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Abstract: Let f(n) be a strongly additive arithmetic function
and put An =

∑
p≤n

f(p)
p , B2

n =
∑

p≤n
f2(p)

p . We prove a law of
the iterated logarithm showing that the set

{n : |f(n)−An| ≥ t(2B2
n log log Bn)1/2}

is ’small’ for t > 1 and is ’large’ for t < 1. The proof depends
on asymptotic estimates for high moments of (f(n)−An)/Bn.

1. Introduction

Let f be a strongly additive arithmetic function and set

(1) An =
∑

p≤n

f(p)
p

, Bn =


∑

p≤n

f2(p)
p




1/2

.

By a classical result of Erdős and Kac [7], if |f(p)| = O(1) and Bn →∞, then we have

(2) lim
N→∞

1
N

#{n ≤ N : f(n) ≤ AN + xBN} = (2π)−1/2

∫ x

−∞
e−u2/2du

for all x ∈ R. The same conclusion holds for unbounded f(p), provided f satisfies

(3) lim
n→∞

1
B2

n

∑

p≤n,|f(p)|≥εBn

f2(p)
p

= 0 for any ε > 0.

(See Kubilius [12], Shapiro [15].) Condition (3) is the analogue of the Lindeberg condition
for the central limit theorem in probabability theory and the previous results show that the
distributional behavior of additive functions is similar to that of sums of independent ran-
dom variables. For extensions and further related results on the distribution of arithmetic
functions see e.g. Kubilius [12], Elliott [4] and the references therein.
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The standard proofs of the central limit theorem (2) (and in fact of most results on
the distributional behavior of additive functions) depend on asymptotic estimates for the
cardinality of the set

{m ≤ N : αpi
(m) = αi, i = 1, 2, . . . , s}

where
m =

∏
p

pαp(m)

is the prime factorization of m and 2 = p1 < · · · < ps are the primes not exceeding r, where
r = r(N) satisfies log r/ log N → 0. Such estimates can be deduced using sieve methods
and they show that ’not too many’ of the arithmetic functions αp are almost statistically
independent with respect to the normalized counting measure on {1, 2, . . . , N}. A more
elementary (although rather technical) proof was given by Halberstam [9] and simplified
substantially by Billingsley [2], using the method of moments. They proved that letting

FN (t) =
1
N

#{n ≤ N : f(n) < AN + tBN}

we have

(4) lim
N→∞

∫ ∞

−∞
trdFN (t) = (2π)−1/2

∫ ∞

−∞
tre−t2/2dt (r = 1, 2, . . . ).

From (4), the central limit theorem (2) follows immediately. The purpose of this paper
is to show (see Theorem 2 below) that the r-th moment on the left hand side of (4) is
asymptotically equal to the r-th moment of the standard Gaussian distribution not only
for fixed r, but also if r = r(N) tends to infinity not faster than log log BN . Just as the
validity of (4) for all fixed r implies the central limit theorem (2), this generalized moment
behavior will lead, via a simple analysis, to a law of the iterated logarithm for f(n). In
view of (2), it is natural to expect that under conditions similar to (3) the set

(5) Ht = {n : |f(n)−An| ≥ t(2B2
n log log Bn)1/2}

is ”large” for t < 1 and ”small” for t > 1. However, no such result seems to exist in the
literature. The reason is that ordinary asymptotic density of sequences of integers, used in
the central limit theorem (2), is too crude to measure the set Ht: the asymptotic density
of Ht equals 0 for any t > 0, regardless whether t > 1 or t < 1. In this paper we will
show, however, that using a finer measure of subsets of N, depending on the growth of the
variance function Bn, there is a sharp difference between the cases t > 1 and t < 1 in (5).
Let µ denote the measure on subsets of N defined by

(6) µ({1, 2, . . . , N}) = log∗BN , N = 1, 2, . . .

where the ∗ means that we interpolate log BN linearly between the points 2k, k = 0, 1, . . . .
We will prove the following
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Theorem 1. Assume that Bn →∞ and

(7) |f(p)| = O(B1−δ
p ) for some δ > 0.

