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Abstract

There is a wide literature on change point tests, but the case of variables
with infinite variances is essentially unexplored. In this paper we address this
problem by studying the asymptotic behavior of trimmed CUSUM statistics.
We show that in a location model with i.i.d. errors in the domain of attraction
of a stable law of parameter 0 < � < 2, the appropriately trimmed CUSUM
process converges weakly to a Brownian bridge. Thus after moderate trim-
ming, the classical method for detecting changepoints remains valid also for
populations with infinite variance. We note that according to the classical
theory, the partial sums of trimmed variables are generally not asymptoti-
cally normal and using random centering in the test statistics is crucial in
the infinite variance case. We also show that the partial sums of truncated
and trimmed random variables have different asymptotic behavior. Finally,
we discuss resampling procedures enabling one to determine critical values in
case of small and moderate sample sizes.
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1 Introduction

In this paper we are interested in detecting a possible change in the location of
independent observations. We observe X1, . . . , Xn and want to test the no change
null hypothesis
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H0 : X1, X2, . . . , Xn are independent, identically distributed random variables

against the r changes alternative

HA : Xj =

⎧⎨⎩

ej 1 ≤ j ≤ n1

ej + c1 n1 < j ≤ n2

ej + c2 n2 < j ≤ n3

...
ej + cr nr < j ≤ n.

It is assumed that

e1, . . . , en are independent, identically distributed random variables, (1.1)

and c0 = 0, ci ∕= ci+1, i = 0, . . . , r−1, and 1 < n1 < n2 < . . . < nr < n are unknown.
In our model the changes are at time nj, 1 ≤ j ≤ r. Testing H0 against HA has been
considered by several authors. For surveys we refer to Brodsky and Darkhovsky [7],
Chen and Gupta [8] and Csörgő and Horváth [11]. If the observations have finite
expected value, the model is referred to as changes in the mean.

Several of the most popular methods are based on the functionals of the CUSUM
process (tied down partial sums)

Mn(t) =

⌊nt⌋∑
j=1

Xj −
⌊nt⌋
n

n∑
j=1

Xj.

If H0 holds and 0 < �2 = varX1 <∞, then

1√
n
Mn(t)

D[0,1]−−−→ �B(t), (1.2)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge. If �̂n is a weakly consistent estimator
for �, i.e., �̂n → � in probability, then

1

�̂n
√
n
Mn(t)

D[0,1]−−−→ B(t). (1.3)

Functionals of (1.3) can be used to find asymptotically distribution free procedures
to test H0 against HA. The limit results in (1.2) and (1.3) have been extended into
several directions. Due to applications in economics, finance, meteorology, environ-
mental sciences and quality control, several authors studied the properties of Mn(t)

and especially (1.3) for dependent observations. For relevant references we refer to
Horváth and Steinebach [20]. The case of vector-valued dependent observations is
considered in Horváth, Kokoszka and Steinebach [19]. We mention that in case of
dependent observations �2 = limn→∞ var

(
n−1/2

∑n
j=1Xj

)
, so the estimation of � is
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considerably harder than in the i.i.d. case (cf. Bartlett [3], Grenander and Rosenblatt
[13], Parzen [30]). The rate of convergence in (1.3) may be slow, so the asymptotic
critical values might be misleading. Hence resampling methods have been advocated
in Hušková [21]. With very few exceptions, it has been assumed that at least EX2

j

is finite. In this paper we are interested in testing H0 against HA, when EX2
j =∞.

We assume that

X1, X2, . . . belong to the domain of attraction of a stable (1.4)
random variable �� with parameter 0 < � < 2

and
Xj is symmetric when � = 1. (1.5)

This means that (
n∑
j=1

Xj − an

)/
bn

D−→ �� (1.6)

for some numerical sequences an and bn. The necessary and sufficient condition for
(1.6) is

lim
t→∞

P{X1 > t}
L(t)t−�

= p and lim
t→∞

P{X1 ≤ −t}
L(t)t−�

= q (1.7)

for some numbers p ≥ 0, q ≥ 0, p+ q = 1 and L, a slowly varying function at ∞.

Aue et al. [2] studied the properties of Mn(t) under conditions H0, (1.4) and
(1.5). They used max1≤j≤n ∣Xj∣ as the normalization of Mn(t) and showed that
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n
Mn(t)

D[0,1]−−−→ 1

Z
B�(t), 
n = max

1≤j≤n
∣Xj∣. (1.8)

Here B�(t) = W�(t) − tW�(1) is an �-stable bridge, W�(t) is an �-stable process
(cf. also Kasahara and Watanabe [22], Section 9) and Z is a random norming factor
whose joint distribution with W�(t) is described in [2] explicitly. Nothing is known
about the distribution of the functionals of B�(t)/Z and therefore it is nearly im-
possible to determine critical values needed to construct asymptotic test procedures.
Hence resampling methods (bootstrap and permutation) have been tried. However,
it was proved that the conditional distribution of the resampled Mn(t)/
n, given
X1, . . . , Xn, converges in distribution to a non-degenerate random process depend-
ing also on the trajectory (X1, X2, . . .). So resampling cannot be recommended to
get asymptotic critical values. This result was obtained by Aue et al. [2] for permu-
tation resampling and Athreya [1], Hall [18] and Berkes et al. [4] for the bootstrap.
No efficient procedure has been found to test H0 against HA when EX2

j =∞.

