
Probabilistic error bounds for the discrepancy of

mixed sequences

Christoph Aistleitner∗, Markus Hofer†

Abstract

In many applications Monte Carlo (MC) sequences or Quasi-Monte Carlo (QMC) se-
quences are used for numerical integration. In moderate dimensions the QMC method
typically yield better results, but its performance significantly falls off in quality if the
dimension increases. One class of randomized QMC sequences, which try to combine the
advantages of MC and QMC, are so-called mixed sequences, which are constructed by
concatenating a d-dimensional QMC sequence and an s− d-dimensional MC sequence to
obtain a sequence in dimension s. Ökten, Tuffin and Burago proved probabilistic asymp-
totic bounds for the discrepancy of mixed sequences, which were refined by Gnewuch.
In this paper we use an interval partitioning technique to obtain improved probabilistic
bounds for the discrepancy of mixed sequences. By comparing them with lower bounds
we show that our results are almost optimal.

1 Introduction and statement of results

A common notion to measure the regularity of point distributions is the so-called star dis-
crepancy. Roughly speaking, the star discrepancy compares the relative number of elements
of a point set, which are contained in an axis-parallel box, to the volume of this box, and
finally takes the maximal deviation over all possible boxes. The Quasi-Monte Carlo method
for numerical integration is based on the fact that the difference of the integral of a function
and the arithmetic mean of the function values at certain sampling points can be estimated
by the product of the variation of this function and the discrepancy of the set of sampling
points. Therefore point sets having a small star discrepancy can serve as a tool for numerical
integration, a method which is frequently used for the evaluation of high-dimensional integrals
in applied mathematics. Many constructions of low-discrepancy point sets only provide good
bounds for the discrepancy if the number of points is large (in comparison with the dimen-
sion). This led to the development of the so-called randomized Quasi-Monte Carlo method,
which tries to combine the advantages of the (deterministic) Quasi-Monte Carlo method and
the advantages of the (random) Monte Carlo method. For an introduction to discrepancy
theory and its applications in numerical mathematics we refer the reader to the books of Dick
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and Pillichshammer [4], Drmota and Tichy [5], Kuipers and Niederreiter [13] and Glasserman
[6].

To formulate our results in a precise way we need some notation. We write (x(1), . . . , x(s))
for the coordinates of a point x ∈ [0, 1]s. We write x ≤ y if x(i) ≤ y(i) for 1 ≤ i ≤ s. We
write 0 and 1 for the points (0, . . . , 0) and (1, . . . , 1) in [0, 1]s. For a ∈ [0, 1]s we define an
s-dimensional interval [0, a] as the set {x ∈ [0, 1]s : 0 ≤ x ≤ a} (which is an s-dimensional
axis-parallel box).
Let (x1, . . . , xN ) be a sequence of points in the s-dimensional unit cube. The star discrepancy
D∗

N of (x1, . . . , xN ) is defined as

D∗
N (x1, . . . , xN ) = sup

a∈[0,1]s

∣
∣
∣
∣
∣

1

N

N∑

n=1

1[0,a](xn) − λ([0, a])

∣
∣
∣
∣
∣
.

Here and in the sequel λ denotes the Lebesgue measure. For simplicity we write D∗
N (xn)

instead of D∗
N (x1, . . . , xN ). If (xn)n≥1 is an infinite sequence, we write D∗

N (xn) for the dis-
crepancy of the first N elements of (xn)n≥1.

The importance of discrepancy theory in numerical mathematics is based on the Koksma-
Hlawka inequality, which states that for a sequence (x1, . . . , xN ) of points in [0, 1]s and a
function f having total variation Var f on [0, 1]s (in the sense of Hardy and Krause)

∣
∣
∣
∣
∣

1

N

N∑

n=1

f(xn) −
∫ 1

0
f(x) dx

∣
∣
∣
∣
∣
≤ D∗

N (xn) · Var f.

There exist many constructions of so-called low-discrepancy sequences, i.e. sequences (xn)n≥1

for which
D∗

N (xn) ≪ (log N)sN−1 as N → ∞ (1)

(this should be compared with a result of Roth [21] which states that every infinite sequence
of points from [0, 1]s has discrepancy ≫ (log N)s/2N−1 for infinitely many N ; this has been
slightly improved by Beck [2] and Bilyk, Lacey and Vagharshakyan [3], but the precise mini-
mal asymptotic order of the discrepancy is still an open problem). Sequences of this type are
only of practical use if the number of sampling points N is “large” in comparison with the di-
mension s; in particular the right-hand side of (1) is increasing for N ≤ es. On the other hand,
the so-called Monte Carlo method (which uses i.i.d. randomly generated points instead of de-
terministic points) gives an probabilistic bound of asymptotical order N−1/2, independently of
the dimension. This led to the development of randomized QMC integration schemes, which
try to combine the advantages of (random) MC and (deterministic) QMC. There exist several
methods for “randomizing” QMC rules; see for example Hickernell [11], Matoušek [15], Owen
[19] and L’Ecuyer and Lemieux [14]. In this paper we consider s-dimensional sequences which
are constructed by concatenating the coordinates of a d-dimensional QMC sequence and an
s − d-dimensional MC sequence. Sequences of this type are called “mixed” sequences, and
have been investigated e.g. by Spanier [22], Ökten [16][17] and Roşca [20].

