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Abstract

We consider Kemp’s q-analogue of the binomial distribution. Several conver-
gence results involving the classical binomial, the Heine, the discrete normal,
and the Poisson distribution are established. Some of them are q-analogues of
classical convergence properties. From the results about distributions, we de-
duce some new convergence results for (q-)Krawtchouk and q-Charlier poly-
nomials. Besides elementary estimates, we apply Mellin transform asymp-
totics.
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1. Introduction

Kemp and Kemp (1991) introduced a q-analogue KB(n, θ, q) of the bi-
nomial distribution. It is well known that for n → ∞ (and fixed θ) Kemp’s
q-binomial distribution converges to a Heine distribution. We are now inter-
ested in sequences of random variables Xn with Xn ∼ KB(n, θn, q), where
(θn) is a sequence of positive real parameters. Our main results contain
q-analogues to the convergence of the classical binomial distribution to the
Poisson distribution and the normal distribution, and show that the limits
q → 1 and n → ∞ can be exchanged. From the limit theorems about dis-
tributions we deduce limit relations for q-polynomials that are orthogonal
w.r.t. these distributions.

The paper is organised as follows. In Section 2 we give all definitions of
q-calculus, q-distributions, and q-polynomials we need in the following; after-
wards we sum up some important properties of Kemp’s q-binomial distribu-
tion in Section 3. Section 4 deals with the case of convergent parameter θn,
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in particular with the case of constant mean. The pertinent limit law is the
Heine distribution, and the involved q-polynomials are the q-Krawtchouk
and the q-Charlier polynomials. In Section 5 we investigate parameter se-
quences that tend to infinity. If they do so fast enough, then it turns out
that n − Xn is either degenerate in the limit or tends to a Heine distribu-
tion. The main result of the paper is concerned with parameter sequences of
slower growth, where the law of the normalized Xn converges to a discrete
normal distribution. From this property we deduce a limit relation for the
q-Krawtchouk and the Stieltjes-Wigert polynomials.

2. Notation and Definitions

Throughout the paper we use the notation of Gasper and Rahman (1990).
The q-shifted factorial (z; q)n and the q-binomial coefficient are defined by

(z; q)n =

n−1∏
i=0

(1− zqi) and

[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

In the limit q → 1 the q-shifted factorial converges to (1 − z)n, and the
q-binomial coefficient to the binomial coefficient

(
n
k

)
. The q-number [x]q is

defined as

[x]q :=
1− qx

1− q
;

for q → 1, we have [x]q → x. Moreover, we will need two analogues of the
exponential function:

eq(z) =
1

(z; q)∞
, z ∈ C \ {q−i : i = 0, 1, 2, . . . },

and Eq(z) = (−z; q)∞. Here the limit relations eq((1 − q)z) → ez and
Eq((1 − q)z) → ez hold, as q → 1. The basic hypergeometric series rϕs is
defined by

rϕs(a1, a2, . . . , ar; b1, . . . , bs; q, z)

=

∞∑
n=0

(a1; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn.

Our main object of interest is the following q-analogue KB(n, θ, q) of the
binomial distribution, see Kemp and Kemp (1991):

P(XKB = x) =

[
n

x

]
q

θxqx(x−1)/2

(−θ; q)n
, 0 ≤ x ≤ n, 0 < θ, 0 < q < 1.
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The Heine distribution (Benkherouf and Bather, 1988, Kemp, 1992a, 1992b)
H(θ) is defined by

P(XH = x) =
qx(x−1)/2θx

(q; q)x
eq(−θ), x ≥ 0, 0 < q < 1.

If q → 1, then H((1 − q)θ) → P (θ), where P (θ) denotes the Poisson distri-
bution with parameter θ.

For details about the properties of the following q-polynomials, we re-
fer to the encyclopaedic report by Koekoek and Swarttouw (1998) and the
references therein. The q-Krawtchouk polynomials are given by

Kn(q
−x; p,N ; q) = 3ϕ2(q

−n, q−x,−pqn; q−N , 0; q, q), n = 0, . . . , N.

The q-Charlier polynomials are defined as

Cn(q
−x; a; q) = 2ϕ1

(
q−n, q−x; 0; q,−qn+1

a

)
,

and the Stieltjes-Wigert polynomials as

Sn(x; q) =
1

(q; q)n
1ϕ1(q

−n; 0; q,−qn+1x).

3. Basic Properties

In this section we recall some of the properties of Kemp’s q-binomial
distribution (see Johnson, Kemp, and Kotz, 2005, Kemp, 2002, 2003, Kemp
and Newton, 1990). In the limit q → 1, the Kemp distribution KB(n, θ, q)
converges to a binomial distribution:

KB(n, θ, q) → B

(
n,

θ

1 + θ

)
,

whereas for n → ∞ we obtain a Heine distribution H(θ). The random
variable XKB ∼ KB(n, θn, q) can be written as the sum of independent
Bernoulli random variables (Kemp and Newton, 1990), which leads to the
expressions

µ =

n−1∑
i=0

θqi

1 + θqi
and σ2 =

n−1∑
i=0

θqi

(1 + θqi)2
(3.1)

for the mean and variance. Furthermore, the random variable n−XKB has
the law KB(n, θ−1q1−n, q). We note in passing that Kemp (2003) deduced a
characterization result for the KB distribution from a theorem of Rao and
Shanbhag (1994).
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4. Convergent Parameter

Our first result is a mild generalization of the convergence to the Heine
distribution mentioned in the preceding section.

