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Abstract. We provide a characterization of strictly stationary solutions to
the stochastic recurrence equation zy = c(€g—1)zk—1 + g(ex—1) with Borel-
measurable functions ¢ and g, and independent, identically distributed random
variables {g;}. Strictly stationary solutions that are functions of the past,
respectively, of the future exist if and only if the expected value E'log le(eo)] is
negative, respectively, positive. The main result of the paper is to show that
there is no solution that is a function of the past or the future if E log|c(e0)| =
0.

1. Introduction and results

Let c(z) and g(z) denote real-valued Borel-measurable functions. In the fol- .
lowing, we study the recursion '

(1.1) 2, = clep—1)2k—1 + 9(€k-1), —o0 < k < 00,

where {e} is a sequence of independent, identically distributed random vari-
ables. Recursions of the form (1.1), known as stochastic recurrence equations
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(also stochastic difference equations), have been the subject of intensive study for
several decades. See the seminal papers of Furstenberg and Kesten (1960), Ver-
vaat (1979), Brandt (1986), Bougerol and Picard (1992a), and Goldie and Maller
(2000) for background information and variations. As specifications, the defining
equations (1.1) include the classical autoregressive processes and also the volatility
sequences of various generalized autoregressive conditionally heteroskedastic mod-
els. Section 2 contains a broader discussion with details. An approach focusing on
applications is offered in Diaconis and Freedman (1999), who show that stochastic
recurrence equations have impact, for instance, in the field of fractal images.

Related recursions defining, for example, random coefficient autoregressive
sequences which possess a second random input, have been studied by Aue et al.
(2006b). Then, (1.1) becomes 2z = bx2zg—1 + k-1, where {by} is a sequence of
independent, identically distributed random variables, independent of {ex}

Here, we are interested in a full characterization of strictly stationary solutions
of (1.1). To this end, for —oo < k < 00, let

Fr=o0(g;,—o0 <i<k) and Gk = o(gs, k <1< 00)

denote the o-algebras generated by the past and the future, respectively. Let
log, z=0if z < e, and =logz if z > e. We assume for the rest of the paper that

Elog, |c(eo)] <o  and  Elogy |g(g0)| < oo.

Writing Elog|e(eo)| < 0, we allow the possibility Elog|c(eo)| = —oo. Similarly,
the statement Flog |c(go)| > 0 includes Elog|c(ep)| = oo. Finally, a sequence {yx}
of random variables is called strictly stationary if, for all integers k1,..., ks, h and
all nonnegative integers n,

D
(yku v 7yk:n) = (yk1+h) e a'ykn-i-h)a

where 2 stands for equality in distribution. The following theorem provides suffi-
cient conditions for the strict stationarity of solutions {2;} to the recursion defined
by (1.1).

Theorem 1.1.

(i) If Blog|c(eo)| < O, there is a unique strictly stationary solution {z1} of (1.1).
This solution s adapted to {Fy_1}, that is, for any k, z is measurable with
respect to Fr—1.

(ii) If Elog|c(eo)| > 0, there is a unique strictly stationary solution {21} of (1.1).
This solution is adapted to {Gx}.
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Versions of the first part of Theorem 1.1 are well studied in the literature
(see, for instance, Bougerol and Picard (1992b), and Aue et al. (2006a) for results
concerning GARCH-type sequences). It is the desired approach for any application,
since it determines those solutions that are functions of the past. Hence, part (ii)
of the theorem is less studied, although the result can be obtained by imitating the
methods used to prove part (i).

To investigate the transition case Elog |c(eo)| = 0, we say first that a sequence
{2} is a nondegenerate solution if P{|zg| = |2x+1|} < 1 for all k.

Theorem 1.2.
(i) If the recursion (1.1) has a nondegenerate, strictly stationary solution which
is adapted to {Fr—1}, then Elog|c(eo)| < 0.
(i) If the recursion (1.1) has a nondegenerate, strictly stationary solution which
is adapted to {Gy}, then Elog|c(eo)| > 0.

In other words, the sufficient conditions imposed in parts (i) and (ii) of The-
orem 1.1 are also necessary.