Let (qn)n≥1 be a d-dimensional QMC sequence, and let (Xn)n≥1 be a sequence of i.i.d. random
variables having uniform distribution on [0, 1]s−d. We write (xn)n≥1 for the sequence which
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consists of the points xn = (qn,Xn), i.e. xn = (q
(1)
n , . . . , q

(d)
n ,X

(1)
n , . . . ,X

(s−d)
n ) for n ≥

1. Ökten, Tuffin and Burago [18] showed that for such a sequence, under the additional
assumption D∗

N (qn) → 0, for arbitrary ε > 0

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1 − 2e−ε2N/2 (2)

for sufficiently large N (in [18, Theorem 5] the exponent −2ε2N appears, but as Gnewuch [9]
remarks, the proof only gives −ε2N/2). Their paper contains no information on the size of
the values of N for which (2) holds. Gnewuch [9] showed that

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1 − 2N (s, ε/2)e−ε2N/2, (3)

where N (d, δ) is defined as the smallest number M for which there exists a set Γ of M points
in [0, 1]s such that for all y ∈ [0, 1]s there exist x, z ∈ Γ ∪ {0} such that x ≤ y ≤ z and
λ([0, z])−λ([0, x]) ≤ δ (the set Γ is called a δ-cover of [0, 1]s, and the number N the covering
number). By [7, Theorem 1.15]

N (s, δ) ≤ (2e)s(δ−1 + 1)s,

and therefore (3) implies

P (D∗
N (xn) ≤ D∗

N (qn) + ε) > 1 − 2(2e)s(2/ε + 1)se−ε2N/2. (4)

In dimension s = 2 Gnewuch [8] proved a stronger upper bound for covering numbers, and
conjectured that in all dimensions

N (s, δ) ≤ 2δ−s + os(δ
−s).

(where os means that the implied constant may depend on s). This would lead to an im-
provement of (4).

We will also need the notion of δ-bracketing covers: Let δ ∈ (0, 1]. A finite set ∆ of pairs
of points from [0, 1]s is called a δ-bracketing cover of [0, 1]s, if for every pair (x, z) ∈ ∆ the
estimate λ([0, z]) − λ([0, x]) ≤ δ holds, and if for every y ∈ [0, 1]s there exists a pair (x, z)
from ∆ such that x ≤ y ≤ z. The number N[ ](s, δ), which is called the bracketing number,
denotes the smallest cardinality of a δ-bracketing cover of [0, 1]s. By [7, Theorem 1.15]

N[ ](s, δ) ≤ 2s−1es(δ−1 + 1)s.

Gnewuch’s result (3) has the advantage of being valid for all N ≥ 1. However, (2) is asymp-
totically stronger than (3) (as N increases, for fixed ε). On the one hand, the purpose of this
paper is to show an improved version of (2), which is almost optimal. On the other hand, we
want to show that the factor ε−s in (3) and (4), which essentially comes from the necessity
to discretize the discrepancy with respect to a grid of precision ε, is not necessary and can
be replaced by γs for an appropriate constant γ. This might be surprising at first sight:
the impact of the necessity to discretize the discrepancy with respect to a certain (possibly
extremely close-meshed) grid does not depend on the accuracy of this grid.

More precisely, we will prove the following theorem:
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Theorem 1 Let (qn)n≥1 be a d-dimensional sequence, and let (Xn)n≥1 be a sequence of i.i.d.
random variables having uniform distribution on [0, 1]s−d. Let (xn)n≥1 denote the mixed
sequence which consists of the points xn = (qn,Xn). Then for every η > 0 there exists a
constant γ = γ(η) such that for every ε > 0

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1 − γse−2(1−η)ε2N . (5)

In (5) we can choose
γ = e2·⌈4 log2(3/η)+2 log2 7⌉. (6)

As a direct consequence of Theorem 1 we obtain the following corollary, which is an improve-
ment of the result of Ökten, Tuffin and Burago (2).

