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ON THE LAW OF THE ITERATED LOGARITHM

FOR THE DISCREPANCY OF SEQUENCES 〈nkx〉
WITH MULTIDIMENSIONAL INDICES

Christoph Aistleitner

ABSTRACT. By a classical result of Weyl (1916), for any increasing sequence
(nk) of positive integers, (nkx) is uniformly distributed mod 1 for almost all x.
The precise asymptotics of the discrepancy of this sequence is known only in a
few cases, e.g., for nk = k (Khintchine (1924)) and for lacunary (nk) (Philipp
(1975)). In this paper we extend Philipp’s result to lacunary sequences with
multidimensional indices.

Communicated by Robert F. Tichy

1. Introduction

Let (nk)k≥1 be an increasing sequence of positive integers and for x ∈ (0, 1)
we set

ηk = ηk(x) := 〈nkx〉, (1)

where 〈 · 〉 denotes fractional part. The discrepancy of the first N elements of
the sequence (ηk) is defined as

DN = DN (x) := sup
0≤t≤1

∣∣∣∣
1
N

card (k ≤ N : ηk(x) ≤ t)− t

∣∣∣∣ . (2)

By a classical result of H. Weyl [11], DN (x) → 0 for almost all x ∈ (0, 1),
i.e., (nkx) is uniformly distributed mod 1 for all x ∈ (0, 1) except for a set of
Lebesgue measure zero. Estimating the speed of the convergence of DN (x) to 0
is a difficult problem requiring sophisticated analytic and number theoretic tools
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and the precise order of magnitude of DN (x) is known only for a few special
sequences (nk). In the case nk = k Khinchin [5] proved that

Dn(x) = O((log N)1+ε) a.e. (ε > 0),

and this becomes false for ε = 0. On the other hand, Philipp [8] proved that if
(nk)k≥1 is a lacunary sequence of integers, i.e., a sequence of integers satisfying

nk+1/nk ≥ q > 1 k = 1, 2 . . . , (3)

then DN (x) satisfies the law of the iterated logarithm (LIL), i.e.,

1√
32
≤ lim sup

N→∞

NDN (x)√
N log log N

≤ Cq a.e., (4)

where Cq is a positive number depending on q. Except the value of the limsup in
(4), this behavior is the same as that of the discrepancy of independent random
variables, where the limsup is 1/2 (see e.g. [9], p. 504). If (nk) grows much faster
than exponential, the limsup equals 1/2 (this follows, e.g., from the results of
Gaposhkin [4] or from the approximation theorems in Berkes [1]). However,
assuming only the Hadamard gap condition (3), the limsup is generally different
from 1/2, see Fukuyama [3]. It is an open problem if the limsup is a constant
almost everywhere.

The purpose of this paper is to extend the theorem of Philipp for sequences
(nk) with multidimensional indices. Most results in the theory of uniform distri-
bution and discrepancy extend for sequences with values in Rd, although usually
there is a price in accuracy to pay for the high dimensional result. In contrast,
there are very few results on the discrepancy of sequences with multidimensional
indices, even though the corresponding problem, namely the uniform asymptotic
behavior of random fields, has been extensively studied in probability theory (see
e.g. Khoshnevisan [6]). In view of this fact, it seems to be of considerable inter-
est to study the multiparameter version Philipp’s theorem, one of the sharp and
delicate results in metric discrepancy theory.

Let Nd denote the set of d-dimensional vectors with positive integer com-
ponents and let (nk)k∈Nd be a sequence of integers with d-dimensional indices.
Letting k = (k1, . . . , kd) and k′ = (k′1, . . . , k

′
d), we say that k ≤ k′ if ki ≤ k′i,

1 ≤ i ≤ d and k < k′ if k ≤ k′ and k 6= k′. We say that (nk)k∈Nd is nondecreas-
ing if nk′ ≤ nk provided k′ ≤ k. Let 1 denote the d-dimensional vector (1, . . . , 1)
and for N = (N1, . . . , Nd) we set |N| = ∏d

i=1 Ni. The discrepancy DN(x) of the
finite sequence (nk)1≤k≤N is defined, similarly to the one-parameter case, as

DN(x) = sup
0≤a<b≤1

∣∣∣∣∣

∑N
k=1 1[a,b)(〈nkx〉)

|N| − (b− a)

∣∣∣∣∣ ,
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where
∑N

k=1 =
∑

k: 1≤k≤N. Our main result is

Theorem 1. Let (nk)k∈Nd be a nondecreasing sequence of positive integers for
which

#{k ∈ Nd : 2r ≤ nk < 2r+1} ≤ Q, r = 1, 2, . . . (5)

with a constant Q. Then

lim sup
|N|→∞

|N|DN(x)√
|N| log log |N| ≤ CQ,d a.e., (6)

where CQ,d is a positive number depending on Q and d.

