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Abstract. Let f be a measurable function satisfying

f(x+ 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1]f < +∞,

and let (nk)k≥1 be a sequence of integers satisfying nk+1/nk ≥ q > 1 (k =
1, 2, . . .). By the classical theory of lacunary series, under suitable Diophantine
conditions on nk, (f(nkx))k≥1 satisfies the central limit theorem and the law
of the iterated logarithm. These results extend for a class of subexponentially
growing sequences (nk)k≥1 as well, but as Fukuyama showed, the behavior of
f(nkx) is generally not permutation-invariant; e.g. a rearrangement of the se-
quence can ruin the CLT and LIL. In this paper we construct an infinite order
Diophantine condition implying the permutation-invariant CLT and LIL with-
out any growth conditions on (nk)k≥1 and show that the known finite order
Diophantine conditions in the theory do not imply permutation-invariance even
if f(x) = sin 2πx and (nk)k≥1 grows almost exponentially. Finally, we prove
that in a suitable statistical sense, for almost all sequences (nk)k≥1 growing
faster than polynomially, (f(nkx))k≥1 has permutation-invariant behavior.

1. Introduction

Let f be a measurable function satisfying

(1) f(x+ 1) = f(x),

∫ 1

0

f(x) dx = 0, Var[0,1] f < +∞

and let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard gap
condition

(2) nk+1/nk ≥ q > 1 (k = 1, 2, . . .).

In the case nk = 2k, Kac [14] proved that f(nkx) satisfies the central limit theorem

(3) N−1/2
N∑

k=1

f(nkx)
D−→ N (0, σ2)
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with respect to the probability space [0, 1] equipped with the Lebesgue measure,
where

σ2 =

∫ 1

0

f2(x) dx+ 2
∞∑
k=1

∫ 1

0

f(x)f(2kx) dx.

Gaposhkin [11] extended (3) to the case when the fractions nk+1/nk are all in-
tegers or if nk+1/nk → α, where αr is irrational for r = 1, 2, . . .. On the other
hand, an example of Erdős and Fortet (see [15], p. 646) shows that the CLT (3)
fails if nk = 2k − 1. Gaposhkin also showed (see [12]) that the asymptotic behav-

ior of
∑N

k=1 f(nkx) is intimately connected with the number of solutions of the
Diophantine equation

ank + bnl = c, 1 ≤ k, l ≤ N.

Improving these results, Aistleitner and Berkes [1] gave a necessary and sufficient
condition for the CLT (3). For related laws of the iterated logarithm, see [5], [11],
[13], and [17].

The previous results show that for arithmetically “nice” sequences (nk)k≥1, the
system f(nkx) behaves like a sequence of independent random variables. However,
as an example of Fukuyama [9] shows, this result is not permutation-invariant: a
rearrangement of (nk)k≥1 can change the variance of the limiting Gaussian law or
ruin the CLT altogether. A complete characterization of the permutation-invariant
CLT and LIL for f(nkx) under the Hadamard gap condition (2) is given in our
forthcoming paper [3]. In particular, it is shown there that in the harmonic case
f(x) = cos 2πx, f(x) = sin 2πx the CLT and LIL for f(nkx) hold after any permu-
tation of (nk)k≥1.

For subexponentially growing (nk)k≥1 the situation changes radically. Note that
in the case f(x) = cos 2πx, f(x) = sin 2πx, the unpermuted CLT and LIL remain
valid under the weaker gap condition

nk+1/nk ≥ 1 + ck−α, 0 < α < 1/2;

see Erdős [8], Takahashi [18], [19]. However, as the following theorem shows, the
slightest weakening of the Hadamard gap condition (2) can ruin the permutation-
invariant CLT and LIL.

