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Abstract

The results of Komlós, Major and Tusnády give optimal Wiener approx-
imation of partial sums of i.i.d. random variables and provide an extremely
powerful tool in probability and statistical inference. Recently Wu [52] ob-
tained Wiener approximation of a class of dependent stationary processes with
finite p-th moments, 2 < p ≤ 4, with error term o(n1/p(log n)γ), γ > 0, and
Liu and Lin [27] removed the logarithmic factor, reaching the Komlós-Major-
Tusnády bound o(n1/p). No similar results exist for p > 4 and in fact, no
existing method for dependent approximation yields an a.s. rate better than
o(n1/4). In this paper we show that allowing a second Wiener component in
the approximation, we can get rates near to o(n1/p) for arbitrary p > 2. This
extends the scope of applications of the results essentially, as we illustrate it
by proving new limit theorems for increments of stochastic processes and sta-
tistical tests for short term (epidemic) changes in stationary processes. Our
method works under a general weak dependence condition similar to those in
[27] and [52] covering, among others, wide classes of linear and nonlinear time
series models and classical dynamical systems.
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1 Introduction
Let X, X1, X2, . . . be i.i.d. random variables with mean 0 and variance 1 and let
Sn =

∑
k≤n Xk. Komlós, Major and Tusnády [24], [25] showed that if E(et|X|) < ∞

for some t > 0 then, after suitably enlarging the probability space, there exists a
Wiener process {W (t), t ≥ 0} such that

Sn = W (n) + O(log n) a.s. (1)

Also, if E|X|p < ∞ for some p > 2, they proved the approximation

Sn = W (n) + o(n1/p) a.s. (2)

The remainder terms in (1) and (2) are optimal. In the case when only EX = 0,
EX2 = 1 is assumed, Strassen [46] obtained

Sn = W (n) + o
(
(n log log n)1/2

)
a.s. (3)

Without additional moment assumptions the rate in (3) is also optimal, see Major
[28]. Relation (3) is a useful invariance principle for the law of the iterated logarithm;
on the other hand, it does not imply the CLT for {Xn}. This difficulty was removed
by Major [29] who showed that under EX = 0, EX2 = 1 there exists a Wiener
process W and a numerical sequence τn ∼ n such that

Sn = W (τn) + o(n1/2) a.s. (4)

Thus allowing a slight perturbation of the approximating Wiener process one can
reach the remainder term o(n1/p) also for p = 2, making the result applicable for a
wide class of CLT type results. The case of strong approximation under the moment
condition EX2h(|X|) < ∞ where h(x) = o(xε), x → ∞ for any ε > 0, has been
cleared up completely by Einmahl [17].

The previous results, which settle the strong approximation problem for i.i.d.
random variables with finite variances, provide powerful tools in probability and
statistical inference, see e.g. the book of Shorack and Wellner [45]. Starting with
Strassen [47], a wide literature has dealt with extensions of the above results for
weakly dependent sequences, but the existing results are much weaker than in the
i.i.d. case. Recently, however, Wu [52] showed that for a large class of weakly
dependent stationary sequences {Xn} satisfying E|X1|p < ∞, 2 < p ≤ 4, we have
the approximation

Sn = W (n) + o
(
n1/p(log n)γ

)
a.s.

for some γ > 0 and Liu and Lin [27] removed the logarithmic factor in the error
term, reaching the optimal Komlós-Major-Tusnády bound. The proofs do not work
for p > 4 and in fact, no existing method for dependent approximation yields an
a.s. rate better than o(n1/4). On the other hand, many important limit theorems in
probability and statistics involve norming sequences smaller than n1/4, making such
results inaccessible by invariance methods. The purpose of the present paper is to
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fill this gap and provide a new type of approximation theorem reaching nearly the
Komlós-Major-Tusnády rate for any p > 2.

As noted above, reaching the error term o(n1/2) for i.i.d. sequences with finite
variance requires a perturbation of the approximating Wiener process W . In the case
of dependent processes we will also need a similar perturbation and, more essentially,
we will include a second Wiener process in the approximation, whose scaling factor
is smaller than that of W and thus it will not affect the asymptotic behavior of the
main term. Specifically, for a large class of weakly dependent stationary processes
{Yk} with finite p-th moments, 2 < p < ∞, we will prove the approximation

n∑

k=1

Yk = W1

(
s2

n

)
+ W2

(
t2n

)
+ O

(
n

1+η
p

)
a.s., (5)

where {W1(t), t ≥ 0} and {W2(t), t ≥ 0} are standard Wiener processes and sn, tn
are numerical sequences with

s2
n ∼ σ2n, t2n ∼ cnγ

for some 0 < γ < 1, σ2 > 0, c > 0. The new element in (5) is the term W2(t
2
n)

which, by its smaller scaling, does not disturb the asymptotic properties of W1(s
2
n).

Note that the processes W1, W2 are not independent, but this will not present any
difficulties in applications. (See also Proposition 1 in the next section.) The number
η depends on the weak dependence rate of {Yk} (introduced below), and can be
made arbitrarily small under suitable rate conditions.

For p > 0 and a random variable Y , let ‖Y ‖p = (E|Y |p)1/p. If A and B are
subsets of Z, we let d(A,B) = inf{|a− b| : a ∈ A, b ∈ B}.
Definition 1. Let {Yk, k ∈ Z} be a stochastic process, let p ≥ 1 and let δ(m) → 0.
We say that {Yk, k ∈ Z} is weakly M-dependent in Lp with rate function δ(·) if:

(A) For any k ∈ Z, m ∈ N one can find a random variable Y
(m)
k with finite p-th

moment such that ∥∥Yk − Y
(m)
k

∥∥
p
≤ δ(m).

(B) For any disjoint intervals I1, . . . , Ir (r ∈ N) of integers and any positive inte-
gers m1, . . . ,mr, the vectors {Y (m1)

j , j ∈ I1}, . . . , {Y (mr)
j , j ∈ Ir} are independent

provided d(Ik, Il) > max{mk,ml} for 1 ≤ k < l ≤ r.

We remark that our dependence condition is naturally preserved under smooth
transformations. For example, if {Yk} is weakly M-dependent in Lp with rate δ(·)
and h is a Lipschitz α function (0 < α ≤ 1) with Lipschitz constant K, then by the
monotonicity of ‖Yk − Y

(m)
k ‖p in p we have

‖h(Yk)− h(Y
(m)
k )‖p ≤ K‖Yk − Y

(m)
k ‖α

αp ≤ K‖Yk − Y
(m)
k ‖α

p

and thus {h(Yk)} is also weakly M-dependent in Lp with rate function Kδ(·)α.
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Note that (B) implies that for any fixed m the sequence {Y (m)
k , k ∈ Z} is an

m-dependent process. Hence, sequences satisfying conditions (A) and (B) are ap-
proximable, in the Lp sense, by m-dependent processes of any fixed order m ≥ 1
with termwise approximation error δ(m). In other words, sequences in Definition 1
are close to m-dependent sequences, the value of m depending on the required close-
ness, explaining the terminology. Since ‖Yk‖p ≤ ‖Y (m)

k ‖p + ‖Yk − Y
(m)
k ‖p, condition

(A) implies that E|Yk|p is finite. Using Lp–distance is convenient for our theorems,
but, depending on the application, other distances can be used in part (A) of Def-
inition 1. For example, defining (as usual) the L0 norm of a random variable X
by

‖X‖0 = inf{ε > 0 : P (|X| ≥ ε) < ε},
(A) could be replaced by ∥∥Yk − Y

(m)
k

∥∥
0
≤ δ(m).

Such a definition requires no moment assumptions and turns out to provide a useful
dependence measure for studying empirical processes (see [3]).

Trivially the previous definition covers m-dependent processes for any fixed m
(see also Subsection 3.1), but, in contrast to the very restrictive condition of m-
dependence, weak M-dependence holds for a huge class of stationary sequences,
including those studied in Wu [50], [52] and Liu and Lin [27]. In the case when
{Yk, k ∈ Z} allows a Wiener-Rosenblatt representation

Yk = f(εk, εk−1, . . .), k ∈ Z (6)

with an i.i.d. sequence {εk, k ∈ Z}, weakM-dependence is very close to Wu’s phys-
ical dependence condition in [50], except that we allow a larger freedom in choosing
the approximating random variables Y

(m)
k , compared with the choice in [50], [52] via

coupling. (For sufficient criteria for the representation (6), see Rosenblatt [39], [40],
[41].) Note that instead of (6) we may also assume a two-sided representation

Yk = f(. . . , εk−1, εk, εk+1, . . .), k ∈ Z (7)

of {Yk}. In case when {Yk, k ∈ Z} allows the representation (7) with mixing {εk},
Definition 1 is a modified version of NED (see Subsection 3.2), a weak dependence
condition which appeared already in Ibragimov [21] and has been brought forward
in Billingsley [5] (see also [30], [31]). Later NED has been successfully used in the
econometrics literature to establish weak dependence of dynamic time series models
(see e.g. [34]). In Section 3 we will discuss further the connection between weakM-
dependence with known weak dependence conditions. We stress that the definition
of weak M-dependence does not assume the representation (6) or (7), although it
was motivated by this case. The reason for using our more general definition is to
illuminate the essential structural condition on {Yk} required for our theorems.