Note that the one-dimensional Hadamard gap condition (3) has been replaced
by condition (5) which has a different character. In one dimension, (5) is satisfied
if and only if (nk) is the union of finitely many sequences each of which satisfies
the Hadamard gap condition (3). Note that any such sequence will satisfy the
upper bound in Philipp’s result (4). Thus Theorem 1 really is a generalization of
Philipp’s result, and condition (5) can be seen as a generalization of the concept
of lacunary sequences to the case of sequences with multidimensional indices. We
emphasize that the lower bound in (4) may not necessarily hold for sequences
that satisfy only (5) instead of (3).

It would be tempting to define the Hadamard gap condition for a sequence
(nk)k∈Nd with multidimensional indices by requiring that

nk′/nk ≥ q > 1 for k′ > k. (7)

However, with definition (7), Theorem 1 fails. Let, e.g., d = 2 and nk = 2k1+k2

for k = (k1, k2). At the end of Section 3 we will show that for almost all
x ∈ (0, 1), the inequality |N|DN(x) ≥ const |N|3/4 holds for infinitely many N,
and thus (6) is not valid.

To prove Theorem 1 we use techniques developed by Takahashi [10], Philipp
[8] and Erdős and Gál [2].

2. Exponential bounds

In the following let a d-dimensional vector N = (N1, . . . , Nd) of positive
integers be given, let f(x) denote an even function satisfying

f(x + 1) = f(x), Var f ≤ 2, ‖f‖∞ ≤ 1,

∫ 1

0

f(x) dx = 0 (8)
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and let

f(x) ∼
∞∑

j=1

cj cos 2πjx

be its Fourier series. Additionally we assume

2−h−2 ≤
∫ 1

0

f(x)2 dx ≤ 2−h−1, (9)

where h is a positive integer with h ≤ (log2 |N|)/2; this condition will play a
crucial role in the chaining argument in Section 3. Let

g(x) =
|N|3∑

j=1

cj cos 2πjx.

Then ‖g‖∞ ≤ ‖f‖∞ + Var f ≤ 3. By (8) and Zygmund [12, p. 48]

|cj | ≤ Var f

2j
≤ 1

j
, j ≥ 1,

and thus
∞∑

j=1

c2
j ≤ 2

and for any J ≥ 1
∞∑

j=J+1

c2
j ≤

∫ ∞

J

1
t2

dt =
1
J

. (10)

Lemma 1.

P

{
max
M≤N

∣∣∣∣∣
M∑

k=1

(
f(nkx)− g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}
≤ (log2 |N|)4

|N| .

Proof: For 1 ≤ M ≤ N we have
∥∥∥∥∥

M∑

k=1

(
f(nkx)− g(nkx)

)∥∥∥∥∥
2

≤ |M| ‖f − g‖2

≤ |M|
√√√√

∞∑

j=|N|3+1

c2
j

≤ |M|
|N|3/2

≤ 1
|N|1/2

.
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Thus by the Markov inequality and h ≤ (log2 |N|)/2

P

{
max
M≤N

∣∣∣∣∣
M∑

k=1

(
f(nkx)− g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}

≤
∑

M≤N

P

{∣∣∣∣∣
M∑

k=1

(
f(nkx)− g(nkx)

)∣∣∣∣∣ > h−2
√
|N| log log |N|

}

≤ |N| (log2 |N|)4
|N|2 ≤ (log2 |N|)4

|N| .

The following lemma, which extends [10] and [8, Proposition], is the key
technical step in the proof of Theorem 1.

