% — (1 + £)(2A2, loglog Agn)/?
> (1 — 2¢)(242,.1 loglog Agni1)"/?,

provided we choose 6 = 6(¢) large enough. This completes the proof of the lower half of
the LIL.
To prove the Corollary, assume that

N
NN (o) —- G (3.12)

k=1

with a nondegenerate distribution G. By Lemma 2 and (2.2) we have

N 4
E (Z f(ng(k)$)> < N2,
k=1
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and thus the sequence

N 2
Nt <Z f(na(k)x)> , N=12...
k=1

is bounded in Ly norm and consequently uniformly integrable. Thus the second moment
of the left hand side of (3.12) converges to the second moment v of G, which is nonzero,
since GG is nondegenerate. Thus we proved (1.8), and since the nonnegativity of the Fourier
coefficients of f implies (1.5), Theorem 1 yields (1.9) and (1.10).

In conclusion, we prove the remark made at the end of the Introduction concerning
the set I'y of limiting variances corresponding to all permutations o. Let f be a function
satisfying (1.4) with nonnegative Fourier coefficients. Assume that f is even, i.e. its Fourier

series
x

f(z) ~ Z ajcos2mjx

j=1
is a pure cosine series; the general case requires only trivial changes. Note that the Fourier
coefficients of f satisfy (2.3) and by Kac [11] we have

1 [/ N 2
/ (Zf (2%’)) dr ~ 'y?]\/'
0 \ k=1
where - )
= fE 2y / F() F(@w)do > | £
r=1

We first note that for any permutation o : N — N we have

1 S ’
LFII* < N/o (; f(20<k>x)> dr < 7} (3.13)

for any N > 1. To see this, we observe that

/ 1 (Z f(2"(k)x)> dx (3.14)
0 \k=1

1
NI Y[ rerOa et

1<i#j<N

1
NI+ S /O F@)f (270l g

1<i#j<N

— NI+ S / (@) f(2'x) de

22



where

oV =#{1<i#j<N:lo(j) —oli) =r}.
Fix r > 1. Clearly, for any 1 < i < N there exist at most two indices 1 < j < N, j # i
such that |o(j) — o(i)| = r. Hence af") < 2N and by the nonnegativity of the Fourier
coefficients of f, the integrals in the last line of (3.14) are nonnegative. Thus (3.13) is
proved. Next we claim that for any p € [||f]|,7¢] we can find a permutation o : N — N

such that
1 N 2
/ (Zf (2"(’“)33)) dx ~ p*N. (3.15)
0 \g=1

To this end, we will need

Lemma 10. For some J > 0 let

g(x) = Z aj cos2mjz.
j=J+1
Then for any set {my,...,mn} of distinct positive integers we have

< 2V N for J =20
= | V2NJ V2 for J>1.

> g (2m)

Proof: Similarly to (2.5) we have

/01 (i g (2’”’%)) 2 dx

- % Do apag - 1(n2™ = jp2m)

1<]€1 k}2<N]1 j2>J+1

Z Z 1 (712 = jp2™2)

1<k1<ko<N j1,jo>J+1 jlh
2"k

> 2 gm

1<ky <k2<N]>J+1

NZQ ' Z =
J>J+1
4N for J =0
2NJ~1 for J > 1.

IN

IN

IN

l

Let now p € [||f], 7] be given and write

i
ST
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Clearly
ae|0,1].

Postponing the extremal cases & = 0 and o = 1, assume « € (0,1). Set
A={i*+1,...,i+1)?%, i>0.

For every positive integer k there exists exactly one number ¢ = i(k) such that k € A;.
Now we set n; = 1 and define a sequence (ng)x>; recursively by

ng_1+i+1 if k=1i%+1 for some g
ng = Ng—1+ 1 if ke {i®+2,4+[2ia]} for some i
ng_1+t+1 otherwise.