The main results of our paper are formulated in Section 2. In Section 3 we
give several examples. Applications of the theorems can be found in Section 4 and
Section 5, while Section 6 contains the proofs of the main theorems.
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2 Main Theorems
We write an ¿ bn if limn→∞|an/bn| < ∞.

Theorem 1. Let p > 2, η > 0 and let {Yk, k ∈ Z} be a centered stationary sequence,
weakly M-dependent in Lp with rate function

δ(m) ¿ m−A, (8)

where
A >

p− 2

2η

(
1− 1 + η

p

)
∨ 1, (1 + η)/p < 1/2. (9)

Then the series
σ2 =

∑

k∈Z
EY0Yk (10)

is absolutely convergent and {Yk, k ∈ Z} can be redefined on a new probability space
together with two standard Wiener processes {W1(t), t ≥ 0} and {W2(t), t ≥ 0}
such that

n∑

k=1

Yk = W1

(
s2

n

)
+ W2

(
t2n

)
+ O

(
n

1+η
p

)
a.s., (11)

where {sn} and {tn} are nondecreasing numerical sequences with

s2
n ∼ σ2n, t2n ∼ cnγ (12)

for some 0 < γ < 1, c > 0.

Note that for any fixed p > 2 and 0 < η < (p − 2)/2, condition (9) is satisfied
if A is large enough and thus Theorem 1 provides an a.s. invariance principle with
remainder term close to the optimal remainder term o(n1/p) in the Komlós-Major-
Tusnády approximation.

It is natural to ask if W1(s
2
n) in (11) can be replaced by W1(σ

2n), a fact that would
simplify applications. The proof of the theorem yields an sn with s2

n = σ2n+O(n1−ε)
for some 0 < ε < 1, but for A barely exceeding the lower bound in (9), the explicit
value of ε is very small. Thus replacing W1(s

2
n) by W1(σ

2n) introduces an additional
error term that ruins the error term O(n(1+η)/p) in (11). The situation is similar to
the Wiener approximation of partial sums of i.i.d. random variables with mean 0
and variance 1 when we have (4) with a numerical sequence τn ∼ n, but in general
(4) does not hold with τn = n. (See Major [28], [29].) Note, however, that in our
case the large difference between s2

n and σ2n is a consequence of the method and we
do not claim that another construction cannot yield the approximation (11) with
s2

n = σ2n. However, the presence of s2
n in (11) does not limit the applicability of our

strong invariance principle: s2
n and t2n are explicitly calculable nonrandom numbers

and as we will see, applying limit theorems for W1(s
2
n) is as easy as for W1(σ

2n).
As the proof of Theorem 1 will show, the sequences {sn} and {tn} in (11) have a

complementary character. More precisely, there is a partition N = G1∪G2 (provided
by the long and short blocks in a traditional blocking argument) and a representation

s2
n =

n∑

k=1

σ2
k, t2n =

n∑

k=1

τ 2
k (n = 1, 2, . . .)
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such that σ2
k converges to σ2 on G1 and equals 0 on G2, and τ 2

k converges to σ2 on
G2 and equals 0 on G1. In particular,

limn→∞ (s2
n+1 − s2

n) = limn→∞ (t2n+1 − t2n) = σ2, (13)

and both liminf’s are equal to 0.
The numerical value of γ in (12) plays no role in the applications in this paper,

but for later applications we note that if

A >
p− 2

2η(1− ε0)2

(
1− 1 + η

p

)
∨ 1

for some 0 < ε0 < 1, then we can choose

γ = 1− ε0
2η(1− ε0)

p− 2(1 + ηε0)
. (14)

As we already mentioned in the Introduction, the processes W1 and W2 are
not independent. While for our applications this is not important, the following
Proposition might be useful for possible further applications.

Proposition 1. Under the assumptions of Theorem 1 we have

Corr(W1(sn),W2(tm)) → 0, as m,n →∞. (15)

Our next theorem is the analogue of Theorem 1 in the case of an exponential
decay in the dependence condition.

Theorem 2. Let p > 2 and let {Yk, k ∈ Z} be a centered stationary sequence, weakly
M-dependent in Lp with rate function

δ(m) ¿ exp(−%m), % > 0. (16)

Then the series (10) is absolutely convergent and {Yk, k ∈ Z} can be redefined on
a new probability space together with two standard Wiener processes {W1(t), t ≥ 0}
and {W2(t), t ≥ 0} such that

n∑

k=1

Yk = W1

(
s2

n

)
+ W2

(
t2n

)
+ O

(
n1/p log2 n

)
a.s., (17)

where {sn} and {tn} are nondecreasing numerical sequences such that s2
n ∼ σ2n,

t2n ∼ σ2n/ log n and (13) holds.

Like in Theorem 1, s2
n ∼ σ2n can be slightly sharpened to s2

n = σ2n+O(n/ log n);
see the remarks after Theorem 1.

Using the law of the iterated logarithm for W2, relation (11) implies

n∑

k=1

Yk = W1

(
s2

n

)
+ O

(
n1/2−λ

)
a.s., (18)
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for some λ > 0, which is the standard form of strong invariance principles. However,
since γ in (12) is typically near to 1, the λ in (18) can be very small, and thus the
effect of the very strong error term O(n(1+η)/p) in (11) is lost.

The proof of the strong approximation theorems in Wu [52] depends on martin-
gale approximation, while Liu and Lin [27] use approximation of the partial sums of
{Yk} by partial sums of m-dependent r.v.’s. Our approach differs from both, using a
direct approximation of separated block sums of {Yk} by independent r.v.’s, an idea
used earlier in [2], [3], [4], [20]. In this approach, the second Wiener process W2 is
provided by the sum of short block sums. The question if one can get a remainder
term near o(n1/p) in the simple (one-term) Wiener approximation for any p > 2
remains open.

3 Examples of weakly M-dependent processes
The classical approach to weak dependence, developed in the seminal papers of
Rosenblatt [38] and Ibragimov [21], uses the strong mixing property and its variants
like β, %, φ and ψ mixing, combined with a blocking technique to connect the partial
sum behavior of {Yk} with that of independent random variables. This method yields
very sharp results (for a complete account of the classical theory see Bradley [7]), but
verifying mixing conditions of the above type is not easy and even when they apply
(e.g. for Markov processes), they typically require strong smoothness conditions on
the process. For example, for the AR(1) process

Yk =
1

2
Yk−1 + εk

with Bernoulli innovations, strong mixing fails to hold (cf. Andrews [1]). Recog-
nizing this fact, an important line of research in probability theory in past years
has been to find weak dependence conditions which are strong enough to imply
satisfactory asymptotic results, but which are sufficiently general to be satisfied in
typical applications. Several conditions of this kind have been found, in particular
by the French school, see [10], [11], [12], [15], [36], [37]. A different type of mixing
conditions, the so-called physical and predictive dependence measures have been
introduced by Wu [50] for stationary processes {Yk} admitting the representation
(6) where {εk, k ∈ Z} is an i.i.d. sequence and f : RN → R is a Borel-measurable
function. These conditions are particularly easy to handle, since they are defined
in terms of the algorithms which generate the process {Yk}. Weak M-dependence,
although formally not requiring a representation of the form (6), is closely related
to Wu’s mixing conditions and works best for processes {Yk} having a representa-
tion (6) or its two-sided version (7). The examples below will clear up the exact
connection of our weak M-dependence condition with the mixing conditions in Wu
[50], [52] and Liu and Lin [27].
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3.1 m-dependent processes

Definition 1 implies that {Yk, k ∈ Z} can be approximated, for every m ≥ 1, by
an m-dependent process with termwise Lp error δ(m). If {Yk, k ∈ Z} itself is m-
dependent for some fixed m = m0 and K := supk∈Z ‖Yk‖p < ∞, then Definition 1 is
satisfied with

δ(j) =

{
K if j < m0

0 if j ≥ m0,

and Y
(n)
k = 0 if n < m0 and Y

(n)
k = Yk if n ≥ m0. In other words, m-dependent

sequences with uniformly bounded Lp norms are weakly M-dependent with the
above parameters. It is worth mentioning that m-dependent processes in general do
not have representation (7) (see e.g. [8], [48]).