Theorem 1. For any positive sequence (εk)k≥1 tending to 0, there exists a sequence
(nk)k≥1 of positive integers satisfying

(4) nk+1/nk ≥ 1 + εk, k ≥ k0

and a permutation σ : N → N of the positive integers such that

(5) N−1/2
N∑

k=1

cos 2πnσ(k)x− bN
D−→ G,

where G is a non-Gaussian distribution with characteristic function given by (14)-
(16) and (bN )N≥1 is a numerical sequence with bN = O(1). Moreover, there exists
a permutation σ : N → N of the positive integers such that

(6) lim sup
N→∞

∑N
k=1 cos 2πnσ(k)x√
2N log logN

= +∞ a.e.
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As we will see, with a slight change of the norming sequence N−1/2 in (5) the
limit distribution G can also be chosen as the Cauchy distribution with density
π−1(1+x2)−1. The proof of Theorem 1 will also show that (6) can be improved to

(7) lim sup
N→∞

∑N
k=1 cos 2πnσ(k)x√

N logN
> 0 a.e.

It should be noted that the subexponential gap condition (4) does not imply the
permutation-invariant behavior of f(nkx) even for arithmetically “nice” sequences
(nk)k≥1. Indeed, the sequence (nk)k≥1 in Theorem 1 can be chosen so that it sat-
isfies conditions B, C, G in our paper [7] implying very strong independence prop-
erties of cos 2πnkx, sin 2πnkx, including the CLT and LIL. In fact, it is not easy to
construct subexponential sequences (nk)k≥1 satisfying the permutation-invariant
CLT and LIL: the only known example (see [2]) is the Hardy-Littlewood-Pólya
sequence, i.e. the sequence generated by finitely many primes and arranged in in-
creasing order; the proof uses deep number-theoretic tools. The purpose of this
paper is to introduce a new, infinite order Diophantine condition Aω which implies
the permutation-invariant CLT and LIL for f(nkx) and then to show that, in a
suitable statistical sense, almost all sequences (nk)≥1 growing faster than polyno-
mially satisfy Aω. Thus, despite the difficulties to construct explicit examples, the
permutation-invariant CLT and LIL are rather the rule than the exception.

Given a nondecreasing sequence ω = (ω1, ω2, . . .) of positive numbers tending to
+∞, let us say that a sequence (nk)k≥1 of different positive integers satisfies

Condition Aω if for any N ≥ N0 the Diophantine equation

(8) a1nk1
+ . . .+ arnkr

= 0, 2 ≤ r ≤ ωN , 0 < |a1|, . . . , |ar| ≤ NωN

with different indices kj and nonzero integer coefficients aj has only such solutions,
where all nkj

belong to the smallest N elements of the sequence (nk)k≥1.

Clearly, this property is permutation-invariant and it implies that for any fixed
nonzero integer coefficients aj the number of solutions of (8) with different indices
kj is at most Nr.

Theorem 2. Let ω = (ω1, ω2, . . .) be a nondecreasing sequence tending to +∞
and let (nk)k≥1 be a sequence of different positive integers satisfying condition Aω.
Then for any f satisfying (1) we have

(9) N−1/2
N∑

k=1

f(nkx)
D→ N (0, ‖f‖2),

where ‖f‖ denotes the L2(0, 1) norm of f . If ωk ≥ (log k)α for some α > 0 and
k ≥ k0, then we also have

(10) lim sup
N→∞

∑N
k=1 f(nkx)

(2N log logN)1/2
= ‖f‖ a.e.

Condition Aω is different from the usual Diophantine conditions in lacunarity
theory, which typically involve 4 or fewer terms. In contrast, Aω is an “infinite
order” condition; namely, it involves equations with arbitrary large order. As noted,
the usual Diophantine conditions do not suffice in Theorem 2. Given any ωk ↑ ∞,
it is not hard to see that any sufficiently rapidly growing sequence (nk)k≥1 satisfies
Aω; on the other hand, we do not have any “concrete” subexponential examples for
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Aω. However, we will show that, in a suitable statistical sense, almost all sequences
growing faster than polynomially satisfy condition Aω for some appropriate ω.
To make this precise requires defining a probability measure over the set of such
sequences, or, equivalently, a natural random procedure to generate such sequences.
A simple procedure is to choose nk independently and uniformly from the integers
in the interval

(11) Ik = [a(k − 1)ωk−1 , akωk), k = 1, 2, . . . .

Note that the length of Ik is at least aωk(k − 1)ωk−1 ≥ aω1 for k = 2, 3, . . . and
equals a for k = 1, and thus choosing a large enough, each Ik contains at least one
integer. Let μω be the distribution of the random sequence (nk)k≥1 in the product
space I1 × I2 × . . . .