Corollary 1.3.
(i) The recursion (1.1) has a unique nondegenerate, strictly stationary solution
which is adapted to {Fi—1} if and only if Elog|c(eo)] < 0.
(ii) The recursion (1.1) has a unique nondegenerate, strictly stationary solution
which is adapted to {Gy} if and only if Elog|c(eo)| > 0.
(ii) If Elog|c(eo)| = 0, then there is no nondegenerate, strictly stationary solution
which is adapted to {Fr—1} or {Gx}.

Remark 1.4. Note that the constant sequence zp = a, —00 < k < 00, is a
solution of (1.1) if and only if @ = ac(eo) + g(€o) a.s. In this case no restriction on
Elog|c(eo)] is needed.

Remark 1.5. (i) If g(z) = 0 and c(z) = 1, then the general solution of (1.1) is
2 = €, —00 < k < 0o, where ¢ is an arbitrary random variable.

(ii) If g(z) = 0 and c¢(z) = —1, then the general solution of (1.1) is 2z =
(—1)ke, —0co0 < k < o0, where ¢ is an arbitrary symmetric random variable.

The next section comntains a collection of possible specifications of (1.1), while
the proofs can be found in Section 3.
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2. Examples

Specific choices of the Borel-measurable functions c(z) and g(z) in (1.1) lead
to prominent and well-known recursions.

Example 2.1. (Autoregressive processes).  Let c(z) = ¢ be constant and let
g(z) =  be the identity mapping. Then (1.1) becomes

(2.1) 2k = P21+ Ep—1, —0 < k < 00,

where zg_1 is independent of ex—1. Hence, (2.1) defines an autoregressive process
of order one. Note that, in the time series context, the recursion is usually given
as zy = Qzp—1 + €x. If ¢ =1, we obtain the random walk case.

Necessary and sufficient conditions for autoregressive processes are long known
and can be found, for example, in Brockwell and Davis (1991). Since c(eo) = ¢ is
nonrandom, the conditions of Theorem 1.1 reduce to || < 1, || > 1 and [p] =1
for the respective parts (i), (i) and (iil).

Another class of random variables included in the framework of (1.1) are
augmented GARCH(1,1) processes (see Duan (1997)), which are, for —oo < k < o0,
defined by the relations

G(Z.Z) Tk= OkEk;

(2.%) A(d)= cler_1)A(o?_1) + g(ex—1),

where A(z) is invertible. On substituting zx = A(02), the recursion in (Qg) becomes
a special case of (1.1).

Example 2.2. (Polynomial GARCH processes). If A(z) = 2% with some 6§ > 0 in
(2.@, then the processes defined by (2.2) and (22) are referred to as polynomial
GARCH. On specifying c(z) and g(z), this setting includes Bollerslev’s (1986)
classical GARCH version and a large variety of other models frequently used in
econometrics. For details we refer to Aue et al. (2006a).

Theorem 1.1 states that, in case Flog|c(eo)| < 0, there is a unique strictly
stationary solution and it is adapted to {Fg—1}. Usually, c(z) and g(z) are non-
negative. Then, no {Fi_1}-adapted solution exists if Elog|c(eo)| > 0. This follows
from the fact that, on applying (2%) repeatedly (see (3.1)) and using the fact that
an iid random walk with zero mean is recurrent, we get

N i—1
20 = A(03) > liI{In sung(e_i) H cle—j) =00 a.s.

i=1 g=1
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But part (ii) of Theorem 1.1 implies the existence of a {Gr}-adapted strictly sta-
tionary solution if F log |c(go0)| > 0.

Example 2.3. (Exponential GARCH processes). If A(z) = logz, then processes
satisfying (2.2) and (2@) are called exponential GARCH. The most prominent
members of this subclass are the multiplicative GARCH model of Geweke (1986)
and the exponential GARCH model introduced by Nelson (1 991), whose respective
specifications are given by

M loga;zc=w+(a—|-,8) 108“72—1 +a]'0g8%~,—17
' logof=w + Blogoh_y -+ cngp—1 + c2ler-1|-

Again, Theorem 1.1 implies, for (2{) (for (2*)), the existence of a strictly station-
ary solution which (i) is § adapted to the past if ja + 8] < 1 (if || < 1), (i) is

adapted to the future if | + 8| > 1 (if |8] > 1). If |a+ f| =1 (if |8] = 1) there is
no solution adapted to the past or the future.