Lemma 2. Let K̃ be a finite set of d-dimensional vectors of positive integers.
Then

P





∣∣∣∣∣∣
∑

k∈K̃

g(nkx)

∣∣∣∣∣∣
> C1h

−2

√
|K̃| log log |K̃|



 ≤ 2e−2(d+1)h log log |K̃|, (11)

provided |N|1/3 ≤ |K̃| < |N| and |N| is sufficiently large.

Here and in the following C1, C2, . . . denote suitable positive numbers that
may depend on d and Q but not on k, K̃,N or anything else. |K̃| denotes the
number of elements of K̃.

P r o o f. We write {nk : k ∈ K̃} as a nondecreasing sequence with 1-dimensional
indices (nk)1≤k≤|K̃|. It suffices to prove

P





∣∣∣∣∣∣

|K̃|∑

k=1

g(nkx)

∣∣∣∣∣∣
> C1h

−2

√
|K̃| log log |K̃|



 ≤ 2e−2(d+1)h log log |K̃| (12)

for sufficiently large |N|. We put

Um(x) =
Mm+1∑

k=Mm+1

g(nkx),

where Mm is the smallest integer greater or equal m|K̃|1/3, m = 0, . . . , b|K̃|2/3c,
and Mb|K̃|2/3c+1 = |K̃|. We put m+ = b|K̃|2/3c/2,

I1(λ) =
∫ 1

0

exp


2λ

bm+c∑
m=0

U2m(x)


 dx
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and

I2(λ) =
∫ 1

0

exp


2λ

dm+e∑
m=1

U2m−1(x)


 dx.

For |z| ≤ 1 we have

ez ≤ 1 + z + z2,

and since 2λ|U2m(x)| ≤ 2λ‖g‖∞(M2m+1 −M2m) ≤ 6λ(|K̃|1/3 + 1) ≤ 1 for

λ ≤ 1

6(|K̃|1/3 + 1)
, (13)

we obtain

I1(λ) ≤
∫ 1

0

bm+c∏
m=0

(
1 + 2λU2m + 4λ2U2

2m

)
dx,

provided that (13) holds. For any m

U2
m(x) ≤ 2

Mm+1∑

k=Mm+1

Mm+1∑

k′=k

g(nkx)g(nk′x) = Wm(x) + Vm(x),

where Wm is a sum of trigonometric functions whose frequencies lie between
nMm+1 and 2|N|3nMm+1 , and where Vm is a sum of trigonometric functions
with frequencies at most nMm+1 − 1.

|Vm(x)| ≤ 2
Mm+1∑

k=Mm+1

Mm+1∑

k′=k

∑

1 ≤ j, j′ ≤ |N|3,
|nkj − nk′ j

′| < nMm+1

|cjcj′ |

≤ 2
Mm+1∑

k=Mm+1

Mm+1∑

k′=k

∑

1 ≤ j, j′ ≤ |N|3,

|j − n
k′

nk
j′| < 1

|cjcj′ |

≤ 4
Mm+1∑

k=Mm+1

Mm+1∑

k′=k




∞∑

j′=1

c2
j′




1/2 
 ∑

j>nk′/nk−1

c2
j




1/2

.

For fixed k there are at most 2Q integers k′ ≥ k for which nk

nk′
≥ 1 (for these

nk′ = nk), at most 2Q for which 1 > nk

nk′
≥ 1

2 , at most 2Q for which 1
2 > nk

nk′
≥ 1

4
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and so on. Thus

|Vm(x)| ≤ 4
√

2‖f‖2(Mm+1 −Mm)2Q

(
2
√

2 +
∞∑

i=1

√
1

2i − 1

)

≤ 64Q‖f‖2(Mm+1 −Mm).

Therefore

I1(λ) ≤
∫ 1

0

bm+c∏
m=0

(
1 + 2λU2m(x) + 4λ2W2m(x) + 256λ2Q‖f‖2(M2m+1 −M2m)

)
.

If d2m cos 2πu2mx is any term of the trigonometric polynomial 2λU2m(x) +
4λ2W2m, then

u2m −
m−1∑

k=0

u2k ≥ nM2m
− 2|N|3

m−1∑

k=0

nM2k

≥ nM2m

(
1− 2|N|3

m−1∑

k=0

(
2−b|K̃|

1/3/Qc
)m−k

)
> 0

for sufficiently large |N|, since by assumption |K̃| > |N|1/3. Hence

I1(λ) ≤
bm+c∏
m=0

(
1 + 256λ2Q‖f‖2(M2m+1 −M2m)

)

≤ exp



bm+c∑
m=0

256λ2Q‖f‖2(M2m+1 −M2m)


 .