Theorem 3. Let ωk ↑ ∞ and let f be a function satisfying (1). Then with proba-
bility one with respect to μω the sequence (f(nkx))k≥1 satisfies the CLT (9) after
any permutation of its terms, and if ωk ≥ (log k)α for some α > 0 and k ≥ k0,
(f(nkx))k≥1 also satisfies the LIL (10) after any permutation of its terms.

The sequences (nk)k≥1 provided by μω satisfy nk = O(kωk); for slowly increasing
ωk, the so-obtained sequences grow much slower than exponentially, in fact they
grow barely faster than polynomial speed. If ωk grows so slowly that ωk − ωk−1 =
o((log k)−1), then the so-obtained sequence (nk)k≥1 has the precise speed nk ∼ kωk .
We do not know if there exist polynomially growing sequences (nk)k≥1 satisfying
the permutation-invariant CLT or LIL. The proof of Theorem 3 will also show
that with probability 1, the sequences provided by μω satisfy Aω∗ with ω∗ =

(cω
1/2
1 , cω

1/2
2 , . . .).

2. Proofs

2.1. Proof of Theorem 1. We begin with the CLT part. Let (εk)k≥1 be a pos-
itive sequence tending to 0. Let m1 < m2 < . . . be positive integers such that

mk+1/mk ≥ 2k
2

, k = 1, 2, . . . and all the mk are powers of 2; let r1 ≤ r2 ≤ . . . be
positive integers satisfying 1 ≤ rk ≤ k2. Put Ik = {mk, 2mk, . . . , rkmk}; clearly
the sets Ik, k = 1, 2, ... are disjoint. Define the sequence (nk)k≥1 by

(12) (nk)k≥1 =
∞⋃
j=1

Ij .

Clearly, if nk, nk+1 ∈ Ij , then nk+1/nk ≥ 1 + 1/rj and thus if rj grows sufficiently
slowly, the sequence (nk)k≥1 satisfies the gap condition (4). Also, if rj grows
sufficiently slowly, there exists a subsequence (nk�

)�≥1 of (nk)k≥1 which has exactly
the same structure as the sequence in (12), just with rk ∼ k. By the proof of
Theorem 1 in [4], (cos 2πnk�

x)�≥1 satisfies

(13)
1√
N

N∑
�=1

cos 2πnk�
x− bN

D→ G,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE ASYMPTOTIC BEHAVIOR OF WEAKLY LACUNARY SERIES 2509

where (bN )N≥1 is a numerical sequence with bN = O(1) and G is a non-Gaussian
infinitely divisible distribution with characteristic function

(14) exp

⎧⎪⎨
⎪⎩

∫

R\{0}

(
eitx − 1− itx

1 + x2

)
dL(x)

⎫⎪⎬
⎪⎭ ,

where

(15) L(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
π

∫ 1

x
F (t)
t dt if 0 < x ≤ 1,

1
π

∫ 1

−x
G(t)
t dt if − 1 ≤ x < 0,

0 if | x |> 1

and

(16) F (t) = λ{x > 0 : sin x/x ≥ t}, G(t) = λ{x > 0 : sin x/x ≤ −t} (t > 0),

where λ is the Lebesgue measure. Define a permutation σ in the following way:

• for k /∈ {1, 2, 4, . . . , 2m, . . .}, σ(k) takes the values of the set {k1, k2, . . .} in
consecutive order;

• for k ∈ {1, 2, 4, . . . , 2m, . . .}, σ(k) takes the values of the set N\{k1, k2, . . .}
in consecutive order.

Then σ is a permutation of N and the sums

N∑
k=1

cos 2πnσ(k)x and

N∑
l=1

cos 2πnkl
x

differ at most in 2 log2 N terms. Therefore, (13) implies (5), proving the first part
of Theorem 1.