3.2 NED processes

Under (7) our condition can be directly compared to NED. We recall the

Definition 2 (NED). A sequence {Yk, k ∈ Z} having representation (7) is called
NED over {εk} under Lp-norm with rate function δ(·) if for any k ∈ Z, m ≥ 1,

∥∥Yk − E
[
Yk|Fk+m

k−m

]∥∥
p
≤ δ(m),

where Fk+m
k−m is the σ-algebra generated by εk−m, . . . , εk+m.

Clearly, if {εk} is an independent sequence, then Y
(m)
k = E

[
Yk|Fk+m

k−m

]
satisfies

(B) of Definition 1. Hence if {Yk} is NED over {εk} in Lp-norm with rate function
δ(·) where {εk} is an independent sequence, then {Yk} is weaklyM-dependent with
the same p, δ(·).

As our examples below will show, for weakly M-dependent sequences the con-
struction for Y

(m)
k is not restricted to E

[
Yk|Fk+m

k−m

]
, but is often more conveniently

established by truncation or coupling methods.

3.3 Linear processes

Let Yk =
∑∞

j=−∞ ajεk−j with i.i.d. innovations {εj, j ∈ Z}. If aj = 0 for j < 0, then
the sequence {Yk, k ∈ Z} is causal. Liu and Lin [27] and Wang, Lin and Gulati [49]
studied strong approximations of the partial sums with Gaussian processes (in the
short- and long-memory cases).

We define Y
(m)
k as

Y
(m)
k =

bm/2c∑

j=−bm/2c
ajεk−j.

This directly ensures that condition (B) holds. To verify condition (8) we will assume
that E|ε0|p < ∞ for some p > 2 as well as |aj| ¿ |j|−(A+1) (j →∞). Then we get,
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using the Minkowski inequality,

‖Yk − Y
(m)
k ‖p =

∥∥∥∥∥∥
∑

|j|>m/2

ajεk−j

∥∥∥∥∥∥
p

≤
∑

|j|>m/2

‖ajεk−j‖p

= (E|ε0|p)1/p
∑

|j|>m/2

|aj| ¿ m−A.

Thus if A is large enough, Theorem 1 applies. Obviously if |aj| ¿ ρ|j| with some
0 < ρ < 1 then (16) holds and Theorem 2 applies.

3.4 Nonlinear time series

Let the time series {Yk, k ∈ Z} be defined by the stochastic recurrence equation

Yk = G(Yk−1, εk), (19)

where G is a measurable function and {εk, k ∈ Z} is an i.i.d. sequence. For ex-
ample, ARCH(1) processes (see e.g. Engle [18]) which play an important role in
econometrics literature, are included in this setting. Sufficient conditions for the
existence of a stationary solution of (19) can be found in Diaconis and Freed-
man [13]. Note that iterating (19) yields Yk = f(. . . , εk−1, εk) for some measur-
able function f . This suggests defining the approximating random variables Y

(m)
k

as Y
(m)
k = f(. . . , 0, 0, εk−m, . . . , εk). Note, however, that this definition does not

guarantee the convergence and thus the existence of Y
(m)
k . The coupling used by

Wu [50], avoids this problem by defining

Y
(m)
k = f(. . . , ε

(k)
k−m−2, ε

(k)
k−m−1, εk−m, . . . , εk),

where {ε(l)
k , k ∈ Z}, l = 1, 2, . . ., are i.i.d. sequences with the same distribution

as {εk, k ∈ Z} that are mutually independent. These random variables satisfy
condition (B). Results from Shao and Wu [44] show that under some simple technical
assumption on G ∥∥Yk − Y

(m)
k

∥∥
p
¿ exp(−ρm)

holds with some p > 0 and ρ > 0. Thus for p > 2, Theorem 2 applies.

3.5 Augmented GARCH sequences

Augmented GARCH sequences were introduced by Duan [16] and turned out to
be very useful in applications in macroeconomics and finance. The model is quite
general and many popular processes are included in its framework. Among others the
well known GARCH ([6]), AGARCH ([14]) and EGARCH model ([33]) are covered.
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We consider the special case of augmented GARCH(1,1) sequences, i.e. sequences
{Yk, k ∈ Z} defined by

Yk = σkεk, (20)
where the conditional variance σ2

k is given by

Λ(σ2
k) = c(εk−1)Λ(σ2

k−1) + g(εk−1). (21)

Here {εk, k ∈ Z} is a sequence of i.i.d. errors and Λ(x), c(x) and g(x) are real-valued
measurable functions. To solve (21) for σ2

k one usually assumes that Λ−1(x) exists.
Necessary and sufficient conditions for the existence of a strictly stationary solution
of (20) and (21) were given by Duan [16] and Aue et al. [2]. Under some technical
conditions stated in Hörmann [20] (Lemma 1, Lemma 2 and Remark 2) one can
show that augmented GARCH sequences are weaklyM-dependent in Lp-norm with
exponential rate.

3.6 Linear processes with dependent innovations

Linear processes Zk =
∑∞

j=−∞ ajYk−j with dependent innovations {Yk} have ob-
tained considerable interest in the financial literature. A common example are au-
toregressive (AR) processes with augmented GARCH innovations, see e.g. [26].

Assume that {Yk, k ∈ Z} is weakly M-dependent in Lp with rate function δ(·).
In combination with the results of Section 3.3 one can easily obtain conditions on
δ assuring that the linear process {Zk, k ∈ Z} defined above is also weakly M-
dependent in Lp-norm with a rate function δ∗ depending on (aj) and δ.

Strong approximation results for linear processes with dependent errors were also
obtained by Wu and Min [51].

3.7 Ergodic sums

Let f be a real measurable function with period 1 such that
∫ 1

0
f(ω) dω = 0 and∫ 1

0
|f(ω)|p dω < ∞ for some p > 2. Set

Sn(ω) =
n∑

k=1

f
(
2kω

)
, ω ∈ [0, 1),

and B2
n =

∫ 1

0
S2

n(ω) dω. Then Sn defines a partial sum process on the probability
space ([0, 1),B[0,1), λ[0,1)), where B[0,1) and λ[0,1) are the Borel σ–algebra and Lebesgue
measure on [0, 1). The strong law of large numbers for f(2kω) is a consequence of
the ergodic theorem, for central and functional central limit theorems see Kac [23],
Ibragimov [22] and Billingsley [5].

Let Yk(ω) = f
(
2kω

)
and define the random variable εk(ω) to be equal to the k–th

digit in the binary expansion of ω. Ambiguity can be avoided by the convention to
take terminating expansions whenever possible. Then {εk} is an i.i.d. sequence and
we have εk = ±1, each with probability 1/2. This gives the representation

Yk = f

( ∞∑
j=1

εk+j2
−j

)
= g(εk+1, εk+2, . . .).
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We can now make use of the coupling method described in Section 3.4 and approx-
imations

Y
(m)
k = g(εk+1, εk+2, . . . , εk+m, ε

(k)
k+m+1, ε

(k)
k+m+2, . . .).

Changing for some ω ∈ [0, 1) the digits εk(ω) for k > m will give an ω′ with
|ω − ω′| ≤ 2−m. If f is Lipschitz continuous of some order γ then we have

|Yk − Y
(m)
k | = O

(
2−γm

)
,

and thus for any p ≥ 1 {Yk} is weakly M-dependent in Lp-norm with an exponen-
tially decaying rate function.

4 Increments of stochastic processes
For arbitrary λ > 0, relation (18) has many useful applications in probability and
statistics, for example, it implies a large class of limit theorems on CLT and LIL
behavior and for various other functionals of weakly dependent sequences. However,
many refined limit theorems for partial sums require a remainder term better than
O(n1/4) and no existing method for dependent sequences provides such a remainder
term. The purpose of the next two sections is to show how to deal with such limit
theorems via our approximation results in Section 2.

Let {Yk, k ∈ Z} be a stationary random sequence and let 0 < an ≤ n be a
nondecreasing sequence of real numbers. In this section, we investigate the order of
magnitude of

max
1≤k≤n−an

max
1≤`≤an

∣∣∣∣∣
k+∑̀

j=k+1

Yj

∣∣∣∣∣ .

Such results have been obtained by Csörgő and Révész [9] for i.i.d. sequences and
the Wiener process. In particular, they obtained the following result ([9], Theorem
1.2.1).