Then µ(Ht) < ∞ for t > 1 and µ(Ht) = ∞ for t < 1.

To clarify the meaning of Theorem 1 and in particular of the measure µ, let Xp,
p = 2, 3, 5, . . . be independent random variables, defined on some probability space, such
that Xp takes the values f(p) and 0 with probabilities 1/p and 1− 1/p, respectively. Let
Sn =

∑
p≤n Xp. By the classical arithmetic theory (see e.g. Kubilius [12]), the sequence

{Sn, n ≤ N} is an almost exact probabilistic replica of the sequence {f(n), n ≤ N},
where the latter sequence is meant with respect to the normalized counting measure on
{1, 2, . . . , N}. Since under (7) the sequence Xp trivially satisfies the central limit theorem

(Sn −An)/Bn
D−→ N(0, 1),

this argument proves (2) and leads to a whole class of further interesting distribution results
for additive functions. In contrast to this nice behavior, the probabilistic properties of the
infinite sequences

{f(n), n ≥ 1}, {Sn, n ≥ 1}
are in general quite different. For example, the central limit theorem (2) implies that the
asymptotic density of the set G = {n : f(n) > An} is 1/2; on the other hand, the sequence
Xp satisfies the Lindeberg condition expressed by (3) and thus also the arc sine law (see
e.g. Prohorov [14]), i.e.

1
N

∑

k≤N

I(Sk > Ak) D−→ H

where H is a nondegenerate distribution. The last relation obviously implies that the set
{n : Sn > An} has no asymptotic density; actually, its lower density is 0 and upper density
is 1 a.s. To remedy this trouble, introduce the logarithmic density

µ∗(A) = lim
N→∞

1
log BN

∑

k≤N, k∈A

log(Bk/Bk−1), A ⊂ N,

and note that by the so called almost sure central limit theorem (for a suitable version
see Atlagh [1] or Ibragimov and Lifshits [10]) we have µ∗(n : Sn > An) = 1/2 a.s. This
suggests that logarithmic measure is the natural one in studying probabilistic statements
of ”almost sure” type and Theorem 1 shows that it works for the law of the iterated
logarithm.

A law of the iterated logarithm for additive arithmetic functions was proved by Erdős
(see [5], Theorem VI) and extended later by Kubilius (see [12], Theorem 7.2) and in
several papers by Manstavičius (see [13] and the references therein). Specialized to the
case f(p) = 1, the result of Erdős states that for any ε > 0 the asymptotic density of
integers m which have at least one divisor d with

ω(d) > log log d + (1− ε)
√

2 log log d log4 d
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is 1 and for every ε > 0 the density of integers m having at least one divisor d > A with

ω(d) > log log d + (1 + ε)
√

2 log log d log4 d

is tending to 0 if A → ∞. Here ω(n) denotes the number of different prime divisors of
n and logr denotes r times iterated logarithm. While this formulation (and that of the
results of Kubilius and Manstavičius) is very much in the spirit of the classical LIL, note
that the objects for which the LIL is formulated is not f(n) itself, and no information on
the set Ht is obtained.

The connection of the arithmetic central limit theorem (2) with almost sure central
limit theory reveals a paradoxical property of additive functions from the probabilistic
point of view. By the almost sure central limit theorem quoted above, the sequence Xp

satisfies

lim
N→∞

1
log BN

∑

k≤N

log(Bk/Bk−1)I
{

Sk −Ak

Bk
≤ x

}
= Φ(x) a.s.,

and this relation fails if we replace logarithmic averages by ordinary averages. In contrast,
for additive functions f(n) we have by (2)

lim
N→∞

1
N

∑

k≤N

I

{
f(k)−Ak

Bk
≤ x

}
= Φ(x)

and thus in this case the a.s. central limit theorem holds with ordinary averages. This
shows that while the probabilistic behavior of additive functions is well understood in the
case of distributional properties like the central limit theorem, much remains to be done
in the case of ”almost sure” type limit theorems.

Condition (7) obviously implies the Lindeberg condition (3). In analogy with Kol-
mogorov’s classical condition (see [11]) for the LIL for independent random variables, it is
natural to expect that the LIL of our paper remains valid under

f(p) = o(Bp/(log log Bp)1/2).