In the same way we can prove a similar inequality for I2(λ), and thus by the
Cauchy-Schwarz-inequality

∫ 1

0

exp


λ

|K̃|∑

k=1

g(nkx)


 dx ≤

√
I1(λ)I2(λ) ≤ exp

(
128λ2Q‖f‖2|K̃|

)
,

valid for sufficiently large |N| and any λ satisfying (13). We choose

λ = h3

√
log log |K̃|

|K̃|
,
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and observe that this λ satisfies (13) for sufficiently large |N|. Thus we get by
Markov’s inequality

P



|K̃|∑

k=1

g(nkx) > C1h
−2

√
|K̃| log log |K̃|




≤ exp
(
128Qh6‖f‖2 log log |K̃| − C1h log log |K̃|

)

≤ exp
(
−2(d + 1)h log log |K̃|

)

for a sufficiently large C1 that satisfies 128Qh62(−h−1)/2 − C1h ≤ −2(d + 1)h
for h ≥ 1 and sufficiently large |N|. A similar result for −g(x) instead of g(x)
yields (12), which proves Lemma 2. ¤

Until now we considered only even functions f . Since any function f satisfying
(8) can be written as the sum of an even and an odd function both of which
satisfy (8) and our previous estimates remain valid for odd functions f , we get
as a consequence of Lemma 1 and Lemma 2

Corollary 1. Let f(x) be a function which satisfies (8) and which can be
divided into an even and an odd part both of which satisfy (9). Write g(x) for
the |N|3-th partial sum of the Fourier series of f . Then we have

P

{
max
M≤N

∣∣∣∣∣
M∑

k=1

(
f(nkx)− g(nkx)

)∣∣∣∣∣ > 2h−2
√
|N| log log |N|

}
≤ 2(log2 |N|)4

|N|

Let K̃ be a finite set of d-dimensional vectors of positive integers. Then

P





∣∣∣∣∣∣
∑

k∈K̃

g(nkx)

∣∣∣∣∣∣
> 2C1h

−2

√
|K̃| log log |K̃|



 ≤ 4e−2(d+1)h log log |K̃|,

provided |N|1/3 ≤ |K̃| < |N| and |N| is sufficiently large.

3. Proof of Theorem 1

Using the inequalities in Section 2 it is not difficult to prove that
∣∣∣∣∣

N∑

k=1

(
1[a,b)(〈nkx〉)− (b− a)

)
∣∣∣∣∣ = O

(√
|N| log log |N|

)
a.e.
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for any fixed 0 ≤ a < b ≤ 1. To prove the uniformity in a, b we will use a
multiparameter chaining argument which extends the arguments in Erdős and
Gál [2] and Philipp [8], but the multiparameter setting presents considerable
difficulties.

Let N = (N1, . . . , Nd) with |N| = 2n be given. We put H = (log2 |N|)/2 =
n/2. Every a ∈ [0, 1) can be written in dyadic expansion

a =
∞∑

h=1

2−hah, ah ∈ {0, 1},

and obviously
H∑

h=1

2−hah ≤ a ≤
H∑

h=1

2−hah + 2−H .

We define functions

%
(j)
h (x) = 1[(j−1)2−h,j2−h)(x), 1 ≤ j ≤ 2h, 1 ≤ h ≤ H,

where 1[a,b) denotes the indicator of the interval [a, b), extended with period 1,
and

ϕ
(j)
h (x) = %

(j)
h (x)−

∫ 1

0

%
(j)
h (x) dx, 1 ≤ j ≤ 2h, 1 ≤ h ≤ H.

Then for any a there exist coefficients εh = εh(a) ∈ {0, 1} and indices jh =
jh(a), 1 ≤ h ≤ H, plus an additional index j̄H = j̄H(a) such that

H∑

h=1

εh%
(jh)
h (x) ≤ 1[0,a)(x) ≤

H∑

h=1

εh%
(jh)
h (x) + %

( ¯jH)
H (x). (14)

The functions ϕ
(j)
h (x) satisfy the conditions of Corollary 1. We write ϕ̂

(j)
h for the

|N|3-th partial sum of the Fourier series of ϕ
(j)
h (corresponding to the function

g in Section 2) and ϕ̄
(j)
h for the remainder terms (corresponding to f − g).