Theorem 3. Let {aT , T ≥ 0} be a positive nondecreasing function satisfying

(a) 0 < aT ≤ T ;

(b) T/aT is nondecreasing.

Set

βT =

(
2aT

[
log

T

aT

+ log log T

])−1/2

. (22)

Then
limT→∞ max

0≤t≤T−aT

max
0≤s≤aT

βT

∣∣W (t + s)−W (t)
∣∣ = 1.

Using strong invariance, a similar result can be obtained for partial sums of i.i.d.
random variables under suitable moment conditions, see [9], pp. 115–118. For slowly
growing aT , this requires a very good remainder term in the Wiener approximation
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of partial sums, using the full power of the Komlós-Major-Tusnády theorems. As an
application of our main theorems in Section 2, we now extend Theorem 3 for depen-
dent stationary processes. To simplify the formulation and to clarify the connection
between the remainder term in our approximation theorems in Section 2 and the
increment problem, we introduce the following

Assumption 1. Let {Yk} be a random sequence which can be redefined on a new
probability space together with two standard Wiener processes {W1(t), t ≥ 0} and
{W2(t), t ≥ 0} such that

n∑

k=1

Yk = W1

(
s2

n

)
+ W2

(
t2n

)
+ O

(
En

)
a.s., (23)

where {En} is some given sequence and {s2
n} and {t2n} are nondecreasing sequences

satisfying

s2
n ∼ σ2n, t2n = o(n), limk→∞ (s2

k+1 − s2
k) = limk→∞ (t2k+1 − t2k) = σ2. (24)

We will prove the following result.

Theorem 4. Let {Yk} be a sequence of random variables satisfying Assumption 1
and put Sn =

∑n
k=1 Yk. Let aT be a positive nondecreasing function such that

(a) 0 < aT ≤ T ;

(b) T/aT is nondecreasing;

(c) aT is regularly varying at ∞ with index % ∈ (0, 1].

Let βT be defined by (22). Then under the condition

βT ET = o(1) (25)

we have
limn→∞ max

1≤k≤n−an

max
1≤`≤an

βn

∣∣Sk+` − Sk

∣∣ = σ2. (26)

Given a function aT and a weaklyM-dependent sequence {Yk} with parameters
p, δ(·), we can compute, using Theorem 4, a rate of decrease for δ(·) and a value
for p > 2 such that the fluctuation result (26) holds. For example, if aT = Tα,
0 < α < 1, then (26) holds if p > 4/α and δ(m) ¿ m−p/2.

We note that for i.i.d. observations only assumptions (a) and (b) are required.
It remains open whether a more general version of our Theorem 4 which does not
require assumption (c) can be proved.

Recently Zholud [53] obtained a distributional version of Theorem 3 by showing
that the functional

max
0≤t≤T−aT

max
0≤s≤aT

(W (t + s)−W (t))

converges weakly, suitably centered and normalized, to the extremal distribution
with distribution function e−e−x . Using this fact and our a.s. invariance principles,

12



a distributional version of Theorem 4 can be obtained easily. Since the argument is
similar to that for (26), we omit the details.

Let |A| be the cardinality of a set A. For the proof of Theorem 4 we need the
following simple

Lemma 1. Assume that {dk, k ≥ 1} is a non-increasing sequence of positive numbers
such that

∑∞
k=1 dk = ∞. Let A ⊂ N have positive density, i.e.

lim inf
n→∞

|A ∩ {1, . . . , n}|/n > 0.

Then
∑∞

k=1 dkI{k ∈ A} = ∞.

Proof. First note that by our assumption
∑n

k=1 I{k ∈ A} ≥ µn for some µ > 0 as
long as n ≥ n0. Using Abel summation we can write

n∑

k=1

dk = ndn +
n−1∑

k=1

k(dk − dk+1).

Hence, by our assumptions

ndn +
n−1∑

k=n0

k(dk − dk+1) →∞, (n →∞).

From dk − dk+1 ≥ 0 it follows (again using Abel summation) that for n ≥ n0

n∑

k=1

dkI{k ∈ A} = dn

n∑

k=1

I{k ∈ A}+
n−1∑

k=1

(dk − dk+1)
k∑

j=1

I{j ∈ A}

≥ µ

(
ndn +

n−1∑

k=n0

k(dk − dk+1)

)
→∞, (n →∞).

Proof of Theorem 4. For sake of simplicity we carry out the proof for σ = 1. From
(23) and the triangular inequality we infer that

limn→∞ max
1≤k≤n−an

max
1≤`≤an

βn

∣∣Sk+` − Sk

∣∣

≤ limn→∞ max
1≤k≤n−an

max
1≤`≤an

βn

∣∣W1

(
s2

k+`

)−W1

(
s2

k

)∣∣

+ limn→∞ max
1≤k≤n−an

max
1≤`≤an

βn

∣∣W2

(
t2k+`

)−W2

(
t2k

)∣∣

+ limn→∞βnO
(
En

)

= A1 + A2 + A3.

By (25) A3 = 0. Since an →∞ (this is implicit in (c)), we conclude from (24) that
for any ε > 0 some n0 exists, such that for all n ≥ n0

sup
k≥1

{s2
k+an

− s2
k} ≤ (1 + ε)an and s2

n ≤ (1 + ε)n.

13



Set T = (1 + ε)n and define aT,ε = (1 + ε)aT/(1+ε). Then aT,ε satisfies (a) and (b)
and for n ≥ n0 we have

max
1≤k≤n−an

max
1≤`≤an

βn

∣∣W1

(
s2

k+`

)−W1

(
s2

k

)∣∣

≤ sup
0≤t≤s2

n−an

sup
0≤s≤(1+ε)an

βn

∣∣W1(t + s)−W1(t)
∣∣

≤ sup
0≤t≤T−aT,ε

sup
0≤s≤aT,ε

βT/(1+ε)

∣∣W1

(
t + s

)−W1

(
t
)∣∣.

Let

βT,ε =

(
2aT,ε

[
log

T

aT,ε

+ log log T

])−1/2

.

By application of Theorem 1.2.1 in Csörgő and Révész [9] (which requires (a) and
(b)) we get

limT→∞ sup
0≤t≤T−aT,ε

sup
0≤s≤aT,ε

βT,ε

∣∣W1

(
t + s

)−W1

(
t
)∣∣ = 1 a.s.

Since limT→∞βT/(1+ε)/βT,ε = (1 + ε)1/2, and ε can be chosen arbitrarily small we
have shown that A1 ≤ 1 a.s.

It is not surprising that due to (24) similar arguments will lead to A2 = 0 a.s.
The proof will be completed if we show that A1 ≥ 1. Let {nk} be a non-

decreasing sequence of integers with nk → ∞. By (23), the triangular inequality
and A2 = A3 = 0 we obtain

limn→∞ max
1≤k≤n−an

max
1≤`≤an

βn

∣∣Sk+` − Sk

∣∣

≥limn→∞ max
1≤k≤n−an

max
1≤`≤an

βn

∣∣W1

(
s2

k+`

)−W1

(
s2

k

)∣∣

≥limk→∞βnk

∣∣W1

(
s2

nk

)−W1

(
s2

nk−ank

)∣∣.

We now proceed similarly as in Csörgő and Révész [9] for the proof of Step 2 of their
Theorem 1.2.1. We will distinguish between the cases lim aT /T = ρ with ρ < 1 and
ρ = 1. Since both times we can use the same conceptual idea, we shall treat here
only ρ < 1.

Set n1 = 1. Given nk define nk+1 such that nk+1 − ank+1
= nk. This equation

will in general have no integer solutions, but for the sake of simplicity we assume
that (nk) and (ank

) are Z–valued. Since (s2
n) is non-decreasing, we conclude that

the increments ∆(k) = W1

(
s2

nk

)−W1

(
s2

nk−1

)
are independent. By the second Borel-

Cantelli lemma it suffices to show now that
∞∑

k=1

P (βnk
|∆(k)| ≥ 1− ε) = ∞ for all ε > 0. (27)

For all large enough k ∈ N for which s2
nk
− s2

nk−1
≥ (1− ε/2)ank

, the estimates in [9]
give

P (βnk
|∆(k)| ≥ 1− ε) ≥

(
ank

nk log nk

)1−ε

.
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It is also shown in [9] that
∑∞

k=1

(
ank

nk log nk

)1−ε

= ∞. Thus, in view of Lemma 1 it
remains to show that A = {k ≥ 1|s2

nk
− s2

nk−1
≥ (1− ε/2)ank

} has a positive density.
By (24) we have

(s2
nk
− s2

n1
)/nk =

k∑
j=2

(s2
nj
− s2

nj−1
)/nk

≤ C0

∑
2≤j≤k

j∈A

(nj − nj−1)/nk +
∑

2≤j≤k
j∈Ac

(1− ε/2)(nj − nj−1)/nk

≤ C0

∑
2≤j≤k

j∈A

(nj − nj−1)/nk + (1− n1/nk)(1− ε/2),

for some C0 > 0 which is independent of k. Now if A had density zero, the limsup
of the right-hand side of the last relation would be 1 − ε/2. This can be easily
proved, using that (nj − nj−1) is regularly varying by assumption (c). The liminf of
the left-hand side above is 1. Thus, A must have positive density and the proof is
completed.