However, the methods of our paper are not strong enough to decide the validity of this
conjecture.

We finally note that using deeper tools from probabilistic number theory based on
sieve methods, Theorem 1 can be sharpened in the same way as so called upper-lower class
tests in probability theory improve the law of the iterated logarithm. (See e.g. Feller [8].)
However, as our main interest in the present paper is the elementary moment approach,
we do not investigate such improvements of Theorem 1 here.
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2. Proofs

The first step of the argument is a truncation of the function f . Clearly f =
∑

p f(p)δp,
where the the function δp is defined by

δp(m) = χ(p|m).

Let the function fn be defined by

(8) fn =
∑

p≤αn

f(p)δp

where
αn = n1/(log log Bn)2 .

Set further

(9) an =
∑

p≤αn

f(p)
p

, bn =


 ∑

p≤αn

f2(p)
p




1/2

.

Lemma 1. Let Xp, p = 2, 3, 5, . . . be independent random variables, defined on some
probability space, such that Xp takes the values f(p) and 0 with probabilities 1/p and
1− 1/p, respectively. Let Sn =

∑
p≤αn

Xp. Then we have

E

{(
Sn − an

bn

)2r
}
∼ µ2r as n →∞, uniformly for 1 ≤ r ≤ 4 log log bn.

where µ2r = 1 · 3 · . . . · (2r − 1) is the 2r-th moment of the standard normal law.

Proof. Let

X ′
p = Xp − f(p)

p
, S′n =

∑

p≤αn

X ′
p = Sn − an s2

n = ES
′2
n =

∑

p≤αn

f2(p)
p

(
1− 1

p

)
.

By a recent result of Cuny and Weber on the speed of convergence of moments in the
central limit theorem (see [3], Theorem 1.3) we have

(10)

∣∣∣∣∣E
( |S′n|

sn

)2r

− µ2r

∣∣∣∣∣ ≤
(

C1
r

log r

)2r

max
h∈{1, 1

2r−2}

(∑
p≤αn

E|X ′
p|2r

s2r
n

)h
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where C1 is an absolute constant. Here E|X ′
p|2r = E|Xp − EXp|2r ≤ 22rE|Xp|2r by

Minkowski’s inequality and thus we get, using |f(p)| ≤ CB1−δ
p

(11)

∑

p≤αn

E|X ′
p|2r ≤ 22r

∑

p≤αn

|f(p)|2r

p
≤ (2C)2r−2B(2r−2)(1−δ)

n 4
∑

p≤αn

f2(p)
p

≤ 4(2C)2r−2B2r−δ(2r−2)
n .

On the other hand, the well known relation

∑

p≤n

1
p

= log log n + O(1)

implies

(12)
∑

αn<p≤n

1
p

= log log n− log log αn + O(1) ≤ 3 log log log Bn (n ≥ n0)

whence

(13) B2
n − b2

n =
∑

αn<p≤n

f2(p)
p

¿ B2(1−δ)
n

∑

αn<p≤n

1
p
¿ B2(1−δ)

n log log log Bn

and thus s2
n ∼ b2

n ∼ B2
n. The statement of the lemma now follows from (10), (11) and the

fact that

(
r

log r

)2r

≤ (4 log log bn)8 log log bn ≤ exp
{
(log log bn)2

} ≤ bδ/4
n ≤ Bδ/4

n

for 1 ≤ r ≤ 4 log log bn, n ≥ n0.

In what follows, Pn denotes normalized counting measure on {1, 2, . . . , n} and En

denotes the corresponding expectation.

Lemma 2. We have

En

{(
fn − an

bn

)r}
− E

{(
Sn − an

bn

)r}
→ 0 uniformly for 1 ≤ r ≤ 8 log log bn.

Proof. We follow Billingsley [2]. Clearly

(14) E(Sr
n) =

r∑
u=1

∑ ′ r!
r1! · · · ru!

