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Abstract

Let (nk)k≥1 be a lacunary sequence of integers, satisfying certain number-theoretic

conditions. We determine the limit distribution of
√

ND∗
N

(nkx) as N → ∞, where
D∗

N
(nkx) denotes the star discrepancy of the sequence (nkx)k≥1 mod 1.

1 Introduction and statement of results

An infinite sequence (xk)k≥1 of real numbers is called uniformly distributed mod 1 if

lim
N→∞

1

N

N∑

k=1

1[a,b)(xk) = b − a (1)

for any 0 ≤ a ≤ b ≤ 1; here 1[a,b) denotes the indicator function of the interval [a, b), extended
with period 1. It is known that (1) is equivalent to the relations DN (xk) → 0 or D∗

N (xk) → 0,
where

DN (xk) := sup
0≤a≤b≤1

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[a,b)(xk) − (b − a)

∣
∣
∣
∣
∣

and

D∗
N (xk) := sup

0≤a≤1

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,a)(xk) − a

∣
∣
∣
∣
∣

denote the discrepancy, resp. star discrepancy of the first N terms of (xk)k≥1. By a classical
result of Weyl [15], for any increasing sequence (nk)k≥1 of positive integers the sequence
(nkx)k≥1 is uniformly distributed mod 1 for almost all x in the sense of Lebesgue measure.
Baker [5] proved that

DN (nkx) = O

(

(log N)3/2+ε

√
N

)

a.e.
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and Berkes and Philipp [6] constructed an increasing sequence (nk)k≥1 of positive integers
such that for almost real x the relation

DN (nkx) ≥ (log N)1/2

√
N

holds for infinitely many N . These results describe quite precisely the extremal behavior
of DN (nkx), but determining the order of magnitude of DN (nkx) for a given (nk)k≥1 is a
very difficult problem, solved only in a few special cases. Philipp [11] proved that if (nk)k≥1

satisfies the Hadamard gap condition

nk+1/nk ≥ q > 1, (k = 1, 2, . . .) (2)

then
1

4
≤ lim sup

N→∞

(
N

2 log log N

)1/2

DN (nkx) ≤ C a.e. (3)

with some constant C = C(q). Note that if (Xk)k≥1 is an sequence of independent random
variables in (0, 1) with P(Xk ≤ x) = x (0 ≤ x ≤ 1), then

lim sup
N→∞

(
N

2 log log N

)1/2

DN (Xk) =
1

2
(4)

with probability 1, see e.g. Shorack and Wellner [13], p. 504. A comparison of (3) and (4)
shows that the sequence (nkx)k≥1 mod 1 behaves like a sequence of i.i.d. random variables.
The analogy, however, is not perfect. Fukuyama [9] determined the limsup Σa in (3) in the
case nk = ak for a > 1; in particular he proved that

Σa =
√

42/9 a.e. if a = 2,

Σa =

√
(a+1)a(a−2)

2
√

(a−1)3
a.e. if a ≥ 4 is an even integer,

Σa =
√

a+1
2
√

a−1
a.e. if a ≥ 3 is an odd integer.

(5)

Thus the limsup in (3) is generally different from the value 1/2 obtained in the i.i.d. case (cf.
[1, 2]).

Given a sequence (nk)k≥1 of positive integers, define

L(N, d, ν) = #{1 ≤ a, b ≤ d, 1 ≤ k, l ≤ N : ank − bnl = ν},

where we exclude the trivial solutions k = l in the case a = b, ν = 0. Aistleitner [3] proved

Theorem A. Let (nk)k≥1 be an increasing sequence of positive integers satisfying (2) and

L(N, d, ν) = O(N/(log N)1+ε) N → ∞ (6)

for all d ≥ 2, ν ∈ Z and some ε > 0. Then we have

lim sup
N→∞

(
N

2 log log N

)1/2

DN (nkx) =
1

2
a.e. (7)
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Thus, under the Diophantine condition (6), the discrepancy behavior of (nkx)k≥1 follows
exactly the i.i.d. case. Condition (6) holds e.g. if nk+1/nk → ∞ or if nk+1/nk → α for some
α > 1 such that αr is irrational for r = 1, 2, . . ..

The purpose of this paper is to prove the following

Theorem 1. Let (nk)k≥1 be a sequence of positive integers satisfying (2) and

L(N, d, ν) = o(N) as N → ∞ (8)

for any d ≥ 2 and ν ∈ Z. Then √
ND∗

N (nkx)
D→ K

where

K(y) = 1 − 2

∞∑

j=1

(−1)j−1e−2j2y2

is the Kolmogorov distribution function.

