
November 30, 2010 12:29

Stochastics and Dynamics
c© World Scientific Publishing Company

ASYMPTOTIC BEHAVIOR OF TRIMMED SUMS ∗

ISTVÀN BERKES

Institute of Statistics
Graz University of Technology

8010 Graz, Austria
berkes@tugraz.at

LAJOS HORVÀTH

Department of Mathematics
University of Utah

Salt Lake City, UT 84112-0090 USA
horvath@math.utah.edu

JOHANNES SCHAUER

Institute of Statistics
Graz University of Technology

8010 Graz, Austria
johannes@schauer.com

Trimming is a standard method to decrease the effect of large sample elements in sta-
tistical procedures, used, e.g., for constructing robust estimators. It is also a powerful
tool in understanding deeper properties of partial sums of independent random vari-
ables. In this paper we review some basic results of the theory and discuss new results
in the central limit theory of trimmed sums. In particular, we show that for random
variables in the domain of attraction of a stable law with parameter 0 < α < 2, the
asymptotic behavior of modulus trimmed sums depends sensitively on the number of
elements eliminated from the sample. We also show that under moderate trimming, the
central limit theorem always holds if we allow random centering factors. Finally, we give
an application to change point problems.
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1. Introduction

Let X1, X2, . . . be a sequence of i.i.d. random variables in the domain of attraction
of a stable law with index 0 < α < 2, i.e. assume there exist real-valued sequences
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{an, n ∈ N} and {bn, n ∈ N} such that

1
bn




n∑

j=1

Xj − an


 D−→ Zα (1.1)

as n → ∞, where Zα is a stable r.v. with index α. As is known, this is the case if
and only if the distribution function F of X1 satisfies

1− F (x) ∼ pL(x)x−α, F (−x) ∼ qL(x)x−α as x →∞, (1.2)

where p, q ≥ 0, p + q = 1 and L is slowly varying at infinity. In the case p = 0 the
first relation of (1.2) is meant as 1−F (x) = o(L(x)x−α) and a similar remark holds
for q = 0. As usual, in the case when (1.1) or (1.2) holds, we say that F is in the
domain of attraction of the stable variable Zα and write F ∈ D(α). Relation (1.1) is
analogous to the central limit theorem, but there is a crucial difference: letting X

(j)
n

denote the element of the sample (X1, . . . Xn) with the j-th largest absolute value,
X

(j)
n /bn is known to have a nondegenerate limit distribution for any fixed j ≥ 1

and deleting X
(j)
n from Sn, the resulting sum has a different asymptotic behavior

as Sn. This sensitive dependence of the partial sum behavior on extremal elements
of the sample is not desired in many statistical problems and starting in the 1960’s,
several authors investigated the asymptotic behavior of trimmed sums, i.e. sums
where one or more extremal elements are omitted from Sn. In general, two types of
trimmed sums are considered. Let

X1,n ≤ X2,n ≤ . . . ≤ Xn,n (1.3)

be the order statistics of (X1, . . . , Xn) and

|X(1)
n | ≥ |X(2)

n | ≥ . . . ≥ |X(n)
n | (1.4)

be the sample elements arranged in decreasing order corresponding to their absolute
values. (In both cases, ties are broken according to priority of index.) The classical
trimmed sum, denoted by Sn(rn, sn), is defined as

Sn(rn, sn) =
n−sn∑

j=rn+1

Xj,n

for two nonnegative integer sequences {rn, n ∈ N}, {sn, n ∈ N} satisfying rn+sn < n

for all n ∈ N. Thus the rn smallest and the sn largest elements are removed from
the partial sum Sn to obtain Sn(rn, sn). In the simplest case (e.g. for symmetric
distributions F ), we choose rn = sn and set Sn(rn) := Sn(rn, rn). The second
approach is based on the elements X

(j)
n and leads to the so-called modulus trimmed

sum S̃n(rn) defined by

S̃n(rn) =
n∑

j=rn+1

X(j)
n ,
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where {rn, n ∈ N} is a numerical sequence with rn ∈ {0, 1, . . . , n − 1} for n ∈ N.
Here the rn largest elements according to their absolute values are removed. We
distinguish three different types of trimming:

(1) light trimming: rn ≡ r (or bounded rn)
(2) moderate trimming: rn →∞, rn/n → 0
(3) heavy trimming: rn/n → c ∈ (0, 1).