∑ ′′E(Xr1
p1
· · ·Xru

pu
)
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and by (8)

(15) En(fr
n) =

r∑
u=1

∑ ′ r!
r1! · · · ru!

∑ ′′E(Y r1
p1
· · ·Y ru

pu
)

where Yp = f(p)δp,
∑ ′ extends over those u-tuples (r1, · · · ru) of positive integers satisfy-

ing r1 + · · ·+ ru = r and
∑ ′′ extends over those u-tuples (p1, · · · pu) of primes satisfying

p1 < · · · < pu ≤ αn. Clearly,

(16) E(Xr1
p1
· · ·Xru

pu
) =

f(p1)r1 · · · f(pu)ru

p1 · · · pu

and

(17) En(Y r1
p1
· · ·Y ru

pu
) =

1
n

[
n

p1 · · · pu

]
f(p1)r1 · · · f(pu)ru .

But the right hand sides of (16) and (17) differ at most by (1/n)|f(p1)|r1 · · · |f(pu)|ru , and
hence E(Sr

n) and En(fr
n) cannot differ by more than the sum (14) with the inner summand

replaced by (1/n)|f(p1)|r1 · · · |f(pu)|ru . It now follows by the multinomial theorem and the
Cauchy-Schwarz inequality that

(18)
|E(Sr

n)− En(fr
n)| ≤ 1

n


 ∑

p≤αn

|f(p)|



r

≤ 1
n


 ∑

p≤αn

f2(p)
p




r/2 
 ∑

p≤αn

p




r/2

≤ 1
n

br
nαr

n.

Now

E((Sn − an)r) =
r∑

k=0

(
r

k

)
E(Sk

n)(−an)r−k

and En(fn − an)r has an analogous expansion. Comparing the two expansions term by
term and applying (18) we get that

|E(Sn − an)r − En(fn − an)r| ≤
r∑

k=0

(
r

k

)
αk

nbk
n

n
|an|r−k =

1
n

(αnbn + |an|)r ≤ 1
n

(2αnbn)r,

where we used

|an| ≤
∑

p≤αn

|f(p)|
p

≤

 ∑

p≤αn

f2(p)
p2




1/2

α1/2
n ≤ bnαn.

Now

B2
2n −B2

n =
∑

n<p≤2n

f2(p)
p

¿ B
2(1−δ)
2n

∑

n<p≤2n

1
p
¿ B

2(1−δ)
2n
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which shows that B2n/Bn → 1 and thus Bn is slowly varying in the Karamata sense, which
implies Bn ¿ nε for any ε > 0. Thus for 1 ≤ r ≤ 8 log log bn we have

(2αn)r ≤ 28 log log Bnn8/(log log Bn) ¿ (log Bn)8n1/2 = o(n)

and Lemma 2 is proved.

We can now easily get

Theorem 2. We have

En

{(
f −An

Bn

)2r
}
∼ µ2r as n →∞, uniformly for 1 ≤ r ≤ 4 log log Bn.

Proof. By (13) we have b2
n/B2

n = 1 + O(B−δ
n ) and thus

br
n/Br

n = (1 + O(B−δ
n ))r/2 = 1 + o(1) uniformly for 1 ≤ r ≤ 8 log log Bn.

Thus from Lemmas 1 and 2 it follows that

(19) En

{(
fn − an

Bn

)r}
∼ En

{(
fn − an

bn

)r}
∼ µr as n →∞,

uniformly for all even r with 1 ≤ r ≤ 8 log log Bn. Now

|f(m)− fn(m)| ≤
∑

αn<p≤n

|f(p)|δp(m) 1 ≤ m ≤ n

and thus similarly to the proof of Lemma 2, we have

En|f − fn|r ≤
r∑

u=1

∑ ′ r!
r1! · · · ru!

∑ ′′ 1
n

[
n

p1 · · · pu

]
|f(p1)|r1 · · · |f(pu)|ru ,

where
∑ ′ extends over those u-tuples (r1, · · · ru) of positive integers satisfying r1 + · · ·+

ru = r and
∑ ′′ extends over those u-tuples (p1, · · · pu) of primes satisfying αn < p1 <

· · · < pu ≤ n. Thus using (7) and (12) we get for n ≥ n0

En|f − fn|r ≤ CrBr(1−δ)
n

r∑
u=1

∑ ′ r!
r1! · · · ru!