Corollary 1 Assume that D∗
N (qn) → 0, and let η > 0 be given. Then for arbitrary ε > 0

P (D∗
N (xn) ≤ ε) ≥ 1 − e−2(1−η)ε2N

for sufficiently large N .

Proof of Corollary 1: Let η > 0 be given, and let η̂ be so small that (1 − η̂)3 > 1 − η. Since
D∗

N (qn) → 0 we have D∗
N (qn) ≤ η̂ε/2 for sufficiently large N . Thus by Theorem 1

P (D∗
N (xn) ≤ ε) ≥ P (D∗

N (xn) ≤ 2D∗
N (qn) + (1 − η̂)ε)

≥ 1 − γ(η̂)se−2(1−η̂)((1−η̂)ε)2N

≥ 1 − e−2(1−η)ε2N

for sufficiently large N . This proves the corollary. �

Remark 1: Theorem 1 and Gnewuch’s result (3) both give probability zero for ε ≤ s1/2N−1/2.
It is clear that a result like Theorem 1 can not give a positive probability for all possible
d ≥ 1, s > d and ε > 0, since this would imply (by choosing d = 1 and (q1, . . . , qN ) such that
D∗

N (qn) = 1/N) the existence of an s-dimensional sequence (x1, . . . , xN ) with discrepancy
≤ 2/N + ε for arbitrary s and N , which is in conflict with Roth’s result. In fact the bound
s1/2N−1/2 might be crucial: it is know that for all N ≥ 1 and s ≥ 1 there exists an N -element
sequence having discrepancy ≤ 10s1/2N−1/2, but it is unknown how far this upper bound is
from optimality. For more information we refer to [1], [10] and [12].

Remark 2: Gnewuch [9, Remark 3.4] showed that in every bound of the form

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1 − f(s, ε)e−ε2N/2

the function f(s, ε) has to grow at least exponentially in s (this follows from a general result
of Heinrich, Novak, Wasilkowski and Woźniakowski [10]). Using exactly the same argument
it can be easily shown that every function f(s) replacing the factor γs in our Theorem 1 (for
some fixed η) has to grow at least exponentially in s. Thus the only possible improvement of
Theorem 1 with respect to s is a reduction of the base γ of the term γs.

4



Remark 3: For any dimensions d ≥ 1 and s > d it is impossible to find constants η > 0 and
γ > 0 such that for arbitrary ε > 0

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1 − γse−2(1+η)ε2N

for sufficiently large N . Thus the exponent 2(1 − η)ε2N in Theorem 1 can not be improved
to 2(1 + η)ε2N (a proof of this remark will be given at the end of this paper).

Remark 4: Our corollary shows that it is possible to obtain an asymptotic order of e−2(1−η)ε2N

(for ε fixed, as N → ∞) for arbitrarily small η > 0. However, as η gets smaller the necessary
value of the constant γ in (5) and (6) increases , and in particular γ → ∞ as η → 0. We are
not able to decide whether it is possible to improve Theorem 1 to

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1 − γse−2ε2N

for some constant γ. Summarizing these results, we know for every η > 0 that an asymptotic
order of e−2(1−η)ε2N is possible and e−2(1+η)ε2N is impossible, while the “critical” case e−2ε2N

remains open.

Remark 5: There are two differences between Theorem 1 and Gnewuch’s result (3). On the
one hand, our bound for the discrepancy is 2D∗

N (qn)+ε instead of D∗
N (qn)+ε. The additional

term D∗
N (qn) comes from the interval partitioning method which is used in our proof, and it

seems that this extra term can not be avoided. In applications this should not cause problems,
since the deterministic sequence (qn)1≤n≤N is chosen in such a way that D∗

N (qn) is very small,
whereas ε can not be arbitrarily small (see Remark 1). On the other hand, we can avoid the
factor ε−s from Gnewuch’s result, which can have a significant contribution particularly for
large values of s.

2 Preliminaries

We will use Hoeffding’s inequality and Bernstein’s inequality, two classical inequalities from
probability theory.

Hoeffding’s inequality: For Z1, . . . , ZN being independent random variables, satisfying
a ≤ |Zn| ≤ b a.s. for some a < b, b − a ≤ 1,

P

(∣
∣
∣
∣
∣

N∑

n=1

(Zn − EZn)

∣
∣
∣
∣
∣
> t

)

≤ 2e−2t2 .

Bernstein’s inequality: For Z1, . . . , ZN being independent random variables, satisfying
|Zn − EZn| ≤ 1 a.s.,

P

(∣
∣
∣
∣
∣

N∑

n=1

(Zn − EZn)

∣
∣
∣
∣
∣
> t

)

≤ 2 exp



− t2

2
(
∑N

n=1 EZ2
n

)

+ 2t/3



 .