5 Change-point tests with an epidemic alternative
In this section we apply our invariance principles to a change-point problem. Let
{Yk, k ∈ Z} be a zero mean process. Further let Xk = Yk + µk, where µk, k ∈ Z, are
unknown constants. We want to test the hypothesis

H0 : µ1 = µ2 = . . . = µn = µ

against the "epidemic alternative"

HA : There exist 1 ≤ m1 < m2 ≤ n such that µk = µ for
k ∈ {1, . . . , n} \ {m1 + 1, . . . , m2} and µk = µ + ∆ if k ∈ {m1 + 1, . . . ,m2}.

It should be noted that the variables m1, m2 and ∆ may depend on the sample size
n. As it is common in the change-point literature, this dependence is suppressed in
the notation.

Without loss of generality we assume that σ = 1. To detect a possible epidemic
change it is natural to compare the increments of the process to a proportion of the
total sum. More specifically, assume for the moment that Xk are independent and
that we know when the epidemic starts and ends. Set Sk = X1 + . . . + Xk. Then by
the law of large numbers I(m1,m2) = |Sm2−Sm1−(m2−m1) Sn/n| À m2−m1. If no
change occurs, however, by the central limit theorem I(m1,m2) = OP

(√
m2 −m1

)
.

In general we do not know m1 and m2. Thus, a natural test statistic is

max
1≤i<j≤n

|Sj − Si − (j − i) Sn/n|.
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Clearly we are required to normalize the above test statistic appropriately. Following
Rac̆kauskas and Suquet in [35] we define

UI(n, α) = n−1/2 max
1≤i<j≤n

|Sj − Si − (j − i) Sn/n|
[(j − i)/n (1− (j − i)/n)]α

with 0 < α < 1/2. As we will see below, the parameter α plays an important role.
The closer α is to 1/2 the "shorter" epidemics can be detected with this test. The
price, however, is that in order to obtain the limiting law under H0 with "large"
α (close to 1/2) requires a.s. invariance principles with error nε, ε close to zero.
Choosing α ≥ 1/2 would result in a degenerate limiting distribution under H0.

Proposition 2 (Asymptotics under H0). If the stationary sequence {Yk, k ∈ Z}
satisfies Assumption 1 with En = o(n1/2−α) and H0 holds, then

σ−1UI(n, α)
D−→ sup

0<s<t<1

|B(t)−B(s)|
[(t− s)(1− (t− s))]α

,

where {B(t), t ∈ [0, 1]} is a Brownian bridge.

Proof. Using (23) and assuming for simplicity that σ = 1, we obtain

UI(n, α) ≤ n−1/2 max
1≤i<j≤n

|W1(s
2
j)−W1(s

2
i )− (j − i) W1(s

2
n)/n|

[(j − i)/n (1− (j − i)/n)]α

+ n−1/2 max
1≤i<j≤n

|W2(t
2
j)−W2(t

2
i )− (j − i) W2(t

2
n)/n|

[(j − i)/n (1− (j − i)/n)]α

+ O
(
n−1/2+αEn

)

= n−1/2 max
1≤i<j≤n

T
(1)
i,j + n−1/2 max

1≤i<j≤n
T

(2)
i,j + o(1).

It is easy to see that n−1/2 max1≤i<j≤n T
(2)
i,j tends to zero. Since we can get a similar

lower bound for UI(n, α) we have

UI(n, α) = n−1/2 max
(i,j)∈Mn

T
(1)
i,j + oP (1),

where Mn = {(i, j)|1 ≤ i < j ≤ n}. Let us partition Mn into M1,n = {(i, j)|1 ≤
i < j ≤ n; nγn < j − i < n(1 − γn)}, M2,n = {(i, j)|1 ≤ i < j ≤ n; nγn ≥ j − i}
and M3,n = {(i, j)|1 ≤ i < j ≤ n; j − i ≥ n(1− γn)}, where γn → 0 will be defined
later. By our assumptions on the sequence {s2

j} there exists a τ > 0 such that
s2

j − s2
i ≤ τ(j − i) for all 1 ≤ i ≤ j and that s2

n ≤ (2− τγn)n if n ≥ n0. We have for
large enough n

n−1/2 max
(i,j)∈M2,n

T
(1)
i,j

≤ 2nα−1/2 max
(i,j)∈M2,n

{ |W1(s
2
j)−W1(s

2
i )|

(j − i)α

}
+ 2n−1/2γ1−α

n |W1(s
2
n)|

≤ 2nα−1/2 max
1≤h≤nγn

sup
0≤t≤(2−τγn)n

sup
0≤s≤τh

{ |W1(t + s)−W1(t)|
hα

}
+ oP (1).
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For arbitrary ε > 0 we get by Lemma 1.2.1 in Csörgő and Révész [9] that there is a
constant C which is independent of n and ε such that

P

(
max

1≤h≤nγn

sup
0≤t≤(2−τγn)n

sup
0≤s≤τh

{ |W1(t + s)−W1(t)|
hα

}
> ε n1/2−α

)

≤
nδn∑

h=1

P

(
sup

0≤t≤2n−τh
sup

0≤s≤τh
|W1(t + s)−W1(t)| > ε h1/2(n/h)1/2−α

)

≤
nδn∑

h=1

Cn

h
e−

ε2

3
(n/h)1−2α → 0 (n →∞).

Hence n−1/2 max(i,j)∈M2,n T
(1)
i,j = oP (1). In the same fashion one can show that

n−1/2 max(i,j)∈M3,n T
(1)
i,j = oP (1). Therefore UI(n, α) = n−1/2 max(i,j)∈M1,n T

(1)
i,j +

oP (1). Some further basic estimates give

n−1/2 max
(i,j)∈M1,n

T
(1)
i,j

= n−1/2 max
(i,j)∈M1,n

|W1(j)−W1(i)− (j − i)W1(n)/n|[
(j − i)/n (1− (j − i)/n)

]α

+ O

(
n−1/2

γα
n

max
1≤i≤n

|W1(i)−W1(s
2
i )|

)
.

Since s2
n ∼ n it follows that there is a null sequence {εn} such that max1≤i≤n |i−s2

i | ≤
εnn. Hence

max
1≤i≤n

|W1(i)−W1(s
2
i )| ≤ sup

0≤t≤n
sup

0≤s≤2εnn
|W1(t + s)−W1(t)|.

Setting γn = εn and applying again Lemma 1.2.1 in [9] it can be seen that

sup
0≤t≤n

sup
0≤s≤2εnn

|W1(t + s)−W1(t)| = oP

(
n1/2γα

n

)
.

Consequently

UI(n, α) = n−1/2 max
(i,j)∈M1,n

|W1(j)−W1(i)− (j − i)W1(n)/n|[
(j − i)/n (1− (j − i)/n)

]α + oP (1). (28)

Since the line of argumentation is very similar to what we have shown before, we
note now without proof that M1,n in the right hand side of (28) can be replaced by
Mn. The rest of the proof of Proposition 2 is standard.

The next proposition shows that this test is consistent. Let ` = m2−m1 denote
the length of the epidemic.
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Proposition 3 (Asymptotics under HA). Let {Yk, k ∈ Z} be a mean zero process,
weakly M-dependent in Lp with p ≥ 2 and δ(·) satisfying

∑
m≥1

δ(m) < ∞.

Let Xk = Yk + µk, k ∈ Z. Assume that HA holds and that

lim
n→∞

(`(n− `))1−α

n3/2−2α
|∆| = ∞. (29)

Then UI(n, α)
P−→∞.

Proof. Under the alternative hypothesis HA we have Xk = Yk+µ for k ∈ {1, . . . , n}\
{m1 + 1, . . . , m2} and Xk = Yk + µ + ∆ for k ∈ {m1 + 1, . . . , m2}. To find a lower
bound for UI(n, α) we study the numerator of the test statistic corresponding to
the true epidemic. Thus we look at

Sm2 − Sm1 − Sn(m2/n−m1/n) =

= (1− `/n)(Sm2 − Sm1)− (`/n)(Sn − (Sm2 − Sm1))

=
`(n− `)

n
∆ + (1− `/n)

m2∑
j=m1+1

Yj − (`/n)

(
m1∑
j=1

Yj +
n∑

j=m2+1

Yj

)

=
`(n− `)

n
∆ + Rn.