The reason for the "bad" behavior of the CUSUM statistics described above is
the influence of the large elements of the sample. It is known that for i.i.d. random
variables X1, X2, . . . in the domain of attraction of a nonnormal stable law, the j-th
largest element of ∣X1∣, . . . , ∣Xn∣ has, for any fixed j, the same order of magnitude as
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the sum Sn = X1 + . . .+Xn as n→∞. Thus the influence of the large elements in
the CUSUM functional does not become negligible as n→∞ and consequently, the
limiting behavior of the CUSUM statistics along different trajectories (X1, X2, . . .)

is different, rendering this statistics unpractical for statistical inference. The natural
remedy for this trouble is trimming, i.e. removing the d(n) elements with the largest
absolute values from the sample, where d(n) is a suitable number with d(n) → ∞,
d(n)/n → 0. This type of trimming is usually called modulus trimming in the
literature. In another type of trimming, some of the largest and smallest order
statistics are removed from the sample, see e.g. Csörgő et al. [10], [12]. Under
suitable conditions, trimming leads indeed to a better asymptotic behavior of partial
sums, see e.g. Mori [27], [28], [29], Maller [25], [26], Csörgő et al. [9], [10], [12],
Griffin and Pruitt [14], [15], Haeusler and Mason [16], [17]. Note, however, that
the asymptotic properties of trimmed random variables depend strongly on the type
of trimming used. In this paper trimming means modulus trimming as introduced
above. Griffin and Pruitt [14] showed that even in the case when the Xj belong
to the domain of attraction of a symmetric stable law with parameter 0 < � < 2,
the modulus trimmed partial sums need not be asymptotically normal. Theorem
1.5 reveals the reason of this surprising fact: for nonsymmetric distributions F
the center of the sample remains, even after modulus trimming, a nondegenerate
random variable and no nonrandom centering can lead to a CLT. In contrast, a
suitable random centering will always work and since the CUSUM functional is not
affected by centering factors, even in the case of "bad" partial sum behavior, the
trimmed CUSUM functional converges to Brownian bridge, resulting in a simple
and useful change point test.

To formulate our results, consider the trimmed CUSUM process

Tn(t) =

⌊nt⌋∑
j=1

XjI{∣Xj∣ ≤ �n,d} −
⌊nt⌋
n

n∑
j=1

XjI{∣Xj∣ ≤ �n,d}, 0 ≤ t ≤ 1,

where �n,d is the dth largest value among ∣X1∣, . . . , ∣Xn∣.

Let
F (t) = P{X1 ≤ t} and H(t) = P{∣X1∣ > t}.

H−1(t) denotes the (generalized) inverse (or quantile) of H. We assume that

lim
n→∞

d(n)/n = 0 (1.9)

and
lim
n→∞

d(n)/(log n)7+" =∞ with some " > 0. (1.10)

For the sake of simplicity (cf. Mori [27]) we also require that

F is continuous. (1.11)
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Let
A2
n =

�

2− �
(
H−1(d/n)

)2
d. (1.12)

Our first result states the weak convergence of Tn(t)/An.

Theorem 1.1. If H0, (1.4), (1.5) and (1.9)–(1.11) hold, then

1

An
Tn(t)

D[0,1]−−−→ B(t), (1.13)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

Since An is unknown, we need to estimate it from the sample. We will use

Â2
n =

n∑
j=1

(
XjI{∣Xj∣ ≤ �n,d} − X̄n,d

)2 and �̂2
n =

1

n
Â2
n,

where

X̄n,d =
1

n

n∑
j=1

XjI{∣Xj∣ ≤ �n,d}.

We note that Ân/An → 1 almost surely (cf. Lemma 4.7).

Theorem 1.2. If the conditions of Theorem 1.1 are satisfied, then

1

�̂n
√
n
Tn(t)

D[0,1]−−−→ B(t). (1.14)

In case of independence and 0 < �2 = varXj <∞ we estimate �2 by the sample
variance. So the comparison of (1.3) and (1.14) reveals that in case of EX2

j =∞ we
still use the classical CUSUM procedure; only the extremes are removed from the
sample. The finite sample properties of tests for H0 against HA based on (1.14) are
investigated in Section 3.

In case of a given sample, it is difficult to decide if EX2
j is finite or infinite. Thus

for applications it is important to establish Theorem 1.2 when EX2
j <∞.

Theorem 1.3. If H0, (1.9), (1.10) and EX2
j <∞ are satisfied, then (1.14) holds.

Putting together Theorems 1.2 and 1.3 we see that the CUSUM based procedures
can always be used if the observations with the largest absolute values are removed
from the sample.

Now we outline the basic idea of the proofs of Theorems 1.1 and 1.2. It was
proved by Kiefer [23] (cf. Shorack and Wellner [33]) that �n,d is close to H−1(d/n)
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and thus it is natural to consider the process obtained from Tn(t) by replacing �n,d
with H−1(d/n). Let

Vn(t) =

⌊nt⌋∑
j=1

(
XjI{∣Xj∣ ≤ H−1(d/n)} − E(XjI{∣Xj∣ ≤ H−1(d/n)})

)
and

V ∗n (t) =

⌊nt⌋∑
j=1

(XjI{∣Xj∣ ≤ �n,d} − E(XjI{∣Xj∣ ≤ �n,d})) .

Since Vn(t) is a sum of i.i.d. random variables, the classical functional CLT for
triangular arrays easily yields

Theorem 1.4. If the conditions of Theorem 1.1 are satisfied, then

1

An
Vn(t)

D[0,1]−−−→ W (t),

where {W (t), 0 ≤ t ≤ 1} is a standard Brownian motion (Wiener process).

In view of the closeness of �n,d and H−1(d/n), one would expect that the asymp-
totic behavior of Vn(t)/An and V ∗n (t)/An is the same. Surprisingly, this is not the
case. Let

m(t) = E
[
X1I{∣X1∣ ≤ t} −X1I{∣X1∣ ≤ H−1(d/n)}

]
, t ≥ 0.

Theorem 1.5. If the conditions of Theorem 1.1 are satisfied, then

1

An
max
1≤k≤n

∣∣∣∣∣
k∑
j=1

[
Xj

(
I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ H−1(d/n)}

)
−m(�n,d)

]∣∣∣∣∣ = oP (1).

By Theorem 1.5, the asymptotic properties of the partial sums of trimmed and
truncated variables would be the same if n∣m(�n,d)∣ = oP (An) were true. However,
this is not always the case as the following example shows.