Note that Theorem 1 does not cover the case nk = ak, a ∈ N, a ≥ 2. In this case (8)
holds for all ν 6= 0, but not for ν = 0: we have namely nk+1 − ank = 0 for all k ≥ 1. Our
next theorem determines the limit distribution of

√
ND∗

N (nkx) in this case. For 0 ≤ t ≤ 1
and x ∈ R, put

It(x) = 1[0,t](x) − t.

Theorem 2. Let a ≥ 2 be an integer, and set

Γ(s, t) =

∫ 1

0
Is(x)It(x) dx +

∞∑

k=1

∫ 1

0

(

Is(x)It(a
kx) + Is(a

kx)It(x)
)

dx. (9)

Then √
ND∗

N (akx)
D→ KΓ

where KΓ denotes the distribution of sup0≤x≤1 GΓ(x), where GΓ is a Gaussian process over
[0, 1] with mean 0 and covariance function Γ.

Remark: It is not difficult to show that the function Γ(s, t) in (9) is bounded and contin-
uous, and that the infinite series in (9) is absolutely convergent. We omit the proof.

As mentioned before, Fukuyama recently calculated the value of the limsup in Philipp’s
discrepancy LIL (3) for sequences of the form nk = ak, k ≥ 1, see (5). With the notation
from Theorem 2 the value Σa of the limsup equals

sup
0≤s≤1

√

Γ(s, s) (10)

for a.e. x, and thus Theorem 2 is the distributional analogue of Fukuyama’s LIL. Computing
explicitly the limit distribution KΓ in Theorem 2 appears to be an extremely difficult problem,
which we do not further investigate in this paper.
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Figure 1: Covariance function Γ(s, s) for nk = 2k, k ≥ 1. The maximum of the function is
Γ(1/3, 1/3) = 42/81, which causes the value

√
42/9 in Fukuyama’s result (5). The functions

I[0,1/2)(2
kx) are independent for k ≥ 1 (similar to the Rademacher functions), and thus

Γ(1/2, 1/2) = ‖I[0,1/2)‖2 = 1/4.
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Figure 2: Covariance function Γ(s, t) for nk = 2k, k ≥ 1.
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Let f : R → R be a measurable function satisfying

f(x + 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1] f < ∞. (11)

In Aistleitner and Berkes [4] it is proved that under the conditions of Theorem 1 the central
limit theorem for (f(nkx))k≥1 holds. More precisely, we have the following

Theorem B. Let f be a function satisfying (11), and let (nk)k≥1 be a sequence of positive
integers satisfying (2) and (8) for any d ≥ 2 and ν ∈ Z. Then for all t ∈ R

lim
N→∞

P

{

x ∈ (0, 1) :
N∑

k=1

f(nkx) ≤ t‖f‖
√

N

}

= Φ(t),

where Φ is the standard normal distribution function.

Moreover, it is shown in [4] that condition (8) is optimal for the CLT: replacing (8) by

L(N, d, ν) ≤ δN N ≥ 1

the CLT becomes generally false. Thus condition (8) is the precise condition for the CLT for
f(nkx). One can show that (8) is also optimal in Theorems 1. However, the proof is very
complicated and will not be given here.

The following central limit theorem for (f(akx))k≥1 is due to Takahashi [14], who improved
an earlier result of Kac [10].

Theorem C. Let f be a function satisfying (11). Then for all t ∈ R

lim
N→∞

P

{

x ∈ (0, 1) :

N∑

k=1

f(nkx) ≤ tσf

√
N

}

= Φ(t),

where

σ2
f = ‖f‖2 + 2

∞∑

k=1

∫ 1

0
f(x)f(akx) dx.

A functional LIL for the empirical process of (nkx)k≥1 was proved by Philipp [12]; this
enables one to get laws of the iterated logarithm for various functionals of the empirical
process. Theorems 1 and 2 will be deduced from a functional CLT for the empirical process,
which has a number of further applications. However, in the present paper we will deal only
with the asymptotics of the discrepancy of (nkx)k≥1.

2 Preliminaries

In the sequel, set

FN (t) = FN (x; t) =
1√
N

N∑

k=1

It(nkx).
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Lemma 1. Under the assumptions of Theorem 1 we have for any r ≥ 1 and (t1, . . . , tr) ∈
[0, 1]r

(FN (t1), . . . , FN (tr))
D→ (B(t1), . . . , B(tr)) as N → ∞.