With the help of the moment inequality stated in Proposition 4 below we get

Var(n−1/2Rn) = O((1− `/n)2(`/n) + (`/n)2(1− `/n) + 2(`/n)3/2(1− `/n)3/2)

= O((`/n)(1− `/n)),

and thus n−1/2Rn = OP ((`/n)1/2(1− `/n)1/2). Thus we have shown that

UI(n, α) ≥ n1/2 ((`/n)(1− `/n))1−α |∆| −OP

(
((`/n)(1− `/n))1/2−α

)

=
(`(n− `))1−α

n3/2−2α
|∆| −OP

(
((`/n)(1− `/n))1/2−α

)
. (30)

To conclude the proof we note that limn→∞ ((`/n)(1− `/n))1/2−α = 0 if ` = o(n) (or
n − ` = o(n) respectively) and ((`/n)(1− `/n))1/2−α ≤ 1 in general. Consequently
condition (29) together with relation (30) finishes the proof.

For example, if ∆ is independent of n then condition (29) will hold for ` ∼
cn, c ∈ (0, 1). In case that nν ¿ ` ¿ n − nν , ν > 0, condition (29) holds if
(1 − 2α)/(1 − α) < 2ν. That is, choosing α close to 1/2 allows to detect relatively
"short" ("long") epidemics.
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6 Proof of the main theorems

6.1 A moment inequality

In the proofs of our theorems we will use the following moment inequality which
may be of separate interest.

Proposition 4. Let {Yk, k ∈ Z} be a centered stationary sequence, weakly M-
dependent in Lp with p ≥ 2 and a rate function δ(·) satisfying

Dp :=
∞∑

m=0

δ(m) < ∞.

Then for any n ∈ N, b ∈ Z we have

E

∣∣∣∣∣
b+n∑

k=b+1

Yk

∣∣∣∣∣

p

≤ Cp np/2, (31)

where Cp is a constant depending on p and the sequence {Yk}.

Proof. By stationarity, we can assume b = 0. Let first p = 2. We use below that
supm≥0 ‖Y (m)

k ‖p ≤ ‖Y1‖p+Dp. Without loss of generality we assume that EY
(m)
k = 0

for all k ∈ Z and m ∈ N. Since
YkYk+j =

(
Yk − Y

(j−1)
k

)
Yk+j + Y

(j−1)
k

(
Yk+j − Y

(j−1)
k+j

)
+ Y

(j−1)
k Y

(j−1)
k+j

we get by Assumption (B) that for j ≥ 1

∣∣EYkYk+j

∣∣ ≤
∣∣∣E

[(
Yk − Y

(j−1)
k

)
Yk+j

]∣∣∣ +
∣∣∣E

[
Y

(j−1)
k (Yk+j − Y

(j−1)
k+j )

]∣∣∣

≤ ∥∥Yk+j

∥∥
2

∥∥Yk − Y
(j−1)
k

∥∥
2
+

∥∥Y
(j−1)
k

∥∥
2

∥∥Yk+j − Y
(j−1)
k+j

∥∥
2

≤
(∥∥Yk+j

∥∥
2
+

∥∥Y
(j−1)
k

∥∥
2

)
δ(j − 1)

≤ (
2‖Y1‖2 + D2

)
δ(j − 1). (32)

From relation (32) we infer, letting Sn =
∑n

k=1 Yk,

ES2
n =

n∑

k=1

EY 2
k + 2

∑

1≤k<l≤n

EYkYl

≤ n‖Y1‖2
2 + 2

[ ∑

1≤k≤n−1

|EYkYk+1|+ . . . +
∑

1≤k≤2

|EYkYk+n−2|+ E|Y1Yn|
]

≤ n‖Y1‖2
2 + 2

(
2‖Y1‖2 + D2

)
[(n− 1)δ(0) + . . . + 2δ(n− 3) + δ(n− 2)]

≤ n
(
‖Y1‖2

2 + 2D2

(
2‖Y1‖2 + D2

))
=: C2 n.
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This shows (31) for p = 2.
Once (31) is established for p, it holds for all 0 < q ≤ p. Indeed, by Lyapunov’s

inequality, relation (31) implies

E

∣∣∣∣∣
b+n∑

k=b+1

Yk

∣∣∣∣∣

q

≤ Cq/p
p nq/2 (33)

for any 0 < q ≤ p. In particular, (31) holds with p = 1.
Next we prove (31) for all integers p > 2. Clearly, if Cp ≥ ‖Y1‖p

p, then the
inequality

E|Sn|p ≤ Cp np/2 (34)

holds for n = 1. Using a double induction argument, we show now that for some
constant Cp, relation (34) holds for all n ∈ N. More precisely, we show that if (34)
holds for p− 1 and all n ∈ N and also for p and n ≤ n0, then it will also hold for p
and n ≤ 2n0.

For k ≤ n put Sn
k = Yk + Yk+1 + . . . + Yn. We have

E|S2n|p = E
∣∣Sn + S2n

n+1

∣∣p

= E

∣∣∣∣∣
n∑

k=1

(
Yk − Y

(n−k)
k

)
+

n∑

k=1

(
Yn+k − Y

(k−1)
n+k

)
+

n∑

k=1

Y
(n−k)
k +

n∑

k=1

Y
(k−1)
n+k

∣∣∣∣∣

p

≤
(

n∑

k=1

∥∥∥Yk − Y
(n−k)
k

∥∥∥
p
+

n∑

k=1

∥∥∥Yn+k − Y
(k−1)
n+k

∥∥∥
p

(35)

+

∥∥∥∥∥
n∑

k=1

Y
(n−k)
k +

n∑

k=1

Y
(k−1)
n+k

∥∥∥∥∥
p




p

≤

2Dp +

∥∥∥∥∥
n∑

k=1

Y
(n−k)
k +

n∑

k=1

Y
(k−1)
n+k

∥∥∥∥∥
p




p

=:
(
2Dp + ‖Zn + Wn‖p

)p
. (36)

For some positive constants ψp that will be specified later, we choose Cp so that
C

1/p
p > Dp/ψp. Then if n ≤ n0

E|Zn|p ≤
(‖Sn‖p + ‖Sn − Zn‖p

)p

≤ (‖Sn‖p + Dp

)p

≤ (1 + ψp)
pCpn

p/2.

By the induction assumption, this relation holds with arbitrary n for all integer
moments of order ≤ p − 1. The same estimate applies for E|Wn|p. Due to As-
sumption (B) in Definition 1, the random variables Zn and Wn are independent.
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Thus

E|Zn + Wn|p ≤ E|Zn|p + E|Wn|p +

p−1∑
m=1

(
p

m

)
E|Zn|mE|Wn|p−m

≤ np/2

[
2(1 + ψp)

pCp +

p−1∑
m=1

(
p

m

)
(1 + ψm)m(1 + ψp−m)p−mCmCp−m

]

=: np/2
[
2(1 + ψp)

pCp + Rp

]
. (37)

Hence (36) and (37) and our assumptions on Cp imply that

E|S2n|p ≤
(
2ψpC

1/p
p + n1/2

[
2(1 + ψp)

pCp + Rp

]1/p)p

≤ Cpn
p/2

(
2ψp +

[
2(1 + ψp)

p + Rp/Cp

]1/p)p

. (38)

Choosing ψp small enough and then choosing Cp large enough, we can always achieve
that the term in brackets of (38) is ≤ √

2, provided that p > 2, and that the
inequality C

1/p
p > Dp/ψp mentioned before is satisfied. Hence we have for every

n ≤ n0 that E|S2n|p ≤ Cp(2n)p/2, proving (34) for all even numbers n ≤ 2n0. The
case of odd n is similar. The proof of Proposition 4 is finished for integer p.

For general p > 2 we have by the result shown before that (31) holds for bpc.
(As usual, bpc denotes the integer part of the real number p.) To finish the proof
we need the following inequality which will be proven below:

|a + b|p ≤ |a|p + |b|p +

bpc∑

k=1

(
p

k

)(
|a|k|b|p−k + |b|k|a|p−k

)
, p ∈ [1,∞). (39)

Using (39) we get a similar estimate for E|Zn + Wn|p as in (37) and the proof can
be finished along the same lines as for integer p.