In most cases light trimming does not improve the weak convergence behavior. For
example, Mori [27] showed for general distributions that there are numerical se-
quences {cn, n ∈ N}, {dn, n ∈ N} such that (S̃n(r) − cn)/dn

D−→ N if and only if
(Sn − cn)/dn

D−→ N , where N ∼ N(0, 1) denotes a standard normal random vari-
able throughout the paper. Kesten [24] extended this result by showing that there
exist {cn}, {dn} such that (S̃n(r) − cn)/dn converges in distribution if and only if
(Sn − cn)/dn converges in distribution (to a possibly degenerate stable r.v.). The
same result holds for Sn(r). The complete solution of the asymptotic distribution
problem for (Sn(r) − cn)/dn was given by Csörgő et al. [7] (see also [6]) who de-
scribed precisely the class of possible limit distributions and gave exact convergence
criteria along the whole sequence of integers and along subsequences. Other impor-
tant results concerning light trimming are due to Darling [12], Arov and Bobrov [1],
Hall [21], Maller [26]. A classical result in case of heavy trimming with rn = banc,
sn = bbnc, a, b > 0, a + b < 1 is due to Stigler [29], who found the limit law of
Sn(rn, sn). He showed that to have a normal limit law, it is necessary and sufficient
that the a-th and b-th quantiles of the underlying distribution are uniquely defined.

In contrast to weak convergence behavior, light trimming can improve almost
sure behavior of partial sums. Feller [14] showed that removing the largest element
from an i.i.d. sample (X1, . . . , Xn) has a crucial effect on the LIL behavior of the
partial sums Sn in the case EX2 = +∞. Csörgő and Simons [11] found a similar
effect for the strong law of large numbers for i.i.d. random variables in the domain
of partial attraction of a semistable law. The same phenomenon occurs in analysis,
for the partial sums of continued fraction digits, see Diamond and Vaaler [13].

The purpose of this paper is to review some basic results in the central limit
theory of moderately trimmed sums and to formulate new results. For several further
important contributions in trimming theory not discussed in the present paper, we
refer to the book [20] and the references therein. In particular, [20] discusses a
number of further variants of trimming like censoring and ‘winsorized’ trimming,
see e.g. Hahn et al. [19] for an asymptotic theory.

2. Moderate trimming

In the rest of the paper we restrict our attention to moderate trimming, and thus
we assume that rn → ∞ and rn/n → 0 (as well as sn → ∞ and sn/n → 0). Our
main interest will be the weak limit theory of trimmed sums, i.e. the problem of
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finding sequences {cn} and {dn} such that

(Sn(rn)− cn)/dn
D−→ G (2.1)

or

(S̃n(rn)− cn)/dn
D−→ G (2.2)

with a nondegenerate limit G and characterization of the possible limit distributions
G, together with precise criteria for convergence to a specific G. Another natural
problem is partial attraction, i.e. finding criteria for (2.1), (2.2) to hold along sub-
sequences of integers and characterizing the class of subsequential limits. For laws
of the iterated logarithm for trimmed sequences we refer to Haeusler and Mason
[22], [23].

In the case of i.i.d. random variables in the domain of attraction of a stable
law with parameter 0 < α < 2, Teugels [30] studied the limiting behavior of the
ratio Tn(rn) = S̃n(rn)/|X(rn)

n | under moderate trimming. He found sufficient con-
ditions (stronger than (1.2)) for the asymptotic normality of Tn(rn). In particular,
he showed asymptotic normality when F is continuous and symmetric. In the non-
symmetric case he proved the following result.