Example 1.1. Assume that X1 is concentrated on (0,+∞) and has a continuous
density f which is regularly varying at ∞ with exponent −(� + 1) with some 0 <

� < 2. Then
nm(�n,d)

Bn

D−→ N(0, 1),

where

Bn =
�d3/2

nH ′(H−1(d/n))
.
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We conjecture that the centering factor nm(�n,d)/An and the partial sum process

⌊nt⌋∑
j=1

(XjI{∣Xj∣ ≤ H−1(d/n)} − E(XjI{∣Xj∣ ≤ H−1(d/n)})), 0 ≤ t ≤ 1,

are asymptotically independent under the conditions of Example 1.1. Hence by
Theorem 1.5 one would have

1

An

⌊nt⌋∑
j=1

(XjI{∣Xj∣ ≤ �n,d} − cn)
D[0,1]−−−→ W (t) + t

(
2− �
�

)1/2

�,

where {W (t), 0 ≤ t ≤ 1} and � are independent, W (t) is a standard Wiener process,
� is a standard normal random variable and cn = EX1I{∣X1∣ ≤ H−1(d/n)}.

In view of Theorem 1.5, the normed partial sum processes of XjI{∣Xj∣ ≤ �n,d}−
m(�n,d) andXjI{∣Xj∣ ≤ H−1(d/n)} have the same asymptotic behavior and thus the
same holds for the corresponding CUSUM processes. By Theorem 1.4, the CUSUM
process of XjI{∣Xj∣ ≤ H−1(d/n)} converges weakly to the Brownian bridge and the
CUSUM process of XjI{∣Xj∣ ≤ �n,d} −m(�n,d) clearly remains the same if we drop
the term m(�n,d). Formally,

max
1≤k≤n

∣∣∣∣∣
k∑
j=1

XjI{∣Xj∣ ≤ �n,d} −
k

n

n∑
j=1

XjI{∣Xj∣ ≤ �n,d}

−

(
k∑
j=1

XjI{∣Xj∣ ≤ H−1(d/n)} − k

n

n∑
j=1

XjI{∣Xj∣ ≤ H−1(d/n)}

)∣∣∣∣∣
≤ 2 max

1≤k≤n

∣∣∣∣∣
k∑
j=1

[
Xj

(
I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ H−1(d/n)}

)
−m(�n,d)

]∣∣∣∣∣ .
(1.15)

Thus, even though the partial sums of trimmed and truncated variables are asymp-
totically different due to the presence of the random centering m(�n,d), the asymp-
totic distributions of the CUSUM processes of the trimmed and truncated variables
are the same.

The proofs of the asymptotic results for
∑n

j=1XjI{∣Xj∣ ≤ �n,d} in Mori [27],
[28], [29], Maller [25], [26] and Griffin and Pruitt [14], [15] are based on classical
probability theory. Csörgő et al. [9], [10], [12] and Haeusler and Mason [16], [17]
use the weighted approximation of quantile processes to establish the normality of a
class of trimmed partial sums. The method of our paper is completely different. We
show in Theorem 1.5 that after a suitable random centering, trimmed partial sums
can be replaced with truncated ones, reducing the problem to sums of i.i.d. r.v.’s.
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2 Resampling methods

Since the convergence in Theorem 1.1 can be slow, critical values in the change point
test determined on the basis of the limit distribution may not be appropriate for
small sample sizes. To resolve this difficulty, resampling methods can be used to
simulate critical values. Let

xj = XjI{∣Xj∣ ≤ �n,d} − X̄n,d, 1 ≤ j ≤ n

be the trimmed and centered observations. We select m elements from the set
{x1, x2, . . . , xn} randomly (with or without replacement), resulting in the sample
y1, . . . , ym. If we select with replacement, the procedure is the bootstrap; if we
select without replacement and m = n, this is the permutation method (cf. Hušková
[21]). Now we define the resampled CUSUM process

Tm,n(t) =

⌊mt⌋∑
j=1

yj −
⌊mt⌋
m

∑
1≤j≤m

yj.

We note that conditionally on X1, X2, . . . , Xn, the mean of yj is 0 and its variance
is �̂2

n.

Theorem 2.1. Assume that the conditions of Theorem 1.1 are satisfied and draw
m = m(n) elements y1, . . . , ym from the set {x1, . . . , xn} with or without replacement,
where

m = m(n)→∞ as n→∞ (2.1)

and m(n) ≤ n in case of selection without replacement. Then for almost all realiza-
tions of X1, X2, . . . we have

1

�̂n
√
m
Tm,n(t)

D[0,1]−−−→ B(t),

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

By the results of Aue et al. [2] and Berkes et al. [4], if we sample from the
original (untrimmed) observations, then the CUSUM process converges weakly to
a non-Gaussian process containing random parameters and thus the resampling
procedure is statistically useless.

If we use resampling to determine critical values in the CUSUM test, we need to
study the limit also under the the alternative, since in a practical situation we do
not know which of H0 or HA is valid. As before, assume that the error terms {ej}
are in the domain of attraction of a stable law, i.e.

lim
t→∞

P{e1 > t}
L(t)t−�

= p and lim
t→∞

P{e1 ≤ −t}
L(t)t−�

= q, (2.2)

where p ≥ 0, q ≥ 0, p+ q = 1 and L is a slowly varying function at ∞.
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Theorem 2.2. If HA, (1.1), (1.9)–(1.11), (2.1) and (2.2) hold, then for almost all
realizations of X1, X2, . . . we have that

1

�̂n
√
m
Tm,n(t)

D[0,1]−−−→ B(t),

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

In other words, the limiting distribution of the trimmed CUSUM process is the
same under H0 and HA and thus the critical values determined by resampling will
always work. On the other hand, underHA the test statistic sup0<t<1 ∣Tn(t)∣/An goes
to infinity, so using the critical values determined by resampling, we get a consistent
test.

We note that Theorems 2.1 and 2.2 remain true if (1.6) is replaced with EX2
j <

∞. The proofs are similar to that of Theorems 2.1 but much simpler, so no details
are given.