Lemma 2. Under the assumptions of Theorem 2 we have for any r ≥ 1 and (t1, . . . , tr) ∈
[0, 1]r

(FN (t1), . . . , FN (tr))
D→ (KΓ(t1), . . . ,KΓ(tr)) as N → ∞,

where KΓ is defined like in Theorem 2.

Lemma 3. For any (nk)k≥1 satisfying (2) there exists a constant c (depending only the growth
factor q in (2)) such that for N ≥ 1 and t1, t2, t3 ∈ [0, 1], t1 ≤ t2 ≤ t3,

E

(

(FN (t1) − FN (t2))
2 (FN (t2) − FN (t3))

2
)

≤ c(t3 − t1)
2.

Lemma 4. Under the assumptions of Theorem 1 we have

FN (t) ⇒ B(t) as N → ∞,

where ⇒ denotes weak convergence in the Skorokhod space D([0, 1]).

Lemma 5. Under the assumptions of Theorem 2 we have

FN (t) ⇒ KΓ(t) as N → ∞.

Proof of Lemma 1: By the Cramér-Wold theorem (see [7, Theorem 29.4]) it suffices to
show that for any r ≥ 1, (c1, . . . , cr) ∈ R

r and (t1, . . . , tr) ∈ [0, 1]r , t1 < · · · < tr,

c1FN (t1) + · · · + crFN (tr)
D→ c1B(t1) + · · · + crB(tr) as N → ∞. (12)

Set

f(x) =

r∑

m=1

cmItm(x),

and

V = V (t1, . . . , tr) =

r∑

m=1

c2
j tj(1 − tj) + 2

∑

1≤m<n≤r

cmcntm(1 − tn).

We have

‖f‖2 =

∫ 1

0

(
r∑

m=1

cmItm(x)

)2

dx

=

r∑

m=1

∫ 1

0
c2
mItm(x) dx + 2

∑

1≤m<n≤r

∫ 1

0
cmcnItm(x)Itn(x) dx

=
r∑

m=1

c2
mtm(1 − tm) + 2

∑

1≤m<n≤r

cmcntm(1 − tn)

= V (t1, . . . , tr).
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Thus by Theorem A
∑N

k=1 f(nkx)√
N

D→ N (0, V ),

which implies

c1FN (t1) + · · · + crFN (tr)
D→ N (0, V ).

On the other hand

E (c1B(t1) + · · · + crB(tr))
2

=

r∑

m=1

E (cjB(tj)) + 2
∑

1≤m<n≤r

E (cmB(tm)cnB(tn))

=
r∑

m=1

c2
j tj(1 − tj) + 2

∑

1≤m<n≤r

cmcntm(1 − tn)

= V (t1, . . . , tr),

and hence
c1B(t1) + · · · + crB(tr) ∼ N (0, V ).

Thus we have established (12), which proves the lemma. �

Proof of Lemma 2: Again it suffices to show that for any r ≥ 1, (c1, . . . , cr) ∈ R
r and

(t1, . . . , tr) ∈ [0, 1]r , t1 < · · · < tr,

c1FN (t1) + · · · + crFN (tr)
D→ c1KΓ(t1) + · · · + crKΓ(tr) as N → ∞.

Setting again

f(x) =

r∑

m=1

cmItm(x),

we have by Theorem C
∑N

k=1 f(nkx)

N
D→ N (0, σ2

f ),

where

σ2
f = ‖f‖2 + 2

∞∑

k=1

∫ 1

0
f(x)f(akx) dx

=

∫ 1

0

(
r∑

m=1

cmItm(x)

)2

dx

+2
∞∑

k=1

∫ 1

0

(
r∑

m=1

cmItm(x)

)(
r∑

n=1

cnItn(akx)

)

dx

=
r∑

m=1

∫ 1

0
c2
mItm(x)2dx + 2

∑

1≤m<n≤r

∫ 1

0
cmcnItm(x)Itn(x) dx

+2

r∑

m=1

∞∑

k=1

∫ 1

0
c2
mItm(x)Itm(akx)
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+2
∑

1≤m<n≤r

∞∑

k=1

∫ 1

0
cmcn

(

Itm(x)Itn(akx) + Itm(akx)Itn(x)
)

dx

=

r∑

m=1

c2
mΓ(tm, tm) + 2

∑

1≤m<n≤r

cmcnΓ(tm, tn).