Theorem 2.1. Assume that as x →∞
1− F (x) = px−α + bx−α−β + o(x−α−β)

F (−x) = qx−α + b′x−α−β + o(x−α−β)

where 0 < α < 2, α 6= 1, p, q ≥ 0, p + q = 1, 0 < β ≤ α and b, b′ are real constants.
Then Tn(rn) is asymptotically normal provided rn = o(nγ) with γ chosen as

γ =





min
{

2β
α+2β , 2(1−α)

2−α

}
, 0 < α < 1,

min
{

2β
α+2β , 2

2+α

}
, 1 < α < 2, EX1 6= 0,

2β
α+2β , 1 < α < 2, EX1 = 0.

The surprising feature of this theorem is the assumption rn = o(nγ) in the non-
symmetric case: this restricts rn from above, while one would expect that trimming
more terms from the sum Sn (i.e. increasing rn) improves its behavior. In Section
3 we will see that this paradoxical restriction on rn is necessary: choosing rn too
large, the CLT becomes generally false and we will give fairly precise bounds on rn

such that the CLT holds.
In the case F ∈ D(α), Csörgő et al. [10] proved the following central limit

theorem for the symmetrically trimmed sums Sn(rn).

Theorem 2.2. Assume (1.2). Then there exists a numerical sequence {cn} and a
slowly varying function L (at infinity) such that

Sn(rn)− cn

n1/αr
(α−2)/2α
n L(n/rn)

D−→ N, (2.3)
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where N is a standard normal random variable.

In other words, in the case F ∈ D(α) the trimmed sum Sn(rn) is asymptotically
normal under moderate trimming without any additional conditions on F . Note that
the analogous statement for Sn(rn, sn) is not always valid, see Griffin and Pruitt
[16], p. 1206. The authors are indebted to David Mason for pointing out this fact,
as well as for pointing out a number of further relevant references to the considered
limit problem.

A complete solution of the asymptotic distribution problem for Sn(rn, sn) was
given by Csörgő et al. [8]; for the formulation we need some definitions. Let Q be
the quantile function of F defined as

Q(y) = inf{x : F (x) ≥ y}
for 0 < y ≤ 1 with Q(0) = limx→0+ Q(x). Put further

c∗n = n

∫ 1−sn/n

rn/n

Q(y)dy,

(d∗n)2 =
∫ 1−sn/n

rn/n

∫ 1−sn/n

rn/n

(y ∧ z − yz)dQ(y)dQ(z),

where y ∧ z = min(y, z), y ∨ z = max(y, z), and with this for all γ ∈ R

Ψ1,n(γ) =





(
rn

n

)1/2

(
Q

(
rn
n +γ

r
1/2
n
n

)
−Q( rn

n )
)

d∗n
, − 1

2r
1/2
n ≤ γ ≤ 1

2r
1/2
n ,

Ψ1,n

(
− r1/2

n

2

)
, −∞ < γ < − 1

2r
1/2
n ,

Ψ1,n

(
r1/2

n

2

)
, 1

2r
1/2
n < γ < ∞,

Ψ2,n(γ) =





(
sn

n

)1/2

(
Q

(
1− sn

n +γ
s
1/2
n
n

)
−Q(1− sn

n )
)

d∗n
, − 1

2s
1/2
n ≤ γ ≤ 1

2s
1/2
n ,

Ψ2,n

(
− s1/2

n

2

)
, −∞ < γ < − 1

2s
1/2
n ,

Ψ2,n

(
s1/2

n

2

)
, 1

2s
1/2
n < γ < ∞,

u1,n = −
(rn

n

)1/2

(d∗n)−1

∫ 1−sn/n

rn/n

(1− y)dQ(y),

u2,n = −
(sn

n

)1/2

(d∗n)−1

∫ 1−sn/n

rn/n

ydQ(y).

Theorem 2.3. There exist numerical sequences {cn} and {dn} such that

(Sn(rn, sn)− cn)/dn
D−→ N

if and only if for all γ ∈ R
lim

n→∞
Ψ1,n(γ) = 0 and lim

n→∞
Ψ2,n(γ) = 0. (2.4)
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In this case one can set cn = c∗n and dn = n1/2d∗n.