The proof of the LIL part of Theorem 1 is modeled after the proof of Theorem
1 in Berkes and Philipp [6]. Similarly as above, we construct a sequence (nk)k≥1

satisfying (4) that contains a subsequence (μk)k≥1 of the form (12) with Ik =
{mk, 2mk, . . . , rkmk}, where rk ∼ k log k and (mk)k≥1 is growing fast; specifically
we choose mk in such a way that it is a power of 2 and mk+1 ≥ rk2

2kmk. Let Fi

denote the σ-field generated of the dyadic intervals

[ν2−(log2 mi)−i, (ν + 1)2−(log2 mi)−i), 0 ≤ ν < 2(log2 mi)+i.

Write

Xi = cos 2πmix+ · · ·+ cos 2πrimix

and

Zi = E(Xi|Fi).

Then for all x ∈ (0, 1),

|Xi(x)− Zi(x)| � r2imi2
−(log2 mi)−i

and thus ∑
i≥1

|Xi(x)− Zi(x)| < ∞ for all x ∈ (0, 1).

As in [6, Lemma 2.1], the random variables Z1, Z2, . . . are independent, and as in
[6, Lemma 2.2], for almost every x ∈ (0, 1) we have

lim sup
i→∞

Xi/ri ≥ 2/π.
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Assume that for a fixed x and some i ≥ 1 we have Xi/ri ≥ 1/π. Then either

|X1 + · · ·+Xi−1| ≥ ri/2π

or

|X1 + · · ·+Xi| ≥ ri/2π.

Since the total number of summands in X1, . . . , Xi is � i2 log i, and since

ri � (i2 log i)1/2(log(i2 log i))1/2,

we have

lim sup
N→∞

∣∣∣∑N
k=1 cos 2πμkx

∣∣∣
√
N logN

> 0 a.e.,

and, in particular,

lim sup
N→∞

∣∣∣∑N
k=1 cos 2πμkx

∣∣∣
√
2N log logN

= +∞ a.e.

Thus we constructed a subsequence of (nk)k≥1 failing the LIL and similarly as
above, we can construct a permutation (nσ(k))k≥1 of (nk) failing the LIL as well.

Note that the just completed proof of Theorem 1 provides the stronger relation
(7) instead of (6). Also, if relation rk ∼ k just preceding relation (13) is replaced by
rk ∼ k log log k, then the proof of Theorem 2 in [4] shows that (5) will be replaced
by

a−1
N

N∑
k=1

cos 2πnσ(k)x− bN
D−→ G,

where G is the Cauchy distribution with density π−1(1 + x2)−1 and aN ∼
c
√
N/ log logN with some c > 0 and bN = O(1).

2.2. Proof of Theorem 2.

Lemma 1. Let ωk ↑ ∞ and let (nk)k≥1 be a sequence of different positive integers

satisfying condition Aω. Let f satisfy (1) and put SN =
∑N

k=1 f(nkx), σN =

(ES2
N )1/2. Then for any p ≥ 3 we have

ESp
N =

{
p!

(p/2)!2
−p/2σp

N +O(TN) if p is even,

O(TN ) if p is odd,

where

TN = exp(p2)N (p−1)/2(logN)p

and the constants implied by the O are absolute.

Proof. Fix p ≥ 2 and choose the integer N so large that ω[N1/4] ≥ 8p. Without

loss of generality we may assume that f is an even function and that ‖f‖∞ ≤ 1,
Var[0,1] f ≤ 1; the proof in the general case is similar. Let

(17) f ∼
∞∑
j=1

aj cos 2πjx

be the Fourier series of f . Var[0,1] f ≤ 1 implies that

(18) |aj | ≤ j−1
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(see Zygmund [20, p. 48]), and writing

g(x) =

Np∑
j=1

aj cos 2πjx, r(x) = f(x)− g(x),

we have

‖g‖∞ ≤ Var[0,1] f + ‖f‖∞ ≤ 2, ‖r‖∞ ≤ ‖f‖∞ + ‖g‖∞ ≤ 3

by (4.12) of Chapter II and (1.25) and (3.5) of Chapter III of Zygmund [20]. Letting
‖ ·‖ and ‖ ·‖p denote the L2(0, 1), resp. Lp(0, 1), norms, (18) yields for any positive
integer n,

(19) ‖r(nx)‖2 = ‖r(x)‖2 =
1

2

∞∑
j=Np+1

a2j ≤ N−p.