We define sets

K̂i =
log2 Ni⋃

L=0

Ni
2L−1⋃

l=0

{{
x ∈ N : l2L + 1 ≤ x ≤ (l + 1)2L

}}
, i = 1, . . . , d,

(that means for example K̂i = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}} for
Ni = 4) and put

K̂ = K̂(N) =
{

K̃1 × · · · × K̃d : K̃i ∈ K̂i, i = 1, . . . , d
}

.
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Now let any M = (M1, . . . ,Md) ≤ N be given. We write each Mi in dyadic
expansion Mi =

∑∞
l=0 Mi,l2l, put

M̂i =
log2 Ni⋃

L=0







x ∈ N :

log2 Ni∑

l=L

Mi,l2l + 1 ≤ x ≤
log2 Ni∑

l=L−1

Mi,l2l







 ,

write the set {x ∈ Nd : x ≤ M} as an union of disjoint sets

K̃(M) ∈ M̂ =
{

M̃1 × · · · × M̃d : M̃i ∈ M̂i, i = 1, . . . , d
}

and write K̄(M) for the class of sets K̃(M). (For example if d = 2 and M =
(7, 5), then M̂1 = {{1, 2, 3, 4}, {5, 6}, {7}}, M̂2 = {{1, 2, 3, 4}, {5}} and

K̄(M) = {{1, 2,3, 4} × {1, 2, 3, 4}}, {{1, 2, 3, 4} × {5}}, {{5, 6} × {1, 2, 3, 4}},
{{5, 6} × {5}}, {{7} × {1, 2, 3, 4}}, {{7} × {5}}.

We emphasize that the elements K̃ of K̄(M) are contained in K̂ as well.) Thus
M∑

k=1

f(nkx) =
∑

K̃∈K̄(M)

∑

k∈K̃

f(nkx).

The number of sets K̃ = K̃(M) with |K̃| = 2l is at most d!ld−1 (by the con-
struction of the sets K̃ it is clear that |K̃| always is an integer power of 2).
Thus

∣∣∣∣∣
M∑

k=1

f(nkx)

∣∣∣∣∣ ≤

 ∑

K̃(M): |K̃|>|N|1/3

∣∣∣∣∣∣
∑

k∈K̃

f(nkx)

∣∣∣∣∣∣




+ 2d!
(
log2

(
|N|1/3

))d−1

|N|1/3‖f‖∞.

In K̃(M) there are at most d!ld−1 sets with |K̃| = 2n−l. We define

GN =
⋃

K̃∈K̂(N),|K̃|>|N|1/3

H⋃

h=1

2h⋃

j=1





∣∣∣∣∣∣
∑

k∈K̃

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
>

C2

h2

(
log2

|N|
|K̃|

)−d−1 √
|N| log log |N|



 ,

HN =
H⋃

h=1

2h⋃

j=1

{
max
M≤N

∣∣∣∣∣
M∑

k=1

ϕ̄
(j)
h

∣∣∣∣∣ > 2h−2
√
|N| log log |N|

}
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where C2 will be chosen later. Here and in the sequel, log2 is meant as maximum
of (1, log2 x). For x ∈ (0, 1) in Gc

N ∩Hc
N (Ac denotes the complement of A) we

have ∣∣∣∣∣
M∑

k=1

ϕ
(j)
h (nkx)

∣∣∣∣∣

=

∣∣∣∣∣
M∑

k=1

(
ϕ̂

(j)
h (nkx) + ϕ̄

(j)
h (nkx)

)∣∣∣∣∣

≤

 ∑

K̃∈K̄(M),|K̃|>|N|1/3

∣∣∣∣∣∣
∑

k∈K̃

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 +

∣∣∣∣∣
M∑

k=1

ϕ̄
(j)
h (nkx)

∣∣∣∣∣

≤




2n/3∑

l=0

∑

K̃:
|N|
|K̃|=2l

C2h
−2l−d−1

√
|N| log log |N|




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 + 2h−2
√
|N| log log |N|

≤



2n/3∑

l=0

C2h
−2l−d−1d!ld−1

√
|N| log log |N|




+2d!
(
log2

(
|N|1/3

))d−1

|N|1/3 + 2h−2
√
|N| log log |N|

≤ C3h
−2

√
|N| log log |N| for all M ≤ N, h = 1, . . . , H, j = 1, . . . , 2h.