Theorem 2.3 characterizes the domain of attraction of the normal law for
trimmed sums. The results of [8] also give, in terms of the quantities Ψ1,n, Ψ2,n,
u1,n, u2,n, necessary and sufficient conditions for weak convergence of centered and
normed trimmed sums along any fixed subsequence of integers, together with a com-
plete description of the possible limit distributions, thereby characterizing domains
of partial attraction for the trimmed sums Sn(rn, sn). The method of Csörgő et al.
[8] depends on the quantile transform and weighted approximation of the uniform
empirical process. Using a different approach, Griffin and Pruitt [16] (see also [17])
gave later equivalent convergence criteria for (Sn(rn, sn) − cn)/dn in terms of the
truncated moments of X. For comparison, we formulate here their CLT character-
ization. Put for all γ, δ ∈ R and sufficiently large n,

an(γ) = inf{x : F (−x) ≤ n−1(rn − γr1/2
n )},

bn(δ) = inf{x : 1− F (x) < n−1(sn − δs1/2
n )}.

Then a necessary and sufficient condition for the asymptotic normality of Sn(rn, sn)
is

E[(X ∧ bn(δ)) ∨ (−an(γ))]2

E[(X ∧ bn(0)) ∨ (−an(0))]2
→ 1 for all γ, δ ∈ R. (2.5)

Until now, we discussed the weak convergence problem for the trimmed sums
Sn(rn, sn). The analogous problem for modulus trimmed sums S̃n(rn) has a differ-
ent character. In case of symmetric distributions, Griffin and Pruitt [15] gave the
following characterization of asymptotic normality.

Theorem 2.4. Let the distribution of X be symmetric and continuous and let ãn(γ)
be any solution of P (|X| > x) = n−1(rn − γr

1/2
n ). Then there exists a numerical

sequence {dn} such that

S̃n(rn)/dn
D−→ N

if and only if for all γ ∈ R
EX2I(|X| ≤ ãn(γ))
EX2I(|X| ≤ ãn(0))

→ 1, (2.6)

where I denotes the indicator function. In this case one can take

dn = [nEX2I(|X| ≤ ãn(0))]1/2.

Note that we assumed here that X is continuous, in which case the crite-
rion is slightly simpler. In [15], a complete description of subsequential limits of
(S̃n(rn)− cn)/dn is also given in the symmetric case, together with the correspond-
ing convergence criteria. The class of sequential limits was later determined by
Griffin and Qazi [18] (see also [17]). Alternative proofs for the convergence criteria
using the quantile-empirical process approach were given by Csörgő et al. [9].



November 30, 2010 12:29

Asymptotic behavior of trimmed sums 7

Note that symmetry is essential in Theorem 2.4, as is in most existing results on
S̃n(rn). In fact, in [15], pp. 346–349, Griffin and Pruitt gave, for any sequence {rn},
rn → ∞, rn/n → 0 an example of an i.i.d. sequence in the domain of attraction
of a symmetric stable law with index α, 0 < α < 2, such that (S̃n(rn) − cn)/dn is
not asymptotically normal for any {cn}, {dn}. Thus not even the symmetry of the
limiting stable law generally suffices for modulus trimmed sums to satisfy the CLT
in the moderately trimmed case.

3. Recent results and applications

The results of the previous section give a complete description of the weak limit be-
havior of trimmed sums Sn(rn, sn): we have convergence criteria for normed sums
(Sn(rn, sn) − cn)/dn along N and subsequences, together with a characterization
of the class of possible limits and subsequential limits. In contrast, the theory for
modulus trimmed sums S̃n(rn) is less complete: there exist exact convergence cri-
teria for symmetric distributions, but the nonsymmetric case remains open. Even
in the case F ∈ D(α), no necessary and sufficient conditions have been found for
the asymptotic normality of S̃n(rn) in the moderate trimming case. Recall that by
Csörgő et. al [10], the trimmed sum Sn(rn) is asymptotically normal for F ∈ D(α)
without any additional conditions, but by the earlier mentioned counterexample of
Griffin and Pruitt [15], the corresponding result for S̃n(rn) generally fails, even if
the limiting stable law is symmetric. The only positive result in the nonsymmetric
case appears to be the theorem of Teugels [30] giving normal convergence criteria
for S̃n(rn)/|X(rn)

n | under moderate trimming, provided rn is not too large. The pur-
pose of the present section is to give a detailed discussion of the nonsymmetric case
and formulate new results, together with an application to change point problems.