The following lemma will be needed for the proof of Remark 3:
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Lemma 1 Let (Zn)n≥1 be independent, fair Bernoulli random variables. Let η > 0 be given.
Then there exists an ε0 = ε0(η) such that for every fixed ε ∈ (0, ε0) for all sufficiently large
N

P

(
N∑

n=1

Zn ≥ N/2 + εN

)

≥ e−2ε2(1+η)N .

Proof : To simplify notations we assume w.l.o.g. that εN is an integer. Let η be given, and
set

p = P

(
N∑

n=1

Zn ≥ N/2 + εN

)

.

By Taylor’s formula we have for sufficiently small ε

log(1/2 + ε) ≥ log 1/2 + 2ε − (1 + η)ε2

and
log(1/2 − ε) ≥ log 1/2 − 2ε − (1 + η)ε2.

By Stirling’s formula for sufficiently large N

(
N

N/2 + εN

)

≥ 1

2

NN

√
2πN(N/2 + εN)(N/2+εN)(N/2 − εN)(N/2−εN)

≥
(

e−ηε2
)N
(

NN

(N/2 + εN)(N/2+εN)(N/2 − εN)(N/2−εN)

)

and therefore, also for sufficiently large N ,

p1/N =





N∑

k=N/2+εN

(
N

k

)
1

2N





1/N

≥
((

N

N/2 + εN

)
1

2N

)1/N

≥ e−ηε2

(
NN

(N/2 + εN)(N/2+εN)(N/2 − εN)(N/2−εN)2N

)1/N

= e−ηε2

(
1

(1/2 + ε)(1/2+ε)(1/2 − ε)(1/2−ε)2

)

≥ e−ηε2
exp

(

− (1/2 + ε) log(1/2 + ε) − (1/2 − ε) log(1/2 − ε) − log 2
)

≥ e−ηε2
exp

(

− (1/2 + ε)(log 1/2 + 2ε − (1 + η)ε2)

−(1/2 − ε)(log 1/2 − 2ε − (1 + η)ε2) − log 2
)

= e−ηε2
exp

(

− (2 + η)ε2
)

.

Thus for sufficiently large N

p ≥ exp
(

− 2(1 + η)ε2N
)

. �

6



3 Proof of Theorem 1

We use a refined version of the dyadic partitioning technique in [1]. Let N ≥ 1, ε > 0, η > 0
and a parameter µ ≥ 10 be given (µ will be chosen as a function of η, see equation (26)
below). For simplicity we assume that µ is an integer.
Let (qn)n≥1 be a d-dimensional sequence, and write D for the (d-dimensional) star discrep-
ancy of (qn)1≤n≤N . Let X1, . . . ,XN be i.i.d. random variables defined on some probability
space (Ω,A, P), having uniform distribution on [0, 1]s−d, and write (xn)1≤n≤N for the mixed
sequence which consists of the s-dimensional points xn = (qn,Xn). We will use the estimate

(2e)s(2k + 1)s ≤ e(k−1)s, (7)

which holds for all k ≥ µ (since we assumed µ ≥ 10, and since of course s ≥ 2).

Assume now that
ε ≥ 2−µ, (8)

and let Γ be a 2−2µ-cover of [0, 1]s for which

#Γ ≤ (2e)s(22µ + 1)s ≤ e(2µ−1)s ≤ e2µs

2
.

Then, using Gnewuch’s method from [9] and Hoeffding’s inequality we can easily show that

P
(
D∗

N (xn) ≤ D + ε + 2−2µ
)

≥ 1 − 2e−2ε2N (#Γ)

≥ 1 − e2µse−2ε2N ,

which by (8) implies

P
(
D∗

N (xn) ≤ D + ε + ε2−µ
)
≥ 1 − e2µse−2ε2N . (9)

For the rest of the proof we assume that instead of (8)

ε ≤ 2−µ (10)

holds (which is the much more difficult case). Additionally we assume that

ε >

√
µs√
2N

. (11)

(this additional assumption will be dropped later). Let

K = K(ε) := min
{

k ≥ 1 : 2−k/2k−1/2 ≤ ε
}

.