By Minkowski’s inequality,

‖SN‖p ≤ ‖
N∑

k=1

g(nkx)‖p + ‖
N∑

k=1

r(nkx)‖p

and

(20) ‖
N∑

k=1

r(nkx)‖p ≤ 3

N∑
k=1

‖r(nkx)/3‖p ≤ 3

N∑
k=1

‖r(nkx)/3‖2/p ≤ 3

N∑
k=1

N−1 ≤ 3.

Similarly, ∣∣∣∣∣‖SN‖ − ‖
N∑

k=1

g(nkx)‖
∣∣∣∣∣ ≤ ‖

N∑
k=1

r(nkx)‖ ≤ N− p
2+1,

and therefore∣∣∣∣∣‖SN‖p − ‖
N∑

k=1

g(nkx)‖p
∣∣∣∣∣

≤ p max

(
‖SN‖p−1, ‖

N∑
k=1

g(nkx)‖p−1

)
·
∣∣∣∣∣‖SN‖ − ‖

N∑
k=1

g(nkx)‖
∣∣∣∣∣

� p
(
N(log logN)2

) p−1
2 N− p

2+1

� p(log logN)p−1N1/2(21)

since by a result of Gál [10] and Koksma [16],

(22) ‖SN‖2 � N(log logN)2 and ‖
N∑

k=1

g(nkx)‖2 � N(log logN)2,

where the implied constants are absolute.
By expanding and using elementary properties of the trigonometric functions we

get

E

(
N∑

k=1

g(nkx)

)p

= 2−p
∑

1≤j1,...,jp≤Np

aj1 · · · ajp
∑

1≤k1,...,kp≤N

I{±j1nk1
± . . .± jpnkp

= 0},(23)
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with all possibilities of the signs ± within the indicator function. Assume that
j1, . . . , jp and the signs ± are fixed, and consider a solution of ±j1nk1

±. . .±jpnkp
=

0. Then the set {1, 2, . . . , p} can be split into disjoint sets A1, . . . , Al such that for
each such set A we have

∑
i∈A ±jinki

= 0 and no further subsums of these sums
are equal to 0. Group the terms of

∑
i∈A ±jinki

with equal ki. If after grouping
there are at least two terms, then by the restriction on subsums, the sum of the
coefficients ji in each group will be different from 0 and will not exceed

pNp ≤ ω[N1/4]N
1
8ω[N1/4] ≤ 2

1
8ω[N1/4]N

1
8ω[N1/4] ≤ N

1
4ω[N1/4] (N ≥ N0).

Also the number of terms after grouping will be at most p ≤ ω[N1/4] and thus

applying condition Aω with the index [N1/4] shows that within a block A the nki

belong to the smallest [N1/4] terms of the sequence. Thus letting |A| = m, the
number of solutions of

∑
i∈A ±jinki

= 0 is at most Nm/4. If after grouping there
is only one term, then all the ki are equal and thus the number of solutions of∑

i∈A ±jinki
= 0 is at most N . Thus if m ≥ 3, then the number of solutions of∑

i∈A ±jinki
= 0 in a block is at most Nm/3. Ifm = 2, then the number of solutions

is clearly at most N . Thus if si = |Ai| (1 ≤ i ≤ l) denotes the cardinality of Ai,
the number of solutions of ±j1nk1

± . . .±jpnkp
= 0 admitting such a decomposition

with fixed A1, . . . , Al is at most

∏
{i:si≥3}

Nsi/3
∏

{i:si=2}
N = N

1
3

∑
{i:si≥3} si+

∑
{i:si=2} 1

= N
1
3

∑
{i:si≥3} si+

1
2

∑
{i:si=2} si = N

1
3

∑
{i:si≥3} si+

1
2 (p−

∑
{i:si≥3} si)

= N
p
2−

1
6

∑
{i:si≥3} si .