Let X1, X2, . . . be i.i.d. random variables belonging to the domain of attraction
of a stable law with parameter 0 < α < 2. To avoid minor complications, we assume
in this section that X has a continuous distribution and thus, with probability one,
all the elements |Xj |, j = 1, 2, . . . are different. Consider the modulus trimmed sum

S̃n(rn) =
n∑

j=1

XjI{|Xj | ≤ |X(rn)
n |}, (3.1)

where X
(j)
n denotes, as in Section 1, the element of the sample (X1, . . . Xn) with the

j-th largest absolute value. (Note that in (3.1) the number of elements eliminated
from the total sum is rn − 1 and thus by the notation of Section 1 this sum is
S̃n(rn − 1). However, using the present notation will lighten the formulas.) It was
proved by Kiefer [25] (see also Shorack and Wellner [28]) that |X(rn)

n | is close to
H−1(rn/n), where H(x) = P (|X| > x) and H−1(x) is its generalized inverse. Thus
it is natural to compare the trimmed sum S̃n(rn) in (3.1) with the truncated sum

T̃n(rn) =
n∑

j=1

XjI{|Xj | ≤ H−1(rn/n)}. (3.2)
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We still assume that rn →∞ and rn/n → 0. Clearly, T̃n(rn) is a sum of independent,
identically distributed random variables and using Ljapunov’s condition it follows
immediately that

(T̃n(rn)− ET̃n(rn))/Dn
D−→ N, (3.3)

where

D2
n =

α

2− α
rn

(
H−1(rn/n)

)2
. (3.4)

Hence if we could prove that

(S̃n(rn)− T̃n(rn))/Dn
P−→ 0, (3.5)

then the asymptotic normality of S̃n(rn) would follow. Relation (3.5), however, is
generally false for nonsymmetric distributions, as the following example shows.

Example 3.1. Assume that X is concentrated on (0,∞) with P (X > x) = cx−α

for x ≥ x0. Then the left hand side of (3.5) has a nondegenerate Gaussian limit
distribution.

We thus see that the difference between the trimmed sum S̃n(rn) and the trun-
cated sum T̃n(rn) is generally not oP (Dn), and in fact, the asymptotic behavior of
trimmed and truncated sums can be different. To explore this further, it will be
convenient to work with the functional CLT. Put, for 0 ≤ t ≤ 1,

S̃n,rn(t) =
bntc∑

j=1

XjI{|Xj | ≤ |X(rn)
n |)}, T̃n,rn(t) =

bntc∑

j=1

XjI{|Xj | ≤ H−1(rn/n)}.

By the functional version of (3.3) we have

(T̃n,rn(t)− cn(t))/Dn
D[0,1]−−−−→ W (t), (3.6)

where

cn(t) = bntcE(XI{|X| ≤ H−1(rn/n)})
and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process. However, the analogue of (3.6)
for S̃n,rn(t) is generally false. To get the correct result, put

m(t) = EXI{|X| ≤ t}, t ≥ 0.

Then we have

Theorem 3.1. Let X1, X2, . . . be i.i.d. random variables with a continuous distri-
bution function F satisfying (1.2) for 0 < α < 2 and in the case α = 1 assume that
X1 is symmetric. Assume that rn/n → 0, rn/(log n)7+ε →∞ for some ε > 0. Then
we have

1
Dn

bntc∑

j=1

(
XjI{|Xj | ≤ |X(rn)

n |)− cn

) D[0,1]−−−−→ W (t), (3.7)
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where Dn is defined by (3.4), further

cn = m(|X(rn)
n |) (3.8)

and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process.