Hence by (14) we have for such x

sup
a∈[0,1)

max
M:|N|/2<|M|≤|N|

∣∣∣∣∣
M∑

k=1

1[0,a)(nkx)− |M|a
∣∣∣∣∣

≤ sup
a∈[0,1)

max
M:|N|/2<|M|≤|N|

H∑

h=1

∣∣∣∣∣
M∑

k=1

ϕ
(jh)
h (nkx)

∣∣∣∣∣ +

∣∣∣∣∣
M∑

k=1

ϕ
( ¯jH)
H (nkx)

∣∣∣∣∣ + 2
√
|N|

≤
H∑

h=1

C3h
−2

√
|N| log log |N|+ C3H

−2
√
|N| log log |N|+ 2

√
|N|

≤ C4

√
|N| log log |N|
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and thus
∣∣∣∣∣

M∑

k=1

1[0,a)(nkx)− |M|a
∣∣∣∣∣ ≤ 2C4

√
|M| log log |M|

for all M ≤ N with |N|/2 < |M| ≤ |N| and all a ∈ [0, 1). We write

Gn =
⋃

N: |N|=2n

GN, Hn =
⋃

N: |N|=2n

HN.

Then for all x ∈ [0, 1) in Gc
n ∩Hc

n

∣∣∣∣∣
M∑

k=1

1[0,a)(〈nkx〉)− |M|a
∣∣∣∣∣ ≤ 2C4

√
|M| log log |M| (15)

for all M with 2n−1 < |M| ≤ 2n and all a ∈ [0, 1). If we can show

∞∑
n=1

P(Gn) < ∞,

∞∑
n=1

P(Hn) < ∞ (16)

then, by the Borel-Cantelli lemma, for almost all x ∈ [0, 1) there exists an
n0 = n0(x) such that x 6∈ (Gn ∪Hn) for all n > n0, and thus by (15)

lim sup
N≥1

|N|DN(x)√
|N| log log |N| ≤ 4C4 a.e.,

which proves (6). It remains to show (16). There are at most d!nd−1 different
vectors N with |N| = 2n. By Corollary 1

∞∑
n=1

P(Hn) ≤ d!
∞∑

n=1

nd−1 max
N: |N|=2n

P(HN)

≤ d!
∞∑

n=1

nd−1
H∑

h=1

2h∑

j=1

2n4

2n

≤ 2d!
∞∑

n=1

nd−1 n

2
2n/2 n4

2n
< ∞.
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For any N with |N| = 2n and K̃ ∈ K̂(N) with |K̃| = 2n−l, l ≥ n/3, and any
1 ≤ h ≤ H and 1 ≤ j ≤ 2h by Corollary 1

P





∣∣∣∣∣∣
∑

k∈K̃

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> C2h

−2

(
log2

|N|
|K̃|

)−d−1 √
|N| log log |N|





≤ P





∣∣∣∣∣∣
∑

k∈K̃

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> C2h

−2(log2 2l)−d−1
√

2l

√
|K̃| log log |K̃|





≤ P





∣∣∣∣∣∣
∑

k∈K̃

ϕ̂
(j)
h (nkx)

∣∣∣∣∣∣
> 2C1h

−2

√
|K̃| log log |K̃|





≤ 4e−2(d+1)h log log |K̃|,

if n is sufficiently large and if C2 is chosen such that C2(log2 2l)−d−1
√

2l > 2C1

for l = 0, 1, 2, . . . , and so

P(GN) ≤
∑

K̃∈K̂(N):|K̃|>|N|1/3

H∑

h=1

2h∑

j=1

4e−2(d+1)h log log |K̃|

≤ 4
2n/3∑

l=0

d!ld−1
H∑

h=1

2h

(
1

log 2n−l

)2(d+1)h

≤ 4 d!nd
H∑

h=1

(
2

log 2n/3

)2(d+1)h

≤ 4 d!nd

(
9
n

)2(d+1)

for sufficiently large n. Thus

P(Gn) ≤ d!nd−1 max
N: |N|=2n

P(GN)

≤ d! 4 d! 92(d+1)nd−1ndn−2(d+1) < C5n
−3

for sufficiently large n, which implies that
∞∑

n=1

P(Gn) < ∞.