If there is at least one i with si ≥ 3, then the last exponent is at most (p − 1)/2
and since the number of partitions of the set {1, . . . , p} into disjoint subsets is at
most p! 2p, we see that the number of solutions of ±j1nk1

± . . .± jpnkp
= 0, where

at least one of the sets Ai has cardinality ≥ 3, is at most p! 2pN (p−1)/2. If p is odd,
there are no other solutions and thus using (18) the inner sum in (23) is at most
p! 2pN (p−1)/2 and consequently, taking into account the 2p choices for the signs ±1,

∣∣∣∣∣∣E
⎛
⎝∑

k≤N

g(nkx)

⎞
⎠

p∣∣∣∣∣∣
≤ p! 2pN (p−1)/2

∑
1≤j1,...,jp≤Np

|aj1 · · · ajp | � exp(p2)N (p−1)/2(logN)p.
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If p is even, there are also solutions where each A has cardinality 2. Clearly, the
contribution of the terms in (23), where A1 = {1, 2}, A2 = {3, 4}, . . ., is
⎛
⎝1

4

∑
1≤i,j≤N2p

∑
1≤k,�≤N

aiajI{±ink ± jn� = 0}

⎞
⎠

p/2

=

⎛
⎜⎝E

⎛
⎝∑

k≤N

g(nkx)

⎞
⎠

2
⎞
⎟⎠

p/2

=

∥∥∥∥∥∥
∑
k≤N

g(nkx)

∥∥∥∥∥∥
p

= ‖SN‖p +O
(
p(log logN)p−1N1/2

)

by (21).

Since the splitting of {1, 2, . . . , p} into pairs can be done in p!
(p/2)!2

−p/2 different

ways, we proved that

(24) E

⎛
⎝∑

k≤N

g(nkx)

⎞
⎠

p

=

{
p!

(p/2)!2
− p

2 σp
N +O(TN ),

O(TN )

according as p is even or odd; here

TN = exp(p2)N (p−1)/2(logN)p.

Now, letting GN =
∑

k≤N g(nkx) we get, using (20), (22) and (24),

|ESp
N − EGp

N |
≤ p max

(
‖SN‖p−1

p , ‖GN‖p−1
p

)
· |‖SN‖p − ‖GN‖p|

� p

(
p!

(p/2)!
2−

p
2 σp

N

) p−1
p

� TN ,

where in the last step we used the fact that σN �
√
N log logN by (22). This

completes the proof of Lemma 1. �

Lemma 2. Let ωk ↑ ∞ and let (nk)k≥1 be a sequence of different positive integers
satisfying condition Aω. Then for any f satisfying (1) we have

(25)

∫ 1

0

(
N∑

k=1

f(nkx)

)2

dx ∼ ‖f‖2N as N → ∞.

Proof. Clearly, ω[N1/4] ≥ 4 for sufficiently large N and thus applying Condition Aω

for the index [N1/4] it follows that for N ≥ N0 the Diophantine equation

(26) j1ni1 + j2ni2 = 0, i1 
= i2, 0 < |j1|, |j2| ≤ N

has only such solutions, where ni1 , ni2 belong to the set JN of [N1/4] smallest
elements of the sequence (nk)k≥1. Write pN (x) for the N -th partial sum of the
Fourier series of f , and rN for the N -th remainder term. Then we have for any f
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satisfying (1),
(27)∥∥∥∥∥

N∑
k=1

f(nkx)

∥∥∥∥∥ ≥

∥∥∥∥∥∥
∑

k∈[1,N ]\JN

pN (nkx)

∥∥∥∥∥∥−
∥∥∥∥∥
∑
k∈JN

f(nkx)

∥∥∥∥∥−

∥∥∥∥∥∥
∑

k∈[1,N ]\JN

rN (nkx)

∥∥∥∥∥∥ .

Using the previous remark on the number of solutions of (26) we get, as in (23),∥∥∥∥∥∥
∑

k∈[1,N ]\JN

pN (nkx)

∥∥∥∥∥∥ = (N − [N1/4])1/2 ‖pN‖ ∼ N1/2‖f‖,

since ‖pN‖ → ‖f‖. Further, ‖rN‖ � N−1/2 by (18) and thus using Minkowski’s
inequality and the results of Gál and Koksma mentioned in (22), we get

∥∥∥∥∥
∑
k∈JN

f(nkx)

∥∥∥∥∥ � N1/4,

∥∥∥∥∥∥
∑

k∈[1,N ]\JN

rN (nkx)

∥∥∥∥∥∥�
√
N log logN‖rN‖ � log logN.