Similar statements referring to strictly stationary solutions of the recursions
defining random coeflicient autoregressive processes could be obtained in the same
fashion. Details are omitted here.

3. Proofs

First observe that, using recursion (1.1) repeatedly, we obtain, for any integer
kand any N > 1,

N N i—1
(3.1) 2 = ze-n | | elen—i) + > 9ler-i) [ eten-y)-
i=1 i=1 j=1

On the other hand, rewriting (1.1) as

1 . _g(€k—1)
cler-1) " cler-1)

Zp—1 =

yields similarly that

N-1 i

N-1

1 1
3.2 2 = 2 ” - gs,ill——.
(32) kAN paly clewts) = (Bt )j=0 c(Ek+3)
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On letting N — oo, equations (3.1) and (3.2) provide natural candidates for strictly
stationary solutions to (1.1) which are measurable with respect to the past and
to the future, respectively. To proceed with the proof, we need to establish two
auxiliary results. The first follows immediately from the strong law of large numbers
and concerns properties of the product

N
(3.3) ny = [[ele-e)y N1,
=1

which will play a decisive role in the following.

Lemma 3.1.
(i) If Elog|c(eo)| > 0, then

N
Zlog le(e—s)] 0 a.s. (N — 00).
i=1

(ii) If Elog|c(eo)| < 0, then

N
Zlog le(e—;)| = —o0 a.s. (N — 00).

i=1

Proof. Tt suffices to prove (i), since symmetry then implies (ii). If Eloglc(eo)| <
oo the assertion follows from the strong law of large numbers. So assume
Elog|c(gg)| = oo. It clearly holds, for any K > 0,

N N
Z log |e(e-i)| = Z min{log |e(e—s)|, K}
i=1 i=1

As K — oo, Emin{log|c(eo)|, K} — oo, hence Emin{log|c(eo)|, K} > 0 for K
large enough. Using the strong law of large numbers, (i) is readily proved.
]
For k > 1, let 7; be the o-algebra generated by the random variables
€_1,...,6—. Recall that a random variable M is called a stopping time with
respect to the filtration {Tx} if {M < k} € 7y, for all k£ > 1. Let

Tu={AcB: AN{M<k}eT for all k > 1},
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where B is the o-algebra of the underlying probability space, and denote by {zx} a
strictly stationary, {Fx—1}-adapted solution of (1.1). Note that if M is a stopping
time with respect to {Zx}, then

(g,c{ / 2z and Tpr are independent;
M

[ '5'57 ,(3/4'5 my and Z g(e_;)mi—1 are measurable with respect to Za;
i=1

{66} P{z_p <z} = F(z), where F(z) = P{z < z}.

Relation (3.4) follows from the strong Markov property, while (3@ is evident from
the definition of 7j. Finally, (3.4) follows from (3.4) and the stationarity of {2z}
For a set A, let T{A} be its set indicator function.

Lemma 3.2. Let M be a stopping time with respect to {T}. Then
M
F(z)=E [I{ Zg(e—i)ﬂ'm‘—l < »’L‘}I {mm =0} +
i=1
' M
+F (71';,} [;r: - Zg(e-i)m_l])f {mpm >0} +
i=1

M
+ [1 — F_ (WITJI [:1; — Zg(e_i)m_l])]f{wM < 0}:1 s
i=1
where F_(t) = lim, ~ F'(s) denotes the left limit.
Proof. Put k = 0 and N = M in formula (3.1) and use the fact that P{z <

z} = E[P{z < z|7m}]. By (3.4)—(3.1) and wellj;known properties of conditional

expectations, Lemma 3.2 follows immediately.
]

Proof of Theorem 1.1. (i) We assume that

(3.%) &5 Elog |e(eo)] < 0.