For the proof of Theorem 3.1 and Example 3.1, we refer to Berkes et al. [5].
The case α = 1 remains unsolved in the nonsymmetric case. Relation (3.7) is a
functional CLT for the modulus trimmed sums S̃n(rn), but the centering factor
cn in (3.8) is random. For symmetric F we have cn = 0, leading to a standard
(nonrandom) functional CLT for trimmed sums, but in the case of Example 3.1
above, ncn/Dn has, after a nonrandom translation, a nondegenerate Gaussian limit
distribution and thus cn cannot be replaced by a nonrandom centering factor. Thus
we see that under F ∈ D(α) the center of the modulus trimmed sample is generally
a nondegenerate random variable, explaining why the ordinary CLT fails in general
for such sums. This also means that modulus trimming is generally unsuitable for
statistical purposes under F ∈ D(α).

Theorem 3.1 yields a randomized functional CLT for S̃n(rn) in the domain of
attraction of a stable law, but it does not give any information when the ordi-
nary (nonrandom) CLT holds. The following theorems give a partial answer to this
question. We start with a simple special case.

Theorem 3.2. Assume that

P (X > x) = px−αL(x) and P (X ≤ −x) = qx−αL(x) for x ≥ x0,

where p, q ≥ 0, p + q = 1, 0 < α < 2 and L is slowly varying at infinity. Assume
that rn →∞, rn/n → 0. Then

1

r
1/2
n H−1(rn/n)

(S̃n(rn)− c′n) D−→
(

α

2− α
+ (p− q)2

)1/2

N,

where

c′n = n

(∫ x0

−x0

xdF (x) + (p− q)
∫ H(x0)

rn/n

H−1(t)dt

)
.

In Theorem 3.2 the tails of the distribution of X are "perfectly balanced", i.e.
P (X ≤ −x)/P (X > x) = c for x ≥ x0 with some constant c > 0 or X is one-sided,
i.e. it is concentrated on a half line. In the case when L is a constant (i.e. when
X is in the domain of normal attraction of a stable law), this condition can be
substantially weakened, as our next theorem shows.

Theorem 3.3. Let, as x →∞,

P (X > x) = px−α + O(x−β) and P (X ≤ −x) = qx−α + O(x−β) (3.9)

where p, q > 0, p + q = 1, 0 < α < 2 and β > α, and assume that

rn →∞, rn = o
(
n(β−α)/τ

)
with τ = max(1 + 2α, β − α/2). (3.10)
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Then there exist numerical sequences {cn} and {dn} such that

(S̃n(rn)− cn)/dn
D−→ N. (3.11)

Replacing (3.10) by

rn →∞, rn = O
(
n(β−α)/τ

)
with τ = β − 3α/4,

the CLT (3.11) becomes generally false.

Note that, like in Theorem 3 of Teugels [30], we assumed here an upper bound for
rn to guarantee the validity of the CLT for S̃n(rn). This is rather surprising, since
for larger rn we remove more elements from the sample and hence one would believe
that the effectiveness of the trimming increases. However, as the last statement of
Theorem 3.3 shows, an upper bound for rn for the validity of the CLT for S̃n(rn)
is needed as well. The critical order of magnitude is rn ∼ nγ for some 0 < γ < 1
whose value remains unknown.

The remainder term in the tail condition (3.9) in Theorem 3.3 was O(x−β) with
β > α. The following theorem describes the situation when the remainder term is
O(x−α/L(x)) with a function L(x) →∞ growing slower than any power of x.

Theorem 3.4. Assume that, as x →∞,

P (X > x) = px−α + O(x−α/L(x)), P (X ≤ −x) = qx−α + O(x−α/L(x))

where p, q > 0, p + q = 1, 0 < α < 2 and L is a nondecreasing function satisfying

lim
x→∞

L(x) = ∞ and lim sup
x→∞

L(x2)/L(x) < ∞. (3.12)

Then under

rn →∞, rn = o(L(n)α/(2α+1)) (3.13)

we have the CLT (3.11) with suitable numerical sequences {cn}, {dn}. Replacing
the second relation of (3.13) by rn = O(L(n)4), the CLT (3.11) becomes generally
false.