These estimates, together with (27), prove Lemma 2.
Lemma 1 and Lemma 2 imply that for any fixed p ≥ 2, the p-th moment of

SN/σN converges to p!
(p/2)!2

−p/2 if p is even and to 0 if p is odd; in other words, the

moments of SN/σN converge to the moments of the standard normal distribution.

By σN ∼ ‖f‖
√
N and a well-known result in probability theory, this proves the

CLT part of Theorem 2. The proof of the LIL part of Theorem 2 is more involved,
and we will give just a sketch of the proof. The details can be modeled after the
proof of [2, Theorem 1]. The crucial ingredient is Lemma 3 below, which yields the
LIL part of Theorem 2, just as [2, Theorem 1] follows from [2, Lemma 3].

Let θ > 1 and define Δ′
M = {k ∈ N : θM < k ≤ θM+1} and T ′

M =∑
k∈Δ′

M
f(nkx). By the standard method of proof of the LIL, we need precise

bounds for the tails of T ′
M and also, a near independence relation for the T ′

M for
the application of the Borel-Cantelli lemma in the lower half of the LIL. From the
set Δ′

M we remove its [θM/4] elements with the smallest value of nk (recall that the
sequence (nk)k≥1 is not assumed to be increasing) and denote the remaining set

by ΔM . Since the number of removed elements is � |Δ′
M |1/4, this operation does

not influence the partial sum asymptotics of T ′
M . As in the proof of Lemma 1, we

assume that we have a representation of f in the form (17) and that (18) holds.
Define

gM (x) =

[θM ]2∑
j=1

aj cos 2πjx, σ2
M =

∫ 1

0

( ∑
k∈ΔM

gM (nkx)

)2

dx

and

TM =
∑

k∈ΔM

gM (nkx), ZM = TM/σM .

From Lemma 2 it follows easily that

(28) σM � |ΔM |1/2.

Assume that (nk)k≥1 satisfies Condition Aω for a sequence (ωk)k≥1 with ωk ≥
(log k)α for some α > 0, k ≥ k0. Without loss of generality we may assume
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0 < α < 1/2. Choose δ > 0 so small that for sufficiently large r,

�(29)
(
log θ

√
r/4

)α

> 4 (log θr)
δ
.

Lemma 3. For sufficiently large M,N satisfying N1−α/2 ≤ M ≤ N , and for
positive integers p, q satisfying p+ q ≤ (log θN )δ we have

EZp
MZq

N =

{
p!

(p/2)!2p/2
q!

(q/2)!2q/2
+O(RM,N ) if p, q are even,

O(RM,N ) otherwise,

where
RM,N = 2p+q(p+ q)! (logM)p+q|ΔM |−1/2.

Proof. Note that N ≤ M1+3α/4 and thus, setting L = [θM/4], relation p + q ≤
(log θN )δ and (29) imply

p+ q ≤ 1

4
(log θ

√
N/4)α ≤ 1

4
(log θM/4)α ≤ ωL

and by a simple calculation,

(p+ q)
(
θN

)2 ≤ [θM/4](log[θ
M/4])α ≤ LωL

provided N is large enough. Applying condition Aω we get that for all solutions of
the equation

(30) ±j1nk1
± · · · ± jpnkp

± jp+1nkp+1
± · · · ± jp+qnkp+q

= 0

with different indices k1, . . . , kp+q, where

(31) 1 ≤ ji ≤ (p+ q)
(
θN

)2
,

the nkj
belong to the [θM/4] smallest elements of (nk)k≥1. By construction not a

single one of these elements is contained in ΔM or ΔN . Thus the equation (30)
subject to (31) has no solution (k1, . . . , kp+q), where k1, . . . , kp+q are different and
satisfy

k1, . . . , kp ∈ ΔM , kp+1, . . . , kp+q ∈ ΔN .