This proves the theorem.
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In conclusion we prove the remark made in the introduction, namely that The-
orem 1 fails for the sequence (nk)k∈N2 defined by nk = 2k1+k2 for k = (k1, k2).
To see this, let N = (n, n) and f(x) = 1[0,1/2)(x) − 1/2, extended with period
1. Then

∑

1≤k≤N

f(nkx) =
2n∑

j=2

c
(n)
j f

(
2jx

)
(17)

where c
(n)
j = j − 1 for 2 ≤ j ≤ n + 1 and c

(n)
j = 2n− j + 1 for n + 2 ≤ j ≤ 2n.

Observe that

f
(
2jx

)
=

1
2

rj+1(x), j ≥ 1,

where rj denotes the j-th Rademacher function, and thus the sequence (rj(x))j≥1

is a sequence of i.i.d. random variables. Hence using the central limit theorem
with Berry-Esseen remainder term (see e.g. Petrov [7, p. 149]) we get that

∣∣∣∣∣∣
µ


x ∈ (0, 1) : B−1/2

n

2n∑

j=2

c
(n)
j f(2jx) < t


− Φ(t)

∣∣∣∣∣∣
≤ C Ln ≤ C ′n−1/2, (18)

where µ is the Lebesgue measure, Φ is the standard normal distribution function,
C, C ′ are absolute constants,

Bn =
∫ 1

0




2n∑

j=2

c
(n)
j f(2jx)




2

dx =
2n∑

j=2

(
c
(n)
j

)2
∫ 1

0

f(x)2dx =
2n3 + n

12
.

and

Ln = B−3/2
n

2n∑

j=2

∫ 1

0

∣∣∣c(n)
j f(2jx)

∣∣∣
3

dx

= B−3/2
n

2n∑

j=2

(
c
(n)
j

)3
∫ 1

0

|f(x)|3 dx =
(

12
2n3 + n

)3/2
n4 + n2

16
.

Given ε > 0 choose a > 0 so small that Φ(a)− Φ(−a) ≤ ε, then by (18) we get

µ


x ∈ (0, 1) :

∣∣∣∣∣∣

2n∑

j=2

f
(
2jx

)
∣∣∣∣∣∣
≥ aB1/2

n


 ≥ 1− 2ε
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for sufficiently large n. Since Bn ≥ n3/6 ≥ |N|3/2/6, the last relation implies

µ


x ∈ (0, 1) :

∣∣∣∣∣∣
∑

1≤k≤N

f(nkx)

∣∣∣∣∣∣
≥ a|N|3/4

√
6


 ≥ 1− 2ε (19)

for sufficiently large n. Letting Fn denote the set in the brackets in (19), it
follows that

µ(∩∞n=1 ∪∞k=n Fk) ≥ 1− 2ε,

i.e., the set of x ∈ (0, 1) such that
∣∣∣∣∣∣

∑

1≤k≤N

f(nkx)

∣∣∣∣∣∣
≥ const |N|3/4 for infinitely many N (20)

has measure ≥ 1− 2ε. Since ε was arbitrary, we get

lim sup
|N|→∞

|N|DN(x)√
|N| log log |N| ≥ lim sup

|N|→∞

∣∣∣∑1≤k≤N f(nkx)
∣∣∣

√
|N| log log |N| = +∞ a.e.,

i.e., the conclusion of Theorem 1 fails for the sequence (nk)k∈N2 .
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[2] ERDŐS, P. – GÁL, I.S.: On the law of the iterated logarithm, Proc. Nederl. Akad. Weten-
sch. Ser. A. 58 (1955), 65–84.

[3] FUKUYAMA, K.: The law of the iterated logarithm for discrepancies of {θnx}, preprint.
[4] GAPOSHKIN, V.F.: On some systems of almost independent functions, Siberian Math.

Journ. 9 (1968), 198–210.
[5] KHINTCHINE, A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie
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