It follows from Brandt (1986) that the series
] i—1
zp = Zg(ek_i) H c(ek—5), -0 < k < o0,
i=1 i=1

are absolutely convergent with probability one. It is also clear that zj is measurable
with Tespect to Fr_1 and that it satisfies the recursion (1.1). Moreover, {z;} is

Acta Sci. Math. (Szeged),7Tz:xx—yy(2VII)
All rights reserved @ Bolyai Institute, University of Szeged

A




844 A. Aug, I. Berkes and L. HorvATH

strictly stationary. To finish the proof we need to show that it is the unique solution.
To this end, let {21} be another strictly stationary solution. Using equation (3.1),
we obtain that, for any k and N > 1,

|2 — 2] < |2— N|H|c<ek )+ Z |g(sk_z)|H|c<ek_J

i=N+1

Since the sum defining 2} is absolutely convergent with probability one, the second
term on the right-hand side of the latter inequality converges to zero almost surely.
Also, by (3.5) and part (ii) of Lemma 3.1, we have that, for any fixed &,

N N
H le(ek—s)| = exp (Zlog |c(ek_¢)|) -0 as (N — 0).

i=1 i=1

Since {2} is a strictly stationary solution, for any & > 0, there is a constant L >0
such that P{|zx_n| > L} < ¢ for all N. Hence, for any € >0 and 6 > 0,

dim P{|z- N1H|c(ek S lg<ek_z>|H|c(sk_g)|>6}<s,
i=N+1

implying that
Plzgr =21 =1 forall —oo <k < o0,

finishing the first part of the proof.
(ii) We repeat the arguments used in part (i) of the proof. Since

ElOg |C(80)| > 0)

the series

0 %
1

Zp = — Ekti —co<k<

2k ;g( k7+'L):)];[0 C(Sk.‘.j)’ 0 0,
are absolutely convergent with probability one. Clearly, Z; is Gr-measurable and
{3} is a strictly stationary sequence. Let {z;} denote another strictly stationary
solution of (1.1). Then, by (3.2) and the definition of Z;, we have, for all k and
N>1,

N-1

|z — Zk| < |zk4n] H + Z lg(er+o)l H Ic(sk
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Since the sum defining 2, is absolutely convergent with probability one,

Z l9(ex+)l H IC(EA 5 as. (N — ),

and, by part (i) of Lemma 3.1,

N-1 . Ne1
il;([) I—C(Ek—+z)—l = exp ( — ; log |C(6k+i)]> —0 a.s. (N — 0),

so that it follows as above that P{z; = Zx} = 1.
[

Proof of Theorem 1.2. We shall only give a proof of (i), since the proof of (ii) is
essentially the same. Recall the definition of my in (3.3) and F' in (3.4), and fix
a real z. We assume that (1.1) has a nondegenerate, strictly stationary solution
{21} which is adapted to {Fx—1}, but Elog|c(eo)| = 0. We show in the following
that this leads to a contradiction. For N > 1, let

N =I{ ig(e_i)m_l < w}I{er =0}+
+F (wJT,l [z - i": 9(6—1)7&—1])] {mn >0} +
i=1
+ [1 ~F_ (W;Vl [93 - fj g(a_i)m_l])]f {my <0}
=1

Note that if Elog|c(eo)| = 0 and P{log|c(eo)| = 0} < 1, then the Chung-Fuchs
law of large numbers (cf. Chow and Teicher (1988)) implies that

E . }
N N
limsup |7n| = lim sup H le(e—;)| = lim sup exp (Zlog |c(a_i)|) =00  as.
N—oo N—oo ;757 N—oo i=1

Hence, with probability one,

N—oo

347 (@) limsupmy =400 or (B8) limiﬁf'irN =—00 oOr () both.
N—oo

Assume now that P{log|c(g0)| = 0} = 1. If P{g(eo) = 0} = 1, then the solution
of (1.1) satisfies |zx| = 1 a.s. and it is thus degenerate. In the following, we study
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the case when |c(go)| = 1 a.s. and P{g(eo) = 0} < 1. First observe that, by the
latter assumption on g(eo) and the Borel-Cantelli lemma, there is a § > 0 such
that P{|g(ex)| > 6 infinitely often } = 1. Hence, Zﬁil g(e—;)m;—1 cannot converge
a.s., since

P{lg(e—i)mi—1| = |g(e—:)| = 6 infinitely often } = 1.