Verification of (39): Let x ∈ [0, 1]. We recall that (1 + x)p can be expanded in the
binomial series

(1 + x)p =
∑

k≥0

(
p

k

)
xk,

with (
p

k

)
=

p(p− 1) · · · (p− k + 1)

k!
. (40)

From (40) it is clear that for k ≥ bpc + 2 we have sign
{(

p
k

)}
= (−1)k−bpc+1. This

immediately yields for k = bpc+ 2` with ` ≥ 1,
(

p

k

)
xk +

(
p

k + 1

)
xk+1 ≤

(
p

k

)
xk +

(
p

k + 1

)
xk =

(
p + 1

k + 1

)
xk < 0.

Consequently ∑

k≥bpc+2

(
p

k

)
xk < 0,
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and

(1 + x)p ≤
bpc+1∑

k=0

(
p

k

)
xk. (41)

Now consider |a + b|p. If |a| ≥ |b| then we infer from (41) that

|a + b|p ≤ |a|p
(

1 +

∣∣∣∣
b

a

∣∣∣∣
)p

≤ |a|p
bpc+1∑

k=0

(
p

k

)∣∣∣∣
b

a

∣∣∣∣
k

= |a|p +

bpc∑

k=1

(
p

k

)
|b|k|a|p−k +

(
p

bpc+ 1

)
|b|p

∣∣∣∣
b

a

∣∣∣∣
bpc+1−p

.

Thus (39) follows from
(

p
bpc+1

)∣∣ b
a

∣∣bpc+1−p ≤ 1. Interchanging the roles of a and b
completes the proof.

Using Móricz [32, Theorem 1]) we get

Corollary 1. Under the assumptions of Proposition 4 with p > 2, we have for any
2 < q ≤ p and any n ∈ N, b ∈ Z

E max
1≤k≤n

∣∣∣∣∣
b+k∑

j=b+1

Yj

∣∣∣∣∣

q

≤ C ′
p,q nq/2,

where the constants C ′
p,q only depend on p, q and the sequence {Yk}.

A slightly weaker result can also be derived from Proposition 4 for the case of
0 < q ≤ 2.

6.2 Proofs of Theorems 1 and 2

We give the proof of Theorem 1. Note first of all that δ(m) =
∥∥Yk − Y

(m)
k

∥∥
p
≥

‖Yk−Y
(m)
k

∥∥
2
and consequently (32) holds when the L2–norm is replaced by the Lp–

norm. Since A > 1 in (9), we infer that the series in (10) is absolutely convergent.
Let us specify some constants that will be used for the proof. By our assumption

on A it is possible to find a constant 0 < ε0 < 1/2 such that

A >
p− 2

2η(1− ε0)2

(
1− 1 + η

p

)
.

Then we set

δ =
β

1 + α
with α =

2η(1− ε0)

p− 2(1 + η)
, β = (1− ε0)α. (42)
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For some ε1 > 0 (which will be specified later) we now define mk = bε1k
δc. The

first step in the proof of (11) is to show that it is sufficient to provide the strong
approximation for the perturbed sequence Y ′

k = Y
(mk)
k . We notice that our main

assumption (8) yields ‖Yk − Y ′
k‖p ¿ k−Aδ. If Aδ < 1, then

P

(
max

2n≤k≤2n+1

∣∣∣∣∣
k∑

j=1

(Yj − Y ′
j )

∣∣∣∣∣ >
1

n
2

n
p
(1+η)

)

≤ P

(
2n+1∑
j=1

∣∣Yj − Y ′
j

∣∣ >
1

n
2

n
p
(1+η)

)

≤ 2−n(1+η)np

(
2n+1∑
j=1

‖Yj − Y ′
j ‖p

)p

¿ 2−c1nnp,

where c1 = (1 + η) − (1 − Aδ)p > 0. Thus by the Borel-Cantelli lemma we have
almost surely

k∑
j=1

Yj =
k∑

j=1

Y ′
j + o

(
k(1+η)/p

)
a.s.

If Aδ ≥ 1 we get an (even better) error term of order o
(
k1/p

)
.

The main part of the proof of Theorem 1 is based on a blocking argument. We
partition N into disjoint blocks:

N = J1 ∪ I1 ∪ J2 ∪ I2 ∪ . . . ,

where |Ik| = bkαc and |Jk| = bkβc with α, β as in (42). Let us further set

Ik = {ik, . . . , ik} and Jk = {j
k
, . . . , jk}

and
ξk =

∑
j∈Ik

Y ′
j and ηk =

∑
j∈Jk

Y ′
j .

Note that ik = O
(
k1+α

)
. Provided that ε1 in the definition of mk is chosen small

enough, this will imply that

|Jk| = bkβc > bε1i
δ
kc = mik

and hence by Assumption (B) it follows that {ξk} and {ηk} each define a sequence
of independent random variables.

The following lemma by Sakhanenko [42] (cf. also Shao [43]) is our crucial ingre-
dient for the construction of the approximating processes.

Lemma 2. Let {ξk} be a sequence of centered independent random variables with
finite p–th moments, p > 2. Then we can redefine {ξk} on a suitable probability
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space, together with a sequence {ξ∗k} of independent normal random variables with
Eξ∗k = 0, E(ξ∗k)

2 = Eξ2
k such that for any x > 0, m ≥ 1

P

(
max

1≤k≤m

∣∣∣∣∣
k∑

j=1

ξj −
k∑

j=1

ξ∗j

∣∣∣∣∣ > x

)
≤ C

1

xp

m∑
j=1

E|ξj|p,

where C is an absolute constant.

We shall now apply Lemma 2 to the sequences {ξk} and {ηk}. For this purpose
we need estimates of the moments E|ξk|p, E|ηk|p. By Minkowski’s inequality and
Proposition 4 we get

E|ξk|p ≤



∥∥∥∥∥
∑
j∈Ik

Yk

∥∥∥∥∥
p

+
∑
j∈Ik

‖Yj − Y ′
j ‖p




p

= O
((|Ik|1/2 + |Ik| · i−Aδ

k

)p)
.

Some easy algebra shows that the restrictions on the parameters A, δ, α and ε0

imply
|Ik| · i−Aδ

k ¿ kα · k−Aδ(1+α) ¿ kα/2 ¿ |Ik|1/2.

A similar estimate holds for E|ηk|p. Hence we can find constants Fp such that

E|ξk|p ≤ Fp|Ik|p/2 and E|ηk|p ≤ Fp|Jk|p/2,

where Fp does not depend on k.
Let Ln =

∑n
k=1 |Ik|. Then Ln = O

(
n(1+α)

)
. By our previous estimates and by

Lemma 2 we infer that, after enlarging the probability space, we have

P

(
max

2n≤k≤2n+1

∣∣∣∣∣
k∑

j=1

ξj −
k∑

j=1

ξ∗j

∣∣∣∣∣ > L
1+η

p

2n

)
≤ L

−(1+η)
2n

2n+1∑

k=1

E|ξk|p

= O
(
2[−(1+α)(1+η)+αp

2
+1]n

)
, (43)

where ξ∗k is a sequence of independent and centered normal random variables with
E(ξ∗k)

2 = Eξ2
k. In order that the exponent in (43) be negative we need (1+α)(1+η) >

αp
2

+1. This is equivalent to α < 2η
p−2(1+η)

, which follows by (42). Thus, by the Borel-
Cantelli lemma we obtain

k∑
j=1

ξj =
k∑

j=1

ξ∗j + O

(
L

1+η
p

k

)
a.s.

By further enlarging the probability space we can write

k∑
j=1

ξj = W1

(
k∑

j=1

Var(ξj)

)
+ O

(
L

1+η
p

k

)
a.s.,
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where {W1(t), t ≥ 0} is a standard Wiener process. The same arguments show that

k∑
j=1

ηj = W2

(
k∑

j=1

Var(ηj)

)
+ O

(
M

1+η
p

k

)
a.s.,

where {W2(t), t ≥ 0} is another standard Wiener process on the same probability
space and Mn =

∑n
k=1 |Jk|.

We define

b2
k = Var

(∑
j∈Ik

Y ′
j

)
/|Ik| and h2

k = Var

(∑
j∈Jk

Y ′
j

)
/|Jk|.

For ` ∈ Ik we set σ2
` = b2

k and for ` ∈ Jk we set σ2
` = 0. Similarly define τ 2

` = h2
k if

` ∈ Jk and τ 2
` = 0 if ` ∈ Ik. Put

s2
n =

n∑

k=1

σ2
k, t2n =

n∑

k=1

τ 2
k (n = 1, 2, . . .).