3 Simulation study

Consider the model under H0 with i.i.d. random variables Xj, j = 1, . . . , n, having
distribution function

F (t) =

{
q(1− t)−1.5 for t ≤ 0

1− p(1 + t)−1.5 for t > 0,

where p ≥ 0, q ≥ 0, p + q = 1. We trim the samples using d(n) = ⌊n0.3⌋. To
simulate the critical values we generate N = 105 Monte Carlo simulations for each
n ∈ {100, 200, 400, 800} according to the model under the no change hypothesis and
calculate the values of sup0<t<1 ∣Tn(t)∣/(�̂n

√
n), where Tn(t) and �̂n are defined in

Section 1. The computation of the empirical quantiles yields the estimated critical
values. Table 1 summarizes the results for p = q = 1/2 and 1− � = 0.95.

n = 100 n = 200 n = 400 n = 800 n =∞
1.244 1.272 1.299 1.312 1.358

Table 1: Simulated critical values of sup0<t<1 ∣Tn(t)∣/(�̂n
√
n) for 1− � = 0.95

Figure 1 shows the empirical power of the test of H0 against HA based on the
statistic sup0<t<1 ∣Tn(t)∣/(�̂n

√
n) for a single change at time k = n1 ∈ {n/4, n/2, 3n/4}

and each c1 ∈ {−3,−2.9, . . . , 2.9, 3} for the same trimming as above (d(n) = ⌊n0.3⌋)
and a significance level of 1−� = 0.95, where the number of repetitions is N = 104.
Note that depending on the sample size we used different simulated quantiles (see

9



Table 1). The power behaves best for a change-point in the middle of the observa-
tion period (k = n/2). Due to the differences between the simulated and asymptotic
critical values in Table 1, especially for small n the test based on the asymptotic
critical values tends to be conservative.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d((n)) == n0.3, k == n/4

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d((n)) == n0.3, k == n/2

Figure 1: Empirical power curves with � = 0.05, n = 100 (solid), n = 200 (dashed)
and n = 400 (dotted)

4 Proofs

Throughout this section we assume that H0 holds. Clearly,

H(x) = 1− F (x) + F (−x), x ≥ 0,

and by (1.7) we have that

H−1(t) = t−1/�K(t), if t ≤ t0, (4.1)

where K(t) is a slowly varying function at 0. We also use

d = d(n)→∞. (4.2)

Lemma 4.1. If H0, (1.4), (1.5), (1.9) and (4.2) hold, then

lim
n→∞

1

A2
n

varVn(1) = 1 (4.3)

and

lim
n→∞

n∑
j=1

E

[
XjI{∣Xj∣ ≤ H−1(d/n)} − E

[
XjI{∣Xj∣ ≤ H−1(d/n)}

] ]4
× 1

d(H−1(d/n))4
=

�

4− �
. (4.4)
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Proof. If 1 < � < 2, then

lim
n→∞

EX1I{∣X1∣ ≤ H−1(d/n)} = EX1.

If � = 1, then by the assumed symmetry EX1I{∣X1∣ ≤ H−1(d/n)} = 0. In case of
0 < � < 1 we write

E∣X1∣I{∣X1∣ ≤ H−1(d/n)} =

∫ H−1(d/n)

−H−1(d/n)

∣x∣dF (x)

= −
∫ H−1(d/n)

0

xdH(x)

= −xH(x)
∣∣
H−1(d/n)

+

∫ H−1(d/n)

0

H(x)dx.

By Bingham et al. [6] (p. 26)

lim
y→∞

∫ y

0

H(x)dx

1

1− �
y1−�L(y)

= 1

and therefore
lim
n→∞

E∣X1∣I{∣X1∣ ≤ H−1(d/n)}
�

1− �
H−1(d/n)d/n

= 1.

Similarly,

EX2
1I{∣X1∣ ≤ H−1(d/n)} =

∫ H−1(d/n)

−H−1(d/n)

x2dF (x)

= −
∫ H−1(d/n)

0

x2dH(x) = −x2H(x)
∣∣
H−1(d/n)

+ 2

∫ H−1(d/n)

0

xH(x)dx.

Using again Bingham et al. [6] (p. 26), we conclude that

lim
n→∞

EX2
1I{∣X1∣ ≤ H−1(d/n)}
(H−1(d/n))2 d/n

=
�

2− �
.

Hence (4.3) is established.

Arguing as above we get

EX4
1I{∣X1∣ ≤ H−1(d/n)} = −

∫ H−1(d/n)

0

x4dH(x)

= −x4H(x)
∣∣
H−1(d/n)

+ 4

∫ H−1(d/n)

0

x3H(x)dx
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and therefore
lim
n→∞

EX4
1I{∣X1∣ ≤ H−1(d/n)}
(H−1(d/n))4 d/n

=
�

4− �
.

Similarly,

lim
n→∞

E∣X1∣3I{∣X1∣ ≤ H−1(d/n)}
(H−1(d/n))3 d/n

=
�

3− �
,

completing the proof of (4.4).

Proof of Theorem 1.4. Clearly, for each n XjI{∣Xj∣ ≤ H−1(d/n)}, 1 ≤ j ≤ n,
are independent and identically distributed random variables. By Lemma 4.1 we
have that

lim
n→∞

n∑
j=1

E

[
XjI{∣Xj∣ ≤ H−1(d/n)} − E

[
XjI{∣Xj∣ ≤ H−1(d/n)}

] ]4
(

n∑
j=1

var(XjI{∣Xj∣ ≤ H−1(d/n)})

)2 = 0,

so the Lyapunov condition is satisfied. Hence the result follows immediately from
Skorohod [34].

A series of lemmas is needed to establish Theorem 1.5. Let �n,1 ≥ �n,2 ≥ . . . ≥
�n,n denote the order statistics of ∣X1∣, . . . , ∣Xn∣, starting with the largest value.