Consequently, we have either that

N N

((,3(87 li]{’njllop ; gle_i)m—1 =1 # o= 1}\?]—};? ;g(s_i)m_l a.s.

or at least one of the next two options holds true:

N
lim sup Zg(a_i)m__l: +oo  as,

M N—oo i]=v1

1}%’_1’2;’101?21‘9(6_1)7%_1: —00 a..8.
=

Consider the case (3.§) and assume that there is a subsequence N(k) along
which my ) = 1 and
N(k)

Z gle—i)mi—1 — a1 a.s.

=1

We can and shall assume that Zf__(lk ) g(e—i)mi—1 < c1. Hence, nywy — F(z —c1)
a.s., and therefore F(z) = F(z —cy) for all z. If ¢; # 0, then this is a contradiction
to the fact that F is the distribution function of a nondegenerate solution. If
c1 = 0, then ¢ # 0 and similar arguments lead to the same contradiction. The
case (k) = —1 can be treated in an analogous fashion.

Consider now the case (3.)) and assume that there is a subsequence N(£)
along which () =1 and

N(2)
lim Z gle_i)m—1 = +c0 a.s.z

£—00

i=1

Then, v — 0 and, therefore, for all z, F(z) = 0, a contradiction. Similar
arguments apply if my (g = —1. They provide the same contradiction moreover in
the case (3§)

If, finally, Elog|c(eo)| > 0, the strong law of large numbers implies that (3@
and consequently relation (3?[) hold.

[9

-—
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It is enough to deduce now a contradiction for case (o) of (3i) The proof
for (8) and () is the same.

Assume that (@) in (3.8) holds and define a sequence N (m) of integer-valued
random variables by N(1) = 1 and N(m) = min{j > N(m — 1) : m; > m} for
m > 2. It is obvious that N(m) — 00, Ty (m) — 0o and that, for each m, N (m) is
a stopping time with respect to {7x}. Let

N(m)
K = limsup w&%m) Z g(e—i)mi-1.
Clearly, for each integer L > 1,
N(m)
K =limsup w&%m) Z gle—;)mi—1.
m—eo i=L

If N(m) < L, the sum on the rightThand side is 0, and if N(m) > L, the expression

w]}%m) Zf_f__(gn) g(e_s)mi—1 is a function of e_(z_1y,6_L,- ... Hence by the 0—1 law,
K is a constant with probability one. Clearly, infinitely many of the numbers
N(m)
£3-10) W&%m) 2 gle—i)mi—1
i=

lie on one side of X and keeping only these indices from the sequence N(m), the
stopping time property remains valid. We now construct an increasing sequence
N*(m) of integers such that, for each m, N*(m) is a stopping time with respect to
the filtration {7;} and

N*(m)
I T z; g(e-i)mi-1 = K.
=

Assume first that K is finite and the numbers in (3.1@ lie, e.g., on the right side of
K. Let N*(1) =1 and if N*(1) < --- < N*(m —1) are already defined, let N*(m)
be the smallest integer k > N*(m — 1) such that & belongs to the sequence {N(j)}

and
k

Zg(é’-i)ﬂ‘i_l <K+ 1/m.

i=1
The validity of the relation {N*(m) < £} depends only on the values of the random
variables €_1,...,6—g,m1,...,m and thus {N*(m) < £} € Ty, showing that N*(m)
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satisfies the requirement. A similar argument holds if K = +oo. Clearly,
N*(m)

T — Z g(e—i)ms

i=1 - —K.
WN*(m)

If there is a subsequence N*(m(k)) of N*(m) such that

N*(m(k))

z— Y gle-dm

TN« (m(k) -

then N« (meky) — F(—K) a.s. and therefore by Lemma 3.2 F(z) = F(—K). If for
some subsequence N*(m(k)) we have that

N (m(k))

z— Y gle=i)m

i=1 <-K
TN (m(k)) -

then Ny+(m) — F-(—K) a.s. and thereforq!by Lemma 3.2!F(w) = F_(-K).
This means that F(z) can take only two values at most. If F' takes only one value,
it cannot be a distribution function, so we have a contradiction. If F' takes two
values, then zg is a constant with probability one, contradicting that the solution

is nondegenerate. This completes the proof of part (i) of Theorem 1.2.
[
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