Relation (3.12) and the monotonicity of L imply that L is slowly varying. Actu-
ally, instead of (3.12) it suffices to assume that L(x) →∞ and L is slowly varying,
but then condition (3.13) should be replaced by

rn →∞, rn = o(L(n1/α−ε))α/(2α+1)

for some 0 < ε < 1/α.
For the proof of Theorems 3.2–3.4, see Berkes and Horváth [4]. Note that in

Theorems 3.3 and 3.4 we assumed p > 0, q > 0, i.e. our results do not cover
the extremely asymmetric cases when in (3.9) or in the corresponding relation in
Theorem 3.4 we have p = 0 or q = 0. In these cases one tail of F has a smaller order
of magnitude than the other and need not even be regularly varying. This situation
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is rather pathological and we have only partial results in this case. For example, in
[4] we proved that if

1− F (x) = px−α + O(x−β), F (−x) = qx−γ + o(x−γ) (x →∞)

for p, q > 0, 0 < α < 2, α < β < γ (note that in this case the smaller tail is actually
regularly varying) then under the condition (3.10) the trimmed CLT (3.11) is still
valid for sufficiently large γ. The CLT also holds in the one sided case, i.e. when
one of the tail conditions in (3.9) is satisfied and the other tail is indentically 0. For
a detailed discussion and more results we refer to [4].

Theorems 3.2–3.4 give a fairly clear picture on the central limit theorem for
modulus trimmed sums, but their application for statistical purposes is made dif-
ficult by the fact that it is impossible to decide from a sample if the underlying
distribution F satisfies the technical conditions of Theorems 3.2–3.4. In contrast,
Theorem 3.1 is very suitable for statistical purposes, despite the random centering
factor cn. Consider e.g. the location model

Xj = µ + δI(j > m∗) + ej for j = 1, . . . , n,

where 1 ≤ m∗ ≤ n, µ and δ = δn are unknown parameters. We assume that
e1, . . . , en are i.i.d. random variables. We want to test the hypothesis H0 : m∗ = n

(no change) against H1 : m∗ < n. In the case when Ee1 = 0, Ee2
1 = 1, the standard

CUSUM test uses the supremum of the function

Un(t) =
bntc∑

j=1

(
Xj −Xn

)
, where Xn =

1
n

n∑

j=1

Xj ,

which, suitably normalized, converges weakly to the supremum of the Brownian
bridge over [0, 1]. If the ej are in the domain of attraction of a stable law with
parameter 1 < α < 2, the ej still have a finite mean and it is natural to use the
CUSUM functional in this case, too. In Aue et. al [2] it was shown that Un(t), suit-
ably normalized, converges weakly to a nongaussian process, whose distribution,
however, is not known explicitly, and thus critical values for the test cannot be
computed analytically. A natural solution of this difficulty is to use a bootstrap or
permutation test, but, as it was shown in [2] and [3], the normalized CUSUM func-
tional converges in this case to a continuous process containing random parameters
and thus it is unsuitable for statistical purposes. Since the presence of the random
parameters in the limit process is due to the large elements of the sample, it is
natural to try trimming, i.e. using the trimmed CUSUM functional

Un,rn(t) =
1

Dn

bntc∑

j=1

(
XjI{|Xj | ≤ |X(rn)

n |)−Xn

)
, (0 ≤ t ≤ 1) (3.14)

where

Xn =
1
n

n∑

j=1

XjI{|Xj | ≤ |X(rn)
n |}.
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By Theorem 3.1 the trimmed sample XjI{|Xj | ≤ |X(rn)
n |}, j = 1, . . . , n, satisfies the

functional CLT after a suitable random translation, and since a random translation
does not change the value of the CUSUM functional, we get

Theorem 3.5. Let X1, X2, . . . be i.i.d. random variables satisfying the conditions
of Theorem 3.1 and let Un,rn

(t) denote the trimmed CUSUM process defined by
(3.14). Then we have

Un,rn
(t)/Dn

D[0,1]−−−−→ B(t),

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

Using this result, the trimmed CUSUM test can be applied without any problem
in the case of i.i.d. random variables with infinite variances.
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