Lemma 4.2. If H0 and (1.11) hold, then

{H(�n,k), 1 ≤ k ≤ n} D= {Sk/Sn+1, 1 ≤ k ≤ n},

where
Sk = e1 + . . .+ ek, 1 ≤ k ≤ n

and e1, e2, . . . , en+1 are independent, identically distributed exponential random vari-
ables with Eej = 1.

Proof. The representation in Lemma 4.2 is well-known (cf., for example, Shorack
and Wellner [33], p. 335).

Let �n,d(j) denote the dth largest among ∣X1∣, . . . , ∣Xj−1∣, ∣Xj+1∣, . . . , ∣Xn∣.

Lemma 4.3. If H0, (1.4), (1.5), (1.9), (1.11) and (2.1) hold, then

n∑
j=1

∣Xj (I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣ = oP (An).
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Proof. First we note that �n,d(j) = �n,d or �n,d(j) = �n,d+1. Hence

H(�n,d)

H(�n,d(j))
≥ H(�n,d)

H(�n,d+1)
.

By Lemma 4.2 and the law of large numbers we have

H(�n,d)

H(�n,d+1)
D
=

Sd
Sd+1

=
Sd

Sd + ed+1

=
1

1 + ed/Sd
= 1 +OP (d−1).

Furthermore, by the central limit theorem we conclude

Sr = r
(
1 +OP (r−1/2)

)
and thus

H(�n,d) =
d

n

(
1 +OP

(
d−1/2

))
.

Hence for every " > 0, there is a constant C = C(") and an event A = A(") such
that P (A) ≥ 1− " and on A

H(�n,d)

H(�n,d+1)
≥ 1− C

d
(4.5)

and
H(�n,d) ≥

d

n

(
1− C√

d

)
. (4.6)

We note that H(∣Xj∣) is uniformly distributed on [0, 1] and is independent of �n,d(j).
So using (4.5) and (4.6) we obtain that

E

[
∣Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣I{A}

]
= E

[
∣Xj∣I{�n,d(j) ≤ ∣Xj∣ ≤ �n,d}I{A}

]
≤ H−1

(
d

n

(
1− C√

d

))
E

[
I {H(�n,d) ≤ H(∣Xj∣) ≤ H(�n,d(j))} I{A}

]
≤ H−1

(
d

n

(
1− C√

d

))
EI

{
H(�n,d(j))

(
1− C

d

)
≤ H(∣Xj∣) ≤ H(�n,d(j))

}
≤ H−1

(
d

n

(
1− C√

d

))
EH(�n,d(j))

C

d
≤ H−1

(
d

n

(
1− C√

d

))
d+ 1

n+ 1

C

d
,

since H(�n,d(j)) ≤ H(�n,d+1) and by Lemma 4.2 we have EH(�n,d+1) = (d+ 1)/(n+

1). The slow variation and monotonicity of H−1 yield

lim
n→∞

H−1
(
d

n

(
1− C√

d

))
H−1 (d/n)

= 1,

13



thus we get that

lim
n→∞

1

An

n∑
j=1

E∣Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣I{A} = 0.

Since we can choose " > 0 as small as wish, Lemma 4.3 is proven.

Lemma 4.4. If the conditions of Lemma 4.3 are satisfied, then

1

An

n∑
j=1

∣m(�n,d)−m(�n,d(j))∣ = oP (1).

Proof. It can be proven along the lines of the proof of Lemma 4.3.

Let

�j = Xj(I{∣Xj∣ ≤ �n,d(j)} − I{∣Xj∣ ≤ H−1(n/d)})−m(�n,d(j)).

Lemma 4.5. If the conditions of Theorem 1.1 are satisfied, then there is an a > 0

such that for all � > 1/� and 0 < " < 1/2

E�j = 0, (4.7)

E�2j = E�21 = O
(
(H−1(d/n))2(d1/2+"/n) + n2� exp(−ad2")

)
, (4.8)

E�i�j = E�1�2 = O
(
(H−1(d/n))2(d1/2+3"/n2) + n2� exp(−ad2")

)
(4.9)

for 1 ≤ j ≤ n and 1 ≤ i < j ≤ n respectively.

Proof. It follows from the independence of Xj and �n,d(j) that

E�j = E(E(�j∣�n,d(j))) = E(m(�n,d(j))−m(�n,d(j))) = 0,

so (4.7) is proven.

The first relation in (4.8) is clear. For the second part we note that

E�21 ≤ 2EX2
1

(
I{∣X1∣ ≤ �n,d(1)} − I{∣X1∣ ≤ H−1(d/n)}

)2
+ 2Em2(�n,d(1))

and

EX2
1

(
I{∣X1∣ ≤ �n,d(1)} − I{∣X1∣ ≤ H−1(d/n)}

)2
≤ EX2

1I{�n,d(1) ≤ ∣X1∣ ≤ H−1(d/n)}+ EX2
1I{H−1(d/n) ≤ ∣X1∣ ≤ �n,d(1)}

≤
(
H−1(d/n)

)2
P{�n,d(1) ≤ ∣X1∣ ≤ H−1(d/n)}

+ E((�n,d(1))2I{H(�n,d(1)) ≤ H(∣X1∣) ≤ d/n}).

14



There are constants c1 and c2 such that

P{∣Sd − d∣ ≥ x
√
d} ≤ exp(−c1x2), if 0 ≤ x ≤ c2d. (4.10)

Let 0 < " < 1/2. Using Lemma 4.2 and (4.10), there is a constant c3 such that

P (A) ≥ 1− c3 exp(−c1d2"), (4.11)

where
A =

{
! :

d

n

(
1− 1

d1/2−"

)
≤ H(�n,d(1)) ≤ d

n

(
1 +

1

d1/2−"

)}
.

Let Ac denote the complement of A. By (4.11) we have

(H−1(d/n))2P{�n,d(1) ≤ ∣X1∣ ≤ H−1(d/n)}

= (H−1(d/n))2
(
P (Ac) + P{�n,d(1) ≤ ∣X1∣ ≤ H−1(d/n), A}

)
≤ (H−1(d/n))2

(
c3 exp(−c1d2") + P

{
d

n
≤ H(∣X1∣) ≤

d

n

(
1 +

1

d1/2−"

)})

= O
(

(H−1(d/n))2
(

exp(−c1d2") +
d1/2+"

n

))
.