∑ ′′ 1
p1 · · · pu

= CrBr(1−δ)
n


 ∑

αn<p≤n

1
p




r

≤ (3C)rBr(1−δ)
n (log log log Bn)r ≤ (3C)rBr(1−δ/2)

n ,

where C is the constant implied by the O in (7). Thus letting ‖g‖r,n = En(|g|r)1/r for any
arithmetic function g, we get by Minkowski’s inequality,

(20) | ‖(f − an)/Bn‖r,n − ‖(fn − an)/Bn‖r,n| ≤ 3CB−δ/2
n .
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Further by (7) and (12) we have

|An − an| ≤ CB1−δ
n

∑

αn<p≤n

1
p
≤ CB1−δ/2

n for n ≥ n0

and thus replacing f − an by f − An in the first term on the left hand side of (20)
results in a change ≤ CB

−δ/2
n of the norm. Let now ε > 0. Relation (19) shows that for

even r and n ≥ n0(ε) the second term on the left hand side of (20) lies in the interval
[((1− ε)µr)1/r, ((1 + ε)µr)1/r] and thus

‖(f −An)/Bn‖r,n ≤ ((1 + ε)µr)1/r + 4CB−δ/2
n ≤ ((1 + 2ε)µr)1/r

observing that µr ≥ 1 and

(1 + 2ε)1/r − (1 + ε)1/r ≥ 4CB−δ/2
n

for 1 ≤ r ≤ 8 log log Bn by the mean value theorem. A similar argument yields

‖(f −An)/Bn‖r,n ≥ ((1− 2ε)µr)1/r

and Theorem 2 is proved.

Using Theorem 2 we can now get upper and lower tail estimates for |f −An| using a
method going back to Kolmogorov [11] in the context of the moment generating functions
and to Erdős and Gál [6] in the case of moment convergence.

Lemma 3. We have

Pn{|f −An| ≥ (2(1 + ε)B2
n log log Bn)1/2} ¿ exp(−(1 + ε) log log Bn).

Proof. Let
G(t) = Pn{|f −An| ≥ (2tB2

n log log Bn)1/2}, t > 0

and
Zn = (f −An)2/(2B2

n log log Bn).

Since

µ2r =
(2r)!
2rr!

∼
√

2(2r/e)r as r →∞,

we get by Lemmas 1 and 2 for 1 ≤ r ≤ 4 log log Bn, n ≥ n0

(21) (r/e)r(log log Bn)−r ¿ EnZr
n ¿ (r/e)r(log log Bn)−r

where the constants implied by ¿ are absolute. By (21) and the Markov inequality

(22) G(t) = Pn(Zn ≥ t) ≤ t−rEnZr
n ¿ t−r(r/e)r(log log Bn)−r.

9



If t ≥ 3, we choose r = [e log log Bn] to get

(23) G(t) ¿ t−2 log log Bn , t ≥ 3.

For 0 < t < 3 we choose r = [t log log Bn] to get

(24) G(t) ¿ exp(−t log log Bn) 0 < t < 3,

and Lemma 3 is proved.

Lemma 4. We have

Pn{|f −An| ≥ (2(1− ε)B2
n log log Bn)1/2} À exp(−(1− ε2/16) log log Bn).

Proof. Let

D1 = {1− ε ≤ Zn ≤ 1}, D2 = {0 ≤ Zn < 1− ε}, D3 = {1 < Zn ≤ 3}, D4 = {Zn > 3}.

Then by (21) we have for 1 ≤ r ≤ 4 log log Bn, n ≥ n0

(25)
G(1− ε) = Pn(Zn ≥ 1− ε) ≥ Pn(D1) ≥

∫

D1

Zr
n dPn

≥ A(r/e)r(log log Bn)−r − (I2 + I3 + I4)

where A is an absolute constant and

Ik =
∫

Dk

Zr
n dPn, k = 2, 3, 4.