Then
2−K/2K−1/2 ≤ ε ≤ 2 · 2−K/2K−1/2, (12)

and µ ≥ 10 implies
K ≥ µ + 15 ≥ 25. (13)

By (12) and (13) we have 2−K ≥ ε2. Thus by (10) and (11)

K ≤ log2(ε
−2) ≤ log2(2N/sµ) ≤ log2(N/10) ≤ 2N1/4 ≤ ε3/2N ≤ 2−µ/2εN. (14)

7



For µ ≤ k ≤ K − 1 let Γk be a 2−k-cover of [0, 1]s, for which

#Γk ≤ (2e)s(2k + 1)s. (15)

Let ∆K denote a 2−K -bracketing cover of [0, 1]s for which

#∆K ≤ (2e)s(2k + 1)s. (16)

Such sets Γk and ∆K exist by a result of Gnewuch [7, Theorem 1.15]. For notational conve-
nience we also define

ΓK = {x ∈ [0, 1]s : (x, y) ∈ ∆K for some y ∈ [0, 1]s}

and
ΓK+1 = {y ∈ [0, 1]s : (x, y) ∈ ∆K for some x ∈ [0, 1]s}

For every x ∈ [0, 1]s there exists a pair (pK , pK+1) = (pK(x), pK+1(x)) for which (pK , pK+1) ∈
∆K such that pK ≤ x ≤ pK+1 and

λ([0, pK+1]) − λ([0, pK ]) ≤ 1

2K
. (17)

For every x ∈ [0, 1]s and k = K,K − 1, . . . , µ + 1 we can recursively determine points pk−1 =
pk−1(x) ∈ Γk−1 ∪ {0}, such that pk−1(x) ≤ pk(x) and

λ([0, pk]) − λ([0, pk−1]) ≤
1

2k−1
.

For notational convenience we also define

pµ−1 = 0.

We define for x, y ∈ [0, 1]s

[x, y] :=







[0, y]\[0, x] if x 6= 0
[0, y] if x = 0, y 6= 0.
∅ if x = y = 0.

Then the sets
Ik(x) := [pk(x), pk+1(x)], µ − 1 ≤ k ≤ K,

are disjoint, we have
K−1⋃

k=µ−1

Ik(x) ⊂ [0, x] ⊂
K⋃

k=µ−1

Ik(x),

and for all x, y ∈ [0, 1]s

K−1∑

k=µ−1

1Ik(x)(y) ≤ 1[0,x](y) ≤
K∑

k=µ−1

1Ik(x)(y). (18)

For µ− 1 ≤ k ≤ K we write Ak for the set of all sets of the form Ik(x), where x can take any
possible value from [0, 1]s. Then by (7), (15) and (16), Ak contains at most

#Γk+1 ≤ eks (19)
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elements. All elements of Ak, where µ ≤ k ≤ K, have Lebesgue measure bounded by 2−k.
The elements of Aµ−1 can have Lebesgue measure between 0 and 1.

For any k ∈ {µ, . . . ,K +1} we will represent the numbers pk ∈ Γk in the form (uk, vk), where

uk ∈ [0, 1]d and vk ∈ [0, 1]s−d, such that pk has the coordinates (u
(1)
k , . . . , u

(d)
k , v

(1)
k , . . . , v

(s−d)
k ).

We write Uk and Vk for the intervals [0, uk] and [0, vk], and (Uk, Vk) for the sets Uk × Vk =
[0, pk]. Every x ∈ [0, 1]s uniquely determines points pk ∈ Γk, µ ≤ k ≤ K + 1, and hence the
according values of Ik, uk, vk, Uk, Vk are also uniquely defined.

For two sets Ik−1 ∈ Ak−1 and Ik ∈ Ak we write Ik−1 ≺ Ik if there exists an x ∈ [0, 1]s such
that Ik = Ik(x) and Ik−1 = Ik−1(x). For every Ik ∈ Ak, µ ≤ k ≤ K there exists exactly
one element Ik−1 of Ak−1 for which Ik−1 ≺ Ik. Every Ik ∈ Ak, µ ≤ k ≤ K uniquely deter-
mines sets Iµ−1, . . . , Ik−1 such that Iµ−1 ≺ · · · ≺ Ik−1 ≺ Ik. Whenever Ik is fixed we will write
Iµ−1 . . . , Ik−1 for these sets, which are uniquely determined, and pl, ul, vl, Ul, Vl, µ ≤ l ≤ k−1
for the according values, which are also uniquely determined.

Every Ik ∈ Ak, µ ≤ k ≤ K, is of the form

(Uk+1, Vk+1)\(Uk, Vk) = ((Uk+1\Uk) × Vk+1) ∪ (Uk × (Vk+1\Vk)).