Similarly, by the independence of ∣X1∣ and �n,d(1) we have

E((�n,d(1))2I{H(�n,d(1)) ≤ H(∣X1∣) ≤ d/n})

≤ E(�2n,d(1)I{Ac})

+ E
((
H−1(d/n(1− d"−1/2))

)2
I{d/n(1− d"−1/2) ≤ H(∣X1∣) ≤ d/n}

)
= E(�2n,d(1)I{Ac}) +

(
H−1(d/n(1− d"−1/2))

)2 d
n
d"−1/2.

Since H−1(t) is a regularly varying function at 0 with index −1/�, for any � > 1/�

there is a constant c4 such that

H−1(t) ≤ c4t
−� , 0 < t ≤ 1. (4.12)

By the Cauchy-Schwarz inequality we have

E�2n,d(1)I{Ac} ≤ (E�4n,d(1))1/2(P (Ac))1/2 ≤ (E�4n,d(1))1/2c
1/2
3 exp

(
−c1

2
d2"
)
.

Next we use (4.12) and Lemma 4.2 to conclude

E�4n,d(1) ≤ E�4n,d ≤ c44E

(
Sd
Sn+1

)−4�
= c44E

(
1 +

Sn+1 − Sd
Sd

)4�

(4.13)

≤ c5

(
1 + E(Sn+1 − Sd)4�E

1

S4�
d

)
≤ c6n

4�

15



since Sd has a Gamma distribution with parameter d and therefore ES−4�d < ∞ if
d ≥ d0(�). Thus we have that

EX2
1 (I{∣X1∣ ≤ �n,d(1)} − I{∣X1∣ ≤ H−1(d/n)})2

= O
(

(H−1(d/n))2
(
d"+1/2/n

)
+ n2� exp

(
−c1

2
d2"
))

.

Similar arguments give

Em2(�n,d(1)) = O
(

(H−1(d/n))2
(
d"+1/2/n

)
+ n2� exp

(
−c1

2
d2"
))

.

The proof of (4.8) is now complete.

The first relation of (4.9) is trivial. To prove the second part we introduce
�n,d(1, 2), the dth largest among ∣X3∣, ∣X4∣, . . . , ∣Xn∣. Set

�1,2 = X1(I{∣X1∣ ≤ �n,d(1, 2)} − I{∣X1∣ ≤ H−1(d/n)})−m(�n,d(1, 2))

and

�2,1 = X2(I{∣X2∣ ≤ �n,d(1, 2)} − I{∣X2∣ ≤ H−1(d/n)})−m(�n,d(1, 2)).

Using the independence of ∣X1∣, ∣X2∣ and �n,d(1, 2) we get

E�1,2�2,1 = 0. (4.14)

Next we observe

�1�2 =

= X1(I{∣X1∣ ≤ �n,d(1)} − I{∣X1∣ ≤ �n,d(1, 2)}�2)− (m(�n,d(1))−m(�n,d(1, 2)))�2

+X2(I{∣X2∣ ≤ �n,d(2)} − I{∣X2∣ ≤ �n,d(1, 2)})�1,2 − (m(�n,d(2))−m(�n,d(1, 2)))�1,2

+ �1,2�2,1.

So by (4.14) we have

E�1�2 = E(X1I{�n,d(1, 2) < ∣X1∣ ≤ �n,d(1)}�2) + E((m(�n,d(1, 2))−m(�n,d(1)))�2)

+ E(X2I{�n,d(1, 2) < ∣X2∣ ≤ �n,d(2)}�1,2) + E((m(�n,d(1, 2))−m(�n,d(2)))�1,2)

= an,1 + . . .+ an,4.

It is easy to see that

�n,d+2 ≤ �n,d(1, 2) ≤ �n,d(1) ≤ �n,d and �n,d+2 ≤ �n,d(1, 2) ≤ �n,d(2) ≤ �n,d.

Hence
H(�n,d(1))

H(�n,d(1, 2))
≥ H(�n,d)

H(�n,d+2)
D
=

Sd
Sd+2

= 1− ed+1 + ed+2

Sd+2
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according to Lemma 4.2. Using (4.10) we get for any 0 < " < 1/2

P{∣Sd+2 − (d+ 2)∣ ≥ d2"
√
d+ 2} ≤ exp(−c1d2").

The random variables ed+1 and ed+2 are exponentially distributed with parameter 1
and therefore

P{ed+1 ≥ d2"} = P{ed+2 ≥ d2"} ≤ exp(−d2").

Thus we obtain for any 0 < " < 1/2

P

{
H(�n,d(1))

H(�n,d(1, 2))
≥ 1− c7d

2"

d

}
≥ 1− c8 exp(−c9d2")

and similar arguments yield

P

{
H(�n,d(2))

H(�n,d(1, 2))
≥ 1− c7d

2"

d

}
≥ 1− c8 exp(−c9d2")

and

P

{
d

n

(
1− 1

d1/2−"

)
≤ H(�n,d) ≤

d

n

(
1 +

1

d1/2−"

)}
≥ 1− c8 exp(−c9d2")

with some constants c7, c8 and c9. Now we define the event A as the set on which

H(�n,d(1))

H(�n,d(1, 2))
≥ 1− c7

d1−2"
,

H(�n,d(2))

H(�n,d(1, 2))
≥ 1− c7

d1−2"

and
d

n

(
1− 1

d1/2−"

)
≤ H(�n,d) ≤

d

n

(
1 +

1

d1/2−"

)
hold. Clearly,

P (Ac) ≤ 3c8 exp(−c9d2").