Summarizing our results so far we can write

in∑

k=1

Yk = W1




in∑

k=1

σ2
k


 + W2




in∑

k=1

τ 2
k


 + O

(
i

(1+η)/p

n

)
a.s.

It is a basic result that our stationarity and dependence assumptions imply

Var

(∑
j∈Ik

Yj

)
/|Ik| = σ2 + O(k−ξ) and Var

(∑
j∈Jk

Yj

)
/|Jk| = σ2 + O(k−ξ) (44)

as k → ∞, for some small enough ξ > 0. It can be easily shown that (44) remains
true if the Yj are replaced with Y ′

j . Indeed, by the Minkowski inequality we infer
that

Var1/2

(∑
j∈Ik

Y ′
j

)
≤ Var1/2

(∑
j∈Ik

Yj

)
+ Var1/2

(∑
j∈Ik

(Yj − Y ′
j )

)

≤Var1/2

(∑
j∈Ik

Yj

)
+ |Ik|max

j∈Ik

‖Yj − Y ′
j ‖2.

Furthermore, using the definitions of the introduced constants we obtain

max
j∈Ik

‖Yj − Y ′
j ‖2 ¿ i−Aδ

k

¿ k−(α+1)Aδ

≤ k−β = k−(1−ε0)α, with ε0 < 1/2.
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Since by definition |Ik| ¿ kα, we conclude that

Var1/2

(∑
j∈Ik

Y ′
j

)
/|Ik|1/2 ≤ Var1/2

(∑
j∈Ik

Yj

)
/|Ik|1/2 + O

(
kα(ε0−1/2)

)
as k →∞.

In the same manner a lower bound for Var1/2
(∑

j∈Ik
Y ′

j

)
/|Ik|1/2 can be obtained.

Proving the analogue of the second part of (44) for the Y ′
j is similar.

In other words, we have shown (11) along the subsequence {in} with values of s2
n

and t2n that satisfy (12) and (13). The relation |s2
n − σ2n| = O(n1−ε), ε > 0 follows

by simple calculations.
To finish the proof we have to show that the fluctuations of the partial sums and

the Wiener processes W1 and W2 within the blocks Ik are small enough. Since fluc-
tuation properties of Wiener processes are easy to handle using standard deviation
inequalities (see e.g. [9]), we only investigate the partial sums. By Corollary 1 we
have

P


 sup

ik≤`≤ik

∣∣∣∣
∑̀
j=ik

Yj

∣∣∣∣ > i
1+η

p

k


 ≤ i

−(1+η)
k E


 sup

ik≤`≤ik

∣∣∣∣
∑̀
j=ik

Yj

∣∣∣∣
p



¿ i
−(1+η)
k |Ik|p/2

¿ k−(1+η)(1+α)+αp
2

= O
(
k−(1+ε2)

)
,

if ε2 > 0 is chosen sufficiently small. The Borel-Cantelli lemma shows that we can
also control the fluctuation within the blocks. Thus (11) is proven.

The proof of Theorem 2 is similar to the proof of Theorem 1 and will be therefore
omitted. We only remark that under the exponential mixing rate logarithmic block
sizes are required in the blocking argument.

6.3 Proof of Proposition 1

We use the notation introduced in the proof of Theorem 1. Further we let I =
I1 ∪ I2 ∪ · · · and J = J1 ∪ J2 ∪ · · · and Mn = {1, . . . , n}. By looking at the proof of
Theorem 1, it readily follows that

1

sn

∑
i∈I∩Mn

Yi = W1(s
2
n)/sn −Xn,

1

tm

∑
j∈J∩Mn

Yj = W2(t
2
m)/tm − Zm,

where

Xn = o
(
(s2

n)
1+η

p
− 1

2

)
= o(1) a.s. and Zm = o

(
(t2m)

1+η
p
− 1

2

)
= o(1) a.s. (45)
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Hence

Corr
(
W1(s

2
n),W2(t

2
m)

)

= Corr

(
1

sn

W1(s
2
n),

1

tm
W2(t

2
m)

)

= Corr

(
1

sn

∑
i∈I∩Mn

Yj + Xn,
1

tm

∑
j∈J∩Mn

Yj + Zm

)
.

In order to calculate this correlation we need a couple of estimates.
First we note that by definition of s2

n and t2n

s2
n ∼ σ2|I ∩Mn| and t2m ∼ σ2|J ∩Mm|. (46)

It readily follows from Proposition 4 that
∥∥∥∥

1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
p

≤ Cp, (47)

where Cp does not depend on n. Thus

sup
n≥1

‖Xn‖p = sup
n≥1

∥∥∥∥
1

sn

∑
i∈I∩Mn

Yi −W1(s
2
n)/sn

∥∥∥∥
p

≤ sup
n≥1

∥∥∥∥
1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
p

+
∥∥W1(1)

∥∥
p

< ∞,

and hence {X2
n} is uniformly integrable. This and (45) show that Var(Xn) → 0; by

the same arguments Var(Zm) → 0. By (44)
∥∥∥∥

1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
2

∼ σ2. (48)

Thus by (47) and (48)

c1(m,n) := Cov

(
Zm,

1

sn

∑
i∈I∩Mn

Yi

)

≤ Var1/2(Zm) Var1/2

(
1

sn

∑
i∈I∩Mm

Yi

)

= o(1) for m,n →∞,

and similarly

c2(m,n) := Cov

(
Xn,

1

tm

∑
j∈J∩Mm

Yj

)
= o(1) for m,n →∞.
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Furthermore we have

B1(n) := Var1/2

(
1

sn

∑
i∈I∩Mn

Yi + Xn

)

≥ Var1/2

(
1

sn

∑
i∈I∩Mn

Yi

)
− Var1/2(Xn)

= σ + o(1) for n →∞,

and

B2(m) := Var1/2

(
1

tm

∑
j∈J∩Mm

Yj + Zm

)

≥ σ + o(1) for m →∞.

Finally we introduce the term

c0(m, n) =
1

sntm

∑
i∈I∩Mn

∑
j∈J∩Mm

Cov
(
Yi, Yj

)
.

We choose r ≥ 0 such that n ∈ Ir+1 ∪ Jr+1 and we choose v ≥ 0 such that m ∈
Iv+1 ∪ Jv+1 and recall that by Theorem 1

∑
i∈Z |Cov(Y0, Yi)| < ∞. Hence if v ≤ 2r

we have

c0(m,n) ≤ s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J1∪···∪Jv+1

|Cov
(
Yi, Yj

)|

≤ s−1
ir

t−1
iv

∑
j∈J1∪···∪Jv+1

∑

i∈Z
|Cov

(
Yi, Yj

)|

= s−1
ir

t−1
iv

∑
j∈J1∪···∪Jv+1

∑

i∈Z
|Cov

(
Yi, Y0

)|

¿ s−1
ir

t−1
iv

(|J1|+ · · ·+ |Jv+1|
)

¿ s−1
ir

t−1
iv

t2
iv+1

= o(1) as m,n →∞.

If v > 2r we have to additionally show that

s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J2r+1∪···∪Jv+1

|Cov
(
Yi, Yj

)| → 0.

Now we have by (32) and assumptions (8), (9) that

s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J2r+1∪···∪Jv+1

|Cov
(
Yi, Yj

)|

≤ s−1
ir

t−1
iv

∑
π≥2r+1

|Jπ|
r+1∑

`=1

|I`|
(
d(I`, Jπ)

)−1

¿ s−1
ir

t−1
iv

∑
π≥2r+1

πβ

r+1∑

`=1

`α
(
d(I`, Jπ)

)−1
.
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For ` ∈ {1, . . . , r + 1} and π ≥ 2r + 1 we have constants k0 and k1 independent of r
and π such that

d(I`, Jπ) ≥ k0

(
πα+1 − rα+1

) ≥ k1π
α+1

and thus

s−1
ir

t−1
iv

∑
π≥2r+1

πβ

r+1∑

`=1

`α
(
d(I`, Jπ)

)−1

¿ s−1
ir

t−1
iv

rα+1
∑

π≥2r+1

πβ−α−1

¿ s−1
ir

t−1
iv

r1+β ¿ r−(α−β)/2 = o(1) as r →∞.

Using the definitions of c0, c1, c2 and B1 and B2 we see that

Corr
(
W1(s

2
n),W2(t

2
m)

)
=

c0(m,n) + c1(m,n) + c2(m,n) + cov(Xn, Zm)

B1(n)B2(m)
. (49)

We have shown that c0(m,n)+ c1(m,n)+ c2(m,n)+cov(Xn, Zm) → 0 as m,n →∞
while the denominator in (49) is bounded away from zero. This finishes the proof
of Proposition 1.
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