Every Iµ−1 ∈ Aµ−1 is of the form [0, pµ] = (Uµ, Vµ).

x

UΜ

VΜ+1

pK+1

pK

pΜ

pΜ+1
IK

IΜ-1

IΜ

Figure 1: An illustration of our construction in the case d = 1, s = 2. A point x ∈ [0, 1]2

is given and determines points pµ, pµ+1, . . . , pK+1 and sets Iµ−1 ≺ Iµ ≺ · · · ≺ IK . For
exemplification we have also marked the sets Uµ and Vµ+1. Every set Ik, µ ≤ k ≤ K, is of
the form (Uk+1, Vk+1)\(Uk, Vk) = ((Uk+1\Uk) × Vk+1) ∪ (Uk × (Vk+1\Vk)).
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Step by step we construct a function S(I) for intervals I from Aµ−1, . . . , AK , such that for
every I the function value S(I) is a subset of {1, . . . , N} (we explain the necessity of this
function S in the footnote1).
Firstly, let Iµ−1 ∈ Aµ−1. Then Iµ−1 is of the form (Uµ, Vµ), and we can find ⌈Nλ(Uµ)−ND⌉
indices n from {1, . . . , N} for which qn ∈ Uµ. This is possible since the discrepancy of
(qn)1≤n≤N is bounded by D, and hence the interval Uµ of Lebesgue measure λ(Uµ) contains
at least ⌈Nλ(Uµ) − ND⌉ points of (qn)1≤n≤N . Denote this set of indices by S(Iµ).
In the next step let Iµ denote an element of Aµ. Then Iµ is of the form (Uµ, Vµ)\Iµ−1, where
Iµ−1 ∈ Aµ−1 and Iµ−1 ≺ Iµ. We can find ⌊Nλ(Uµ+1\Uµ)⌋ indices n which are not contained
in S(Iµ−1) but for which qn ∈ Uµ+1. We write S(Iµ+1) for this set of indices.
Generally, assume that the function S is defined for all intervals in Ak for k = µ−1, µ, . . . ,m for
some m. Let Im+1 denote an element of Am+1. Then Im+1 is of the form (Um+2, Vm+2)\(Iµ−1∪
Iµ ∪ · · · ∪ Im), where Ik ∈ Ak for k = µ − 1, . . . ,m and Iµ−1 ≺ · · · ≺ Im ≺ Im+1. We can
find ⌊Nλ(Um+2\Um+1)⌋ indices n which are not contained in

⋃m
k=µ−1 S(Ik), but for which

qn ∈ Um+2. We write S(Ik+1) for this set of indices.
Proceeding in this way we define the function S for all elements of Aµ−1, . . . , AK .

Additionally we define for every Ik ∈ Ak, µ ≤ k ≤ K,

R(Ik) = S(Iµ−1) ∪ · · · ∪ S(Ik−1),

where Iµ−1 ≺ · · · ≺ Ik.

Then

#

K−1⋃

k=µ−1

S (Ik) ≥ ⌈Nλ(Uµ) − ND⌉ +

K−1∑

k=µ

⌊Nλ(Uk+1\Uk)⌋

≥ Nλ





K−1⋃

k=µ

Uk+1\Uk



− ND − (K − µ)

= Nλ(UK) − ND − (K − µ)

≥
N∑

n=1

1UK
(qn) − 2ND − (K − µ),

and accordingly

#
K⋃

k=µ−1

S (Ik) ≥
N∑

n=1

1UK+1
(qn) − 2ND − (K + 1 − µ).

1Our proof is based on the decomposition of the unit cube into parts, and the fact that an arbitrary
interval can be written as an union of sets of quickly decreasing Lebesgue measure. However, in our situation
this method can only be directly applied if the number of elements of (qn)1≤n≤N in a subset U of [0, 1]d

is ≈ λ(U)N . Unfortunately, this is not necessarily the case: the sets U we consider can be written in the
form U+\U− for some axis-parallel boxes U+ and U−. Thus, if the discrepancy D of (qn)1≤n≤N is large in
comparison with λ(U), the number of elements of (qn)1≤n≤N , which are contained in U (which can be any
number from [Nλ(U)−2ND, Nλ(U)+2ND]) can be much larger than Nλ(U) (and this may hold not only for
one, but for several of the sets which we need in our decomposition!). To solve this problem, we distribute the
indices {1, . . . , N} to the sets in our decomposition in an appropriate regular way, instead of assigning them
directly to the sets to which they actually belong.
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Thus

N∑

n=1

1[0,x](xn)

≥
N∑

n=1

1[0,pK ](xn)

=

N∑

n=1

1UK
(qn) · 1VK

(Xn)

=
N∑

n=1

1Uµ(qn) · 1Vµ(Xn) +
K−1∑

k=µ

N∑

n=1

(
1Uk+1\Uk

(qn) · 1Vk+1
(Xn) + 1Uk

(qn) · 1Vk+1\Vk
(Xn)

)

≥
∑

n∈S(Iµ−1)

1Vµ(Xn) +

K−1∑

k=µ




∑

n∈S(Ik)