Using the definition of �2 we get that

an,1 ≤ E (∣X1∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}

× ∣X2∣ ∣I{∣X2∣ ≤ �n,d(2)} − I{∣X2∣ ≤ H−1(n/d)}∣
)

+ E∣X1∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}∣m(�n,d(2))∣

≤ E∣X1∣∣X2∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}I{H−1(d/n) ≤ ∣X2∣ ≤ �n,d(2)}

+ E∣X1∣∣X2∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}I{�n,d(2) ≤ ∣X2∣ ≤ H−1(d/n)}

+ E∣X1∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}∣m(�n,d(2))∣

= an,1,1 + an,1,2 + an,1,3.

Using the definition of A we obtain that

an,1,1 ≤ E∣X1X2∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}
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× I{H−1(d/n) ≤ ∣X2∣ ≤ �n,d(2)}I{A}

+ E∣X1X2∣I{�n,d(1, 2) ≤ ∣X1∣ ≤ �n,d(1)}

× I{H−1(d/n) ≤ ∣X2∣ ≤ �n,d(2)}I{Ac}

≤ E

(
∣X1X2∣I

{
H(�n,d(1, 2))

(
1− c7

d1−2"

)
≤ H(∣X1∣) ≤ H(�n,d(1, 2))

}
× I{A}I{H−1(d/n) ≤ ∣X2∣ ≤ �n,d(2)}

)
+ E(�2n,dI{Ac})

≤
(
H−1

(
d

n

(
1− c10

d1/2−"

)))2

× E

(
I
{
H(�n,d(1, 2))

(
1− c7

d1−2"

)
≤ H(∣X1∣) ≤ H(�n,d(1, 2))

}
× I

{
d

n

(
1− 1

d1/2−"

)
≤ H(∣X2∣) ≤

d

n

})
+ E(�2n,dI{Ac}).

Using again the independence of ∣X1∣, ∣X2∣ and �n,d(1, 2) we conclude that

E
(
I
{
H(�n,d(1, 2))

(
1− c7

d1−2"

)
≤ H(∣X1∣) ≤ H(�n,d(1, 2))

}
× I

{
d

n

(
1− 1

d1/2−"

)
≤ H(∣X2∣) ≤

d

n

})
= EH(�n,d(1, 2))

c7
d1−2"

d

n

1

d1/2−"
≤ d

n− 1

c7
n

1

d1/2−3"
.

The Cauchy-Schwarz inequality yields

E(�2n,dI{Ac}) ≤
(
E�4n,d

)1/2
(P (Ac))1/2 = O

(
n2� exp

(
−c9

2
d2"
))

for all � > 1/� on account of (4.13). Thus we conclude

an,1,1 = O
(

(H−1(d/n))2
(
d1/2+3"/n2

)
+ n2� exp

(
−c9

2
d2"
))

.

Similar but somewhat simpler arguments imply

an,1,2 + an,1,3 = O
(

(H−1(d/n))2
(
d1/2+3"/n2

)
+ n2� exp

(
−c9

2
d2"
))

,

resulting in

an,1 = O
(

(H−1(d/n))2
(
d1/2+3"/n2

)
+ n2� exp

(
−c9

2
d2"
))

. (4.15)

Following the proof of (4.15), the same rates can be obtained for an,2 and an,3.
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Lemma 4.6. If the conditions of Theorem 1.1 are satisfied, then

1

An
max
1≤k≤n

∣∣∣∣∣
k∑
j=1

�j

∣∣∣∣∣ = oP (1).

Proof. It is easy to see that for any 1 ≤ ℓ1 ≤ ℓ2 ≤ n we have

E

(
ℓ2∑
j=ℓ1

�j

)2

= (ℓ2 − ℓ1 + 1)E�21 + (ℓ2 − ℓ1)(ℓ2 − ℓ1 + 1)E�1�2

≤ (ℓ2 − ℓ1 + 1)(E�21 + nE�1�2).

Lemma 4.5 and (1.12) yield

E�21 ≤ c1
A2
n

n

[
d−1/2+" + n2�+1 exp(−ad2")

]
and

E�1�2 ≤ c2
A2
n

n2

[
d−1/2+3" + n2�+2 exp(−ad2")

]
for all 0 < " < 1/6. Hence we conclude

E

(
ℓ2∑
j=ℓ1

�j

)2

≤ c3(ℓ2 − ℓ1 + 1)
A2
n

n

[
d−1/2+3" + n2�+2 exp(−ad2")

]
.

So using an inequality of Menshov (cf. Billingsley [5], p. 102) we get that

E

(
max
1≤k≤n

∣∣∣∣∣
k∑
j=1

�j

∣∣∣∣∣
)2

≤ c4(log n)2A2
n

[
d−1/2+3" + n2�+2 exp(−ad2")

]
≤ c4A

2
n

[
(log n)2d−2/7 + exp((2� + 2) log n+ 2 log log n− ad2")

]
= A2

no(1) as n→∞,

where " = 1/14 and d = (log n)
 with any 
 > 7, resulting in

1

A2
n

E

(
max
1≤k≤n

∣∣∣∣∣
k∑
j=1

�j

∣∣∣∣∣
)2

= o(1).

Now Markov’s inequality completes the proof of Lemma 4.6.

Proof of Theorem 1.5. It follows immediately from Lemmas 4.3, 4.4 and 4.6.

Proof of Theorem 1.1. According to (1.15), Theorems 1.4 and 1.5 imply Theo-
rem 1.1.
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Lemma 4.7. If the conditions of Theorem 1.1 are satisfied, then

Ân
An
−→ 1 a.s.

Proof. It is an immediate consequence of Haeusler and Mason [16].

Proof of Theorem 1.2. By Slutsky’s lemma, Lemma 4.7 and Theorem 1.1 imply
the result.

Proof of Example 1.1. Since H ′(x) = −f(x), our assumptions imply that H ′(x)

is also regularly varying at ∞. By elementary results on regular variation (see e.g.
Bingham et al. [6]), it follows that

H(x) = 1− F (x) =

∫ ∞
x

f(t)dt ∼ 1

�
xf(x) as x→∞.