Now

EZp
MZq

N =
2−p−q

σp
Mσq

N

∑
1≤jq,...,jp≤[θM ]2,

1≤jp+1,...,jp+q≤[θN ]2

×
∑

k1,...,kp∈ΔM ,
kp+1,...,kp+q∈ΔN

aj1 . . . ajp+q
1{±j1nk1

± · · · ± jp+qnkp+q
= 0}.(32)

If for some k1, . . . , kp+q we have (note that in (32) these indices need not be differ-
ent)

(33) ±j1nk1
± · · · ± jp+qnkp+q

= 0,

then grouping the terms of the equation according to identical indices, we get a
new equation of the form

j′1nl1 + . . .+ j′snls = 0, l1 < . . . < ls, s ≤ p+ q, j′i ≤ (p+ q)(θN )2

and using the above observation, all the coefficients j′1, . . . , j
′
s must be equal to 0.

In other words, in any solution of (33) the terms can be divided into groups such
that in each group the nkj

are equal and the sum of the coefficients is 0. Consider
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first the solutions where all groups have cardinality 2. This can happen only if both
p and q are even, and similarly to the proof of Lemma 1, the contribution of such
solutions in (32) is

p!

(p/2)!2p/2
q!

(q/2)!2q/2
.

Consider now the solutions of (33), where at least one group has cardinality ≥ 3.
Clearly the sets {k1, . . . , kp} and {kp+1, . . . kp+q} are disjoint; let us denote the
number of groups within these two sets by R and S, respectively. Evidently R ≤
p/2, S ≤ q/2, and at least one of the inequalities is strict. Fixing j1, . . . , jp+q and
the groups, the number of such solutions cannot exceed

|ΔM |R|ΔN |S ≤ |ΔM |p/2|ΔN |q/2|ΔM |−1/2 � σp
Mσq

N |ΔM |−1/2,

where we used (28) and the fact that |ΔM | ≤ |ΔN |. Since the number of parti-
tions of the set {1, 2, . . . , p + q} into disjoint subsets is at most (p + q)!2p+q and
since the number of choices for the signs ± in (33) is at most 2p+q, we see, af-
ter summing over all possible values of j1, . . . , jp+q, that the contribution of the
solutions containing at least one group with cardinality ≥ 3 in (32) is at most
2p+q(p+ q)!|ΔM |−1/2(log[θN ])p+q. This completes the proof of Lemma 3. �

The rest of the proof of the LIL part of Theorem 2 can be modeled following the
lines of Lemma 4, Lemma 5, Lemma 6 and the proof of Theorem 1 in [2].

2.3. Proof of Theorem 3. Let ωk ↑ ∞ and set ηk = 1
2ω

1/2
k , η = (η1, η2, . . . ).

Clearly

(34) (2k)η
2
k+2ηk ≤ (2k)ωk/2 ≤ k−2|Ik| for k ≥ k0

since, as we noted, |Ik| ≥ aωk(k − 1)ωk−1 ≥ (k/2)ωk−1 for large k. We choose nk,
k = 1, 2, . . ., independently and uniformly from the integers of the intervals Ik in
(11). We claim that, with probability 1, the sequence (nk)k≥1 is increasing and
satisfies condition Aη. To see this, let k ≥ 1 and consider the numbers of the form

(35) (a1ni1 + . . .+ asnis)/d,

where 1 ≤ s ≤ ηk, 1 ≤ i1, . . . , is ≤ k − 1, a1, . . . , as, d are nonzero integers with

|a1|, . . . , |as|, |d| ≤ kηk . Since the number of values in (35) is at most (2k)η
2
k+2ηk ,

and by (34), the probability that nk equals any of these numbers is at most k−2.
Thus by the Borel-Cantelli lemma, with probability 1 for k ≥ k1, nk will be different
from all the numbers in (35) and thus the equation

a1ni1 + . . .+ asnis + as+1nk = 0

has no solution with 1 ≤ s ≤ ηk, 1 ≤ i1 < . . . < is ≤ k − 1, 0 < |a1|, . . . , |as+1| ≤
kηk . By monotonicity, the equation

a1ni1 + . . .+ asnis = 0

has no solutions provided the indices iν are all different, the maximal index is at
least k, the number of terms is at most ηk, and 0 < |a1|, . . . , |as| ≤ kηk . In other
words, (nk) satisfies condition Aη. Now using Theorem 2, we get Theorem 3.
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