1Vk+1
(Xn) +

∑

n∈R(Ik)

1Vk+1\Vk
(Xn)



 (20)

and

N∑

n=1

1[0,x](xn)

≤
N∑

n=1

1UK+1
(qn) · 1VK+1

(Xn)

≤






∑

n∈
SK

k=µ−1 S(Ik)

1[0,pK+1](xn)




+ 2ND + (K + 1 − µ)

≤
∑

n∈S(Iµ−1)

1Vµ(Xn) +
K∑

k=µ




∑

n∈S(Ik)

1Vk+1
(Xn) +

∑

n∈R(Ik)

1Vk+1\Vk
(Xn)





+2ND + (K + 1 − µ). (21)

Let Iµ−1 ∈ Aµ−1 and define

Z = Z(Iµ−1) =
∑

n∈S(Iµ−1)

1Vµ(Xn).

Then by Hoeffding’s inequality

P (|Z − EZ| > εN) ≤ 2e−2ε2N . (22)

Now assume that Ik ∈ Ak for some k, µ ≤ k ≤ K. Then the random variable

Z = Z(Ik) =
∑

n∈S(Ik)

1Vk+1
(Xn) +

∑

n∈R(Ik)

1Vk+1\Vk
(Xn)

(which is a sum of independent random variables) has expected value
∑

n∈S(Ik)

λ(Vk+1) +
∑

n∈R(Ik)

λ(Vk+1\Vk)

11



and variance
∑

n∈S(Ik)

λ(Vk+1)(1 − λ(Vk+1)) +
∑

n∈R(Ik)

λ(Vk+1\Vk)(1 − λ(Vk+1\Vk))

≤
∑

n∈S(Ik)

λ(Vk+1) +
∑

n∈R(Ik)

λ(Vk+1\Vk)

≤ λ(Vk+1) · #S(Ik) + λ(Vk+1\Vk) · #R(Ik)

≤ Nλ(Uk+1\Uk)λ(Vk+1) + Nλ(Uk)λ(Vk+1\Vk)

= Nλ(Ik)

≤ N2−k.

We apply Bernstein’s inequality and obtain for t > 0

P (|Z − EZ| > t) ≤ 2 exp

(

− t2

2−k+1N + 2t/3

)

. (23)

If we let

t =
6k1/2εN

5 · 2k/2
,

then by (12) we have

2t/3 ≤ 24N

15 · 2k
,

and therefore

P (|Z − EZ| > t) ≤ 2 exp

(

− 36kε2N

25 (2 + 24/15)

)

= 2e−2kε2N/5. (24)

Let
Bµ−1 =

⋃

I∈Aµ−1

(|Z(Iµ−1) − EZ(Iµ−1| > εN)

Then by (19) and (22) we have

P(Bµ−1) ≤ 2e−2ε2N/5eµs.

For µ ≤ k ≤ K define

Bk =
⋃

Ik∈Ak

(

|Z(Ik) − EZ(Ik)| >
6k1/2εN

5 · 2k/2

)

.

Then by (19) and (24), and since ε2N > µs/2 ≥ 5s,

K∑

k=µ

P(Bk) ≤
K∑

k=µ

2e−2kε2N/5eks ≤
K∑

k=µ

2e−kε2N/5 ≤ 3e−µε2N/5 ≤ 3e−2ε2N .

Overall we have

P





K⋃

k=µ−1

Bk



 ≤ 3e−2ε2N + 2e−2ε2Ne3µs ≤ 3e−2ε2Neµs.
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Thus by (12), (14), (17) and (21) we have with probability at least 1 − 3e−2ε2Neµs for all
x ∈ [0, 1]s

N∑

n=1

1[0,x](xn)

≤
∑

n∈S(Iµ−1)

1Vµ(Xn) +

K∑

k=µ




∑

n∈S(Ik)

1Vk+1
(Xn) +

∑

n∈R(Ik)

1Vk+1\Vk
(Xn)





+2ND + (K + 1 − µ)

≤ E




∑

n∈S(Iµ−1)

1Vµ(Xn) +
K∑

k=µ




∑

n∈S(Ik)

1Vk+1
(Xn) +

∑

n∈R(Ik)

1Vk+1\Vk
(Xn)









+εN



1 +

K∑

k=µ

6k1/2

5 · 2k/2



+ 2ND + 2−µ/2εN

= E






∑

n∈
SK

k=µ−1 S(Ik)

1VK
(Xn)




+ εN



1 + 2−µ/2 +
K∑

k=µ

4k1/22−k/2



+ 2ND

≤ Nλ([0, pK+1]) + εN



1 + 2−µ/2 +
K∑

k=µ

6k1/2

5 · 2k/2



+ 2ND + (K + 1 − µ)