We choose r = [(1− ε/2) log log Bn] and estimate I2, I3 and I4 from above. First we get,
using (24) and G(t) = Pn(Zn ≥ t),

I2 = −
∫ 1−ε

0

trdG(t) ≤ 2r

∫ 1−ε

0

tr−1G(t)dt ¿ 2r

∫ 1−ε

0

tr−1 exp(−t log log Bn)dt

= 2r(log log Bn)−r

∫ (1−ε) log log Bn

0

ur−1e−udu.

Since ur−1e−u reaches its maximum at u = r− 1 which exceeds the upper limit of the last
integral by the choice of r, we get

(26)
I2 ≤ 2r(1− ε)re−(1−ε) log log Bn ≤ 4 log log Bn · (1− ε)(1−ε/2) log log Bn(log Bn)−(1−ε)

= 4(log log Bn) (log Bn)−γ

where
γ = 1− ε− (1− ε/2) log(1− ε).
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Similarly as above, we get

I3 ≤ 2r(log log Bn)−r

∫ 3 log log Bn

log log Bn

ur−1e−udu.

Now the maximum of the integrand is reached at a point which is smaller than the lower
limit of the integral and we get

(27) I3 ≤ 4(log log Bn) (log Bn)−1.

Finally, to estimate I4 we proceed as with I2, but instead of (24) we use (23) to get

I4 ≤ 2r

∫ ∞

3

tr−1G(t)dt ¿ 2r

∫ ∞

3

tr−1t−2 log log Bndt

¿ e− log log Bn = (log Bn)−1.

Now using r = [(1 − ε/2) log log Bn] we see that the first term on the right hand side of
(25) is

(28) A(r/e)r(log log Bn)−r À (r/e)r

(
r

1− ε/2

)−r

À (log Bn)−γ′

where
γ′ = (1− ε/2)− (1− ε/2) log(1− ε/2)

and the constants implied by À are absolute. Simple calculations show that for sufficiently
small ε we have γ′ < γ and γ′ < 1 − ε2/16 which imply that all of I2, I3 and I4 are of
smaller order of magnitude than the expression in (28). Thus we get

G(1− ε) À (log Bn)−γ′ À (log Bn)−(1−ε2/16)

and Lemma 4 is proved.

We can now easily prove Theorem 1. Let 0 < ε < 1. By Lemma 3 we have

(29) P2k{|f −A2k | ≥ (2(1 + ε)B2
2k log log B2k)1/2} ¿ exp(−(1 + ε) log log B2k).

As we have seen in the proof of Lemma 2, we have B2k/B2k−1 → 1. Also, the fluctuation
of An in the interval [2k−1, 2k] is at most

∑

2k−1<p≤2k

|f(p)|
p

¿ B1−δ
2k

∑

2k−1<p≤2k

1
p
¿ B1−δ

2k .

Thus the number of j ∈ [2k−1, 2k] belonging to H(1+2ε)1/2 is

¿ 2k exp(−(1 + ε) log log B2k) =
2k

(log B2k)(1+ε)
.
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By the definition of log∗BN , the µ-measure of any point j with 2k−1 ≤ j < 2k is

2−(k−1) log(B2k/B2k−1) ∼ 2−(k−1)(B2k/B2k−1 − 1).

Thus

µ(H(1+2ε)1/2 ∩ [2k−1, 2k]) ¿ 2−k B2k −B2k−1

B2k−1

2k

(log B2k)(1+ε)
¿

∫ B2k

B2k−1

1
x(log x)(1+ε)

dx.

Summing for k we get the first part of the theorem. The proof of the second part is similar,
but instead of (29) we use

(30) P ∗2k{|f −A2k | ≥ (2(1− ε)B2
2k log log B2k)1/2} À exp(−(1− ε2/16) log log B2k)

where P ∗2k denotes uniform probability on the set {2k−1 + 1, . . . , 2k}. Relation (30) is
similar to our lower tail estimate

P2k{|f −A2k | ≥ (2(1− ε)B2
2k log log B2k)1/2} À exp(−(1− ε2/16) log log B2k)

in Lemma 4 and can be proved in the same way.
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