On the other hand,

E (c1KΓ(t1) + · · · + crKΓ(tr))
2

=
r∑

m=1

E(c2
mKΓ(tm)2) + 2

∑

1≤m<n≤r

E(cmcnKΓ(tm)KΓ(tn))

=

r∑

m=1

c2
mΓ(tm, tm) + 2

∑

1≤m<n≤r

cmcnΓ(tm, tn),

which proves the lemma. �

Proof of Lemma 3: Let N ≥ 1 and t1, t2, t3 ∈ [0, 1], t1 ≤ t2 ≤ t3 be given. Let Q ≥ 1 be
a number for which

qQ > 4 (13)

(here q is the growth factor from (2)). To shorten formulas we assume that It1 − It2 is an
even function, i.e. that it can be expanded into a pure cosine-series (the proof in the general
case is exactly the same). Write

It1(x) − It2(x) ∼
∞∑

j=1

aj cos 2πjx.

for the Fourier series of It1 − It2 . Then

∞∑

j=1

a2
j = ‖It1 − It2‖2 ≤ |t1 − t2|.

Let k1 6= k2 6= k3 6= k4, such that k1 ≡ k2 ≡ k3 ≡ k4 mod Q, and let j1, j2, j3, j4 ∈ [2n, 2n+1)
for some n ≥ 0. Then by (13)

j1nk1
± j2nk2

± j3nk3
± j4nk4

6= 0, (14)

no matter how the signs ± are chosen. Thus by Markov’s inequality and the orthogonality of
the trigonometric system

(

E (FN (t1) − FN (t2))
4
)1/4

=





∫ 1

0

(

1√
N

N∑

k=1

It1(nkx) − It2(nkx) dx

)4




1/4

≤ 1√
N

Q−1
∑

m=0







∫ 1

0







∑

1≤k≤N,
k≡m mod Q

It1(nkx) − It2(nkx) dx







4





1/4
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≤ 1√
N

Q−1
∑

m=0

∞∑

n=0







∫ 1

0







∑

1≤k≤N,
k≡m mod Q

2n+1−1∑

j=2n

cos 2πjnkx dx







4





1/4

=
1√
N

Q−1
∑

m=0

∞∑

n=0







∑

1≤k1,k2,k3,k4≤N
k1,k2,k3,k4≡m mod Q

∑

2n≤j1,j2,j3,j4<2n+1

∑

±

aj1aj2aj3aj4

8
1(j1nk1

± j2nk2
± j3nk3

± j4nk4
= 0)

)1/4

, (15)

where the sum
∑

± is meant as a sum over all possible choices of signs “+” and “−” in the
indicator 1(j1nk1

± j2nk2
± j3nk3

± j4nk4
= 0). Now by (14) the only solutions of j1nk1

±
j2nk2

± j3nk3
± j4nk4

, subject to the given restrictions of the coefficients, are of the form

j1nk1
− j1nk1

︸ ︷︷ ︸

=0

± j2nk2
− j2nk2

︸ ︷︷ ︸

=0

(where we have
(4
2

)
possible combinations of the pairs). Thus (15) is bounded by

1√
N

Q−1
∑

m=0

∞∑

n=0







∑

1≤k1,k2≤N
k1,k2≡m mod Q

∑

2n≤j1,j2<2n+1

2

(
4

2

)
a2

j1
a2

j2

8







1/4

≤ 31/4Q





∞∑

j=1

a2
j





1/2

≤ 31/4Q(t2 − t1)
1/2.

Hence
E (FN (t1) − FN (t2))

4 ≤ 3Q4(t2 − t1)
2. (16)

In the same way we obtain

E (FN (t2) − FN (t3))
4 ≤ 3Q4(t3 − t2)

2. (17)

By (16), (17) and Hölders inequality

E

(

(FN (t1) − FN (t2))
2 (FN (t2) − FN (t3))

2
)

≤
(

E (FN (t1) − FN (t2))
4
)1/2 (

E (FN (t2) − FN (t3))
4
)1/2

≤ 3Q4(t2 − t1)(t3 − t2)

≤ 3Q4(t3 − t1)
2,

which proves Lemma 3. �

Proof of Lemma 4 and Lemma 5: Lemma 4 follows from Lemma 1, Lemma 3 and [8,
Theorem 13.5]. Lemma 5 follows similarly from Lemma 2, Lemma 3 and [8, Theorem 13.5].
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3 Proof of Theorem 1 and Theorem 2

By Lemma 4 the distribution of FN converges weakly to the distribution of the Brownian
bridge. In particular this implies

sup
t∈[0,1]

|FN (t)| D→ sup
t∈[0,1]

|B(t)|,

and hence √
ND∗

N (nkx)
D→ K.

Theorem 2 follows in the same way from Lemma 5.
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