≤ Nλ([0, x]) + N2−K + εN



1 + 2−µ/2 +

K∑

k=µ

6k1/2

5 · 2k/2



+ 2ND)

≤ Nλ([0, x]) + εN










1 + K1/22−K/2 + 2−µ/2 +

K∑

k=µ

6k1/2

5 · 2k/2

︸ ︷︷ ︸

≤5µ1/22−µ/2










+ 2ND

≤ Nλ([0, x]) + εN
(

1 + 7µ1/22−µ/2
)

+ 2ND

Similarly by (12), (14), (17) and (20) we have with probability at least 1− 3e−2ε2Neµs for all
x ∈ [0, 1]

N∑

n=1

1[0,x](xn) ≥ Nλ([0, x]) − εN
(

1 + 7µ1/22−µ/2
)

− 2ND.

Therefore we have, with probability at least 1 − 3e−2ε2Neµs,

D∗
N (xn) ≤ 2D + ε

(

1 + 7µ1/22−µ/2
)

. (25)

This holds under assumptions (10) and (11). Now it is easy to see that (25) also holds without
assuming (11), since in this case 1 − 3e−2ε2Neµs ≤ 0 (cf. Remark 1). Comparing this result
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with (9), which holds under assumption (8) we see that (25) holds with probability greater
than or equal to

1 − e−2ε2Ne2µs.

Now let η be given. Set
µ = ⌈4 log2(3/η) + 2 log2 7⌉ (26)

and
γ = γ(η) = e2µ = e2·⌈4 log2(3/η)+2 log2 7⌉.

Then µ ≥ 10. Some calculations show that for y ∈ (0, 1]

√

4 log2(3/y) + 2 log2 7 ≤ 4

y

and consequently

(

1 + 7
√

4 log2(3/y) + 2 log2 7 · 2−(4 log2(3/y)+2 log2 7)/2
)−2

≥
(
1 + 7 · 4 · y · y2/9 · 7−1

)−2

≥ (1 + y2/2)−2

≥ 1 − y. (27)

Thus by (25) and (27) for ε > 0

P (D∗
N (xn) > D + ε) ≤ e2µs exp

(

−2ε2N
(

1 + 7µ1/22−µ/2
)−2

)

≤ γse−2(1−η)ε2N ,

which proves the theorem. �

In conclusion we prove Remark 3 on the asymptotic optimality of the probability estimate

1 − γ(η)se−2(1−η)ε2N .

We show that this lower bound can not be replaced by

1 − γ(η)se−2(1+η)ε2N

for any positive η, no matter how large the constant γ(η) is chosen. More precisely, let d ≥ 1,
s > d and η > 0 be given, and assume that it is possible to find a constant γ such that for
every sequence (qn)n≥1 and every ε > 0 for sufficiently large N

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1 − γse−2ε2N(1+η). (28)

Chose η̂ so small that
(1 + η̂)3 ≤ (1 + η), (29)

and let (qn)n≥1 be a d-dimensional sequence for which D∗
N (qn) → 0. Write I for the indicator

of the s-dimensional box of the form [0, 1]d × [0, 21/(s−d)]. Then I has Lebesgue measure 1/2.
Let Xn, n ≥ 1 be i.i.d. random variables having uniform distribution on [0, 1]s−d, and write

14



(xn)n≥1 for the mixed sequence. Then xn ∈ I if and only if Xn ∈ [0, 21/(s−d)]. The random
variables

1I(xn) = 1[0,21/(s−d)](Xn)

are independent, fair Bernoulli random variables. Thus, if ε is chosen appropriately small, we
have by Lemma 1

P

(
N∑

k=1

1I(xn) ≥ N

2
+ (1 + η̂)εN

)

≥ e−2ε2N(1+η̂)3 ,

for sufficiently large N . Since D∗
N (qn) → 0, this implies

P (D∗
N (xn) ≥ 2D∗

N (qn) + ε) ≥ e−2ε2N(1+η̂)3 (30)

for sufficiently large N . By (29)

e−2ε2N(1+η̂)3

e−2ε2N(1+η)
→ 0 as N → ∞,

and hence (30) implies

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) < 1 − γse−2ε2N(1+η)

for sufficiently large N , which is a contradiction to (28).
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star-discrepancy depends linearly on the dimension. Acta Arith., 96(3):279–302, 2001.

[11] F. J. Hickernell. The mean square discrepancy of randomized nets. ACM Trans. Model.
Comput. Simul., 6:274–296, October 1996.

[12] A. Hinrichs. Covering numbers, Vapnik-Červonenkis classes and bounds for the star-
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