HenceH−1 is regularly varying at 0, therefore the function (H−1(t))′ = 1/H ′(H−1(t))

is also regularly varying at 0. Also,

m′(x) =
d

dx

∫ x

0

tf(t)dt = xf(x) ∼ �H(x) as x→∞

and therefore m′(H−1(t)) ∼ t�. Using Lemma 4.2, the mean value theorem gives

nm(�n,d)

Bn

D
=
nm(H−1(Sd/Sn+1))

Bn

=
n(ℓ(Sd/Sn+1)− ℓ(d/n))

Bn

=
n

Bn

ℓ′(�n)

(
Sd
Sn+1

− d

n

)
,

where �n is between Sd/Sn+1 and d/n and ℓ(t) = m(H−1(t)). It follows from the
central limit theorem for central order statistics that

n

d1/2

(
Sd
Sn+1

− d

n

)
D−→ N(0, 1). (4.16)

The regular variation of ℓ′ and (4.16) yield

ℓ′(�n)
/
ℓ′(d/n)→ 1 in probability.

The result now follows from (4.16) by observing that

n

Bn

ℓ′(d/n) ∼ n

d1/2
.

The proof of Theorem 1.3 is based on analogues of Theorems 1.4, 1.5 and Lem-
mas 4.3–4.7 when EX2

j <∞.
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Lemma 4.8. If the conditions of Theorem 1.3 are satisfied, then

1√
n

⌊nt⌋∑
j=1

(XjI{∣Xj∣ ≤ H−1(d/n)} − E[X1I{∣X1∣ ≤ H−1(d/n)}]) D[0,1]−−−→ �W (t),

where �2 = varX1.

Proof. By EX2
1 <∞ we have

E

[
X1I{∣X1∣ ≤ H−1(d/n)} − E[X1I{∣X1∣ ≤ H−1(d/n)}]− (X1 − EX1)

]2
−→ 0

as n→∞. So using Lévy’s inequality [24, p. 248] we get

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑
j=1

(XjI{∣Xj∣ ≤ H−1(d/n)}

− E[X1I{∣X1∣ ≤ H−1(d/n)}]− (Xj − EX1))

∣∣∣∣∣ = oP (1).

Now Donsker’s theorem (cf. Billingsley [5, p. 137]) implies the result.

Lemma 4.9. If the conditions of Theorem 1.3 are satisfied, then

1√
n

n∑
j=1

∣Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣ = oP (1)

and
1√
n

n∑
j=1

∣m(�n,d)−m(�n,d(j))∣ = oP (1).

Proof. We adapt the proof of Lemma 4.3. We recall that A is an event satisfying
(4.5), (4.6) and P (A) ≥ 1 − ", where " > 0 is an arbitrary small positive number.
We also showed that

E(∣Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣I{A})

≤ H−1
(
d

n

(
1− C√

d

))
d+ 1

n+ 1

C

d

with some constant C. Assumption EX2
1 <∞ yields

lim sup
x→0

x1/2H−1(x) <∞,

and therefore
lim
n→∞

√
nH−1

(
d

n

(
1− C√

d

))
d+ 1

n+ 1

C

d
= 0
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for all C > 0. Thus we have for all " > 0

lim
n→∞

1√
n

n∑
j=1

E∣Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ �n,d(j)})∣I{A} = 0.

Since we can choose " > 0 as small as we wish, the first result is proven. The second
part of the lemma can be established similarly.

Lemma 4.10. If the conditions of Theorem 1.3 are satisfied, then for all 0 < " < 1/2

E�j = 0, 1 ≤ j ≤ n,

E�2j = E�21 = O
(
(H−1(d/n))2d1/2+"/n+ n exp(−ad2")

)
, 1 ≤ j ≤ n,

E�i�j = E�1�2 = O
(
(H−1(d/n))2d1/2+3"/n2 + n exp(−ad2")

)
, 1 ≤ i ∕= j ≤ n.

Proof. The proof of Lemma 4.5 can be repeated; only (4.12) should be replaced with

H−1(t) ≤ Ct−1/2, 0 < t ≤ 1. (4.17)

Lemma 4.11. If the conditions of Theorem 1.3 are satisfied, then

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑
j=1

�j

∣∣∣∣∣ = oP (1).

Proof. Following the proof of Lemma 4.6 we get

E

(
max
1≤k≤n

∣∣∣∣∣
k∑
j=1

�j

∣∣∣∣∣
)2

≤ c1n(log n)2
[
d−1/2+3" + n3 exp(−ad2")

]
= no(1) (4.18)

as n→∞. Markov’s inequality completes the proof of Lemma 4.11.

Lemma 4.12. If the conditions of Theorem 1.3 are satisfied, then

1√
n

max
1≤k≤n

∣∣∣∣∣
k∑
j=1

[Xj(I{∣Xj∣ ≤ �n,d} − I{∣Xj∣ ≤ H−1(d/n)})−m(�n,d)]

∣∣∣∣∣ = oP (1).

Proof. It follows immediately from Lemmas 4.9 and 4.11.

Proof of Theorem 1.3. By Lemmas 4.8 and 4.12 we have that

Tn(t)

�
√
n

D[0,1]−−−→ B(t).

It is easy to see that
Â2
n

n

P−→ �2,

which completes the proof of Theorem 1.3.
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Proof of Theorem 2.1. We show that

max1≤j≤n ∣xj∣√∑n
j=1 x

2
j

−→ 0 a.s. (4.19)

By Lemma 4.7 it is enough to prove that

max1≤j≤n ∣xj∣
An

−→ 0 a.s.

It follows from the definition of xj that

max
1≤j≤n

∣xj∣ ≤ �d,n + ∣X̄n,d∣ ≤ 2�d,n.

Using Kiefer [23] (cf. Shorack and Wellner [33]) we get

�d,n
An
−→ 0 a.s.

Since (4.19) holds for almost all realizations of X1, X2, . . ., Rosén [32] implies The-
orem 2.1 when we sample without replacement and Prohorov [31] when we sample
with replacement (bootstrap).

Proof of Theorem 2.2. It can be established along the lines of the proof of The-
orem 2.1.
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