For any 7 > 0, set

2t

p(w) =D ajeos2mjn,  rO(x) = f(z) —p(w) = D ajcos2mjr.

j=1 j=21+1

/01 <§f(2”kx)>2dx

asymptotically. There is an i such that N € A;, and since N —i? < (i+1)? =2 =2i+1 <
2v/N + 1, we have by Lemma 10

We want to calculate

N

> )

k=1

N

> F@ma)

k=i241

1/2

<2 (2\/N+ 1) " (316)

(2" )

Using Lemma 10 again, we get

}jf@ww
= Z (Z p (2™ x) + Z () (2"’“9:))

h=0 keAy, keAy

Y

and

sz

()

h= k‘EAh

kEAh

i—1

IN

=0



i—1
< D VR2IARTM?
h=0
i—1
< > V20@h+ 127
h=0
< 1. (3.17)

Now we calculate

2 (gl

h=0 \keA,

By the construction of the sequence (ny)g>1, the functions

> ph) (@), > ph) (2ma) (3.18)

k‘eAhl keAhQ

are orthogonal if hy # hy. In fact, if hy > hy, and k1 € Ay, ko € Ay, then ng, > ng, +
hs + 1, which implies that the largest frequency of a trigonometric function in the Fourier
series of p(h1)(2™1 7) is 2M2™1 < 2>, Thus the functions in (3.18) are really orthogonal.
A similar argument shows that for fixed h and ki, ky € A, the functions p®™ (27+12) and
pM(2™22) are orthogonal if not both k1 and ks, are in the set {h? + 1, h% 4 [2ha]}. Thus

/01 (i (Z ph (2%)))2 (3.19)

h=0 \keAp
2

i—1 1
S A B SR IC 0l IR DR

h=0 \ "0 \ke{h2+1,h2+[2ha]} ke{h2+[2ha]+1,(h+1)2}

For h — oo,
2

1
/ Z pM (2%2) | da ~~F (B* + [2ha] — (B* + 1)) ~ y72ha,
0

ke{h2+1,h2+[2ha]}

and

> P12 ~ LA (B + 1)* = (h? + [2hal)) ~ || £IIP2A(1 = a).

ke{h?+[2ha)+1,(h+1)2}

Thus by (3.19) for i — oo

[z o)

h=0 k‘EAh
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1—

~ (v2ho + || f72h(1 — a))

h=0
—1
~ (a+ [ fIPQ—-a)> 2n
h=0
~ piit. (3.20)

Combining (3.16), (3.17), (3.20) we finally obtain

N 2
/01 <Zf (2"1‘37)) dx ~ p*N as N — oo. (3.21)
k=1

Note that in our argument we assumed « € (0, 1), i.e. that p is an inner point of the interval
1 £l,v¢]. The case o =1 (i.e. p = ~yy) is trivial, with n; = k. In the case o = 0 we choose
(ng) growing very rapidly and the theory of lacunary series implies (3.21) with p = || f||.
Relation (3.21) is not identical with (3.15), since the sequence (ny) is not a permutation
of N. However, from (nj) we can easily construct a permutation ¢ such that (3.15) holds.
Let H denote the set of positive integers not contained in (n;) and insert the elements of
H into the sequence nq, no, ... by leaving very rapidly increasing gaps between them. The
so obtained sequence is a permutation o of N and if the gaps between the inserted elements
grow sufficiently rapidly, then clearly the asyimptotics of the integrals in (3.15) and (3.21)
are the same, i.e. (3.15) holds. This completes the proof of the fact that the class of limits

is identical with the interval [|| f||*,v7].

In conclusion we show that without assuming the nonnegativity of the Fourier coeffi-
cients of f, the class I'y of limiting variances in Theorem 1 for permuted sequences f(nq(x))
is not necessarily the closed interval with endpoints || f||* and ~7. Let

f(z) = cos 2mx — cosdmx + cos 8w

and again n; = 2%,

Then taking into account the cancellations in the sum Zi,v:l f(ngx)
we get

N
Z f(ngz) = cosdmx 4 cos 16mx + cos 32mx + cos 64w + cos 1287z + . ..
k=1

whence

/o (Z f(n;@)) dx ~ N/2

k=1

26



so that 77 = 1/2 and clearly || f||* = 3/2. (Note that in this case v; < || f||.) Now

N
Z f(4Fz) = cos 8rx — cos 167z
k=1
+ 2cos 32mx — cos 64mx + 2 cos 128mx — cos 256z 4 2cosH12x — . ..
and thus

/0 1 (i f(4%)) dz ~ 5N/2.

Similarly as above, we can get a permutation o of N such that

/1 (Z f(QJ(k)x)> dx ~ 5N/2.
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