Proposition 4.1. Let (θn)n∈N be a sequence of real numbers with limit
θ ≥ 0. Then the sequence of Kemp’s q-binomial distributions KB(n, θn, q)
converges for n → ∞ to a Heine distribution H(θ).

Proof. Note that

P(Xn = x) =

[
n

x

]
q

θxn
qx(x−1)/2∏n−1

i=0 (1 + θnqi)
.

The q-binomial coefficient tends to 1/(q; q)x. As for the product in the
denominator, apply the dominated convergence theorem to its logarithm to
see that it tends to Eq(θ). 2

Example 4.1. Let λ be a real number with 0 < λ < n, and put θn(q) =
λ/[n− λ]q. Then the sequence of Kemp’s q-binomial distributions

KB(n, θn(q), q)
n→∞−−−−→ H((1− q)λ)

q→1

y yq→1

B
(
n, λn

)
−−−−→
n→∞

P (λ)

The two preceding results yield limit relations for orthogonal polynomi-
als. The orthogonal polynomials for Kemp’s q-binomial, the Heine, and the
binomial distribution, are, respectively, the q-Krawtchouk, the q-Charlier,
and the Krawtchouk polynomials.

Corollary 4.1. (i) Let θn be as in Proposition 4.1. Then, as n → ∞,
the q-Krawtchouk polynomial Kk(q

−x; q−nθ−1
n , n; q) converges to the q-

Charlier polynomial Ck(q
−x; θ; q).

(ii) For the special parameter sequence θn(q) = λ/[n − λ]q, as q → 1,
the q-Krawtchouk polynomial Kk(q

−x; q−nθn(q)
−1, n; q) converges to

the Krawtchouk polynomial Kk(x;λ/n, n).

The classical convergence of the binomial distribution with constant
mean to the Poisson distribution has the following q-analogue.

Theorem 4.1. Fix µ > 0 and choose the parameter θn = θn(µ, q) of
Kemp’s q-binomial distribution such that µn = µ. Then we have:
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(i) The sequence KB(n, θn, q) converges for n → ∞ to a Heine distribu-
tion H(θ), where θ = limn→∞ θn.

(ii) For fixed n, KB(n, θn, q) tends to a binomial distribution B
(
n, µn

)
in

the limit q → 1.

(iii) For q → 1, the Heine distribution H(θ) converges to a Poisson distri-
bution with parameter µ.

So we obtain the following commutative diagram:

KB(n, θn(µ, q), q)
n→∞−−−−→ H(θ(µ, q))

q→1

y yq→1

B
(
n, µn

)
−−−−→
n→∞

P (µ)

Proof. First we check that for given µ, q and large n, there is a unique
θn such that µn(θn, q) = µ. The function µn(θ, q) is strictly increasing in θ,
and µn(0, q) = 0. Since

µn(q
−n+1, q) ≥

n−1∑
i=0

qi−n+1

2qi−n+1
=

n

2
,

and µn(θ, q) is continuous in θ, there exists a unique solution θn of µn(θ, q) =
µ for each n ≥ 2µ. An easy continuity argument (de Haan and Ferreira,
2006, Lemma 1.1.1) shows that limn→∞ θn = θ, with θ the unique solution
of µ∞(θ, q) = µ. Thus KB(n, θn, q) → H(θ) by Proposition 4.1.

Again by Lemma 1.1.1 of de Haan and Ferreira (2006), we get θn → µ
n−µ

for q → 1. Hence KB(n, θn, q) → B
(
n, µn

)
.

It remains to check that θ/(1− q) converges to µ for q → 1, which yields
H(θ) → P (µ). The value θ/(1−q) is the unique solution of µ∞((1−q)θ, q) =
µ. Moreover, limq→1 µ∞((1− q)θ, q) = θ, because H((1− q)θ) → P (θ). 2

Analogously to Corollary 4.1, Theorem 4.1 implies the following result
about (q-)Krawtchouk polynomials.

Corollary 4.2. Let θn and θ be as in Theorem 4.1. Then the q-
Krawtchouk polynomial Kk(q

−x; q−nθ−1
n , n; q) converges to the Krawtchouk

polynomial Kk(x;µ/n, n) for q → 1.
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5. Increasing Parameter

If we consider fast growing parameter sequences, in the sense that θn =
q−n−g(n) with g(n) → ∞ or convergent, we obtain the corresponding limit
distribution easily.

Corollary 5.1. Let Xn ∼ KB(n, q−n−g(n), q).

(i) If g(n) converges to a limit g0, then the distribution of n − Xn tends
to the Heine distribution H(q1+g0) as n → ∞.

(ii) If g(n) → ∞ for n → ∞, then the distribution of n−Xn tends to the
point measure δ0 as n → ∞.

Proof. As remarked in Section 3, n − Xn ∼ KB(n, τ, q) with τ =
qg(n)+1. Applying Proposition 4.1 yields the result. 2

It follows from Corollary 5.1(i) that the q-Krawtchouk polynomials con-
verge to the alternative q-Charlier polynomials, which is a known result, see
(4.15.1) of Koekoek and Swarttouw (1998).

Now we turn to the main result of the paper, where we assume that

θn = q−f(n), with f(n) → ∞ and n− f(n) → ∞ for n → ∞.
(5.1)

This assumption on θn will be in force throughout the section. Since the
sequence of means tends to infinity, we will normalize our random vari-
ables to (Xn−µn)/σn. Still, this sequence does not converge in distribution
without further assumptions on f(n). It turns out that the fractional part
{f(n)} = {− log θn/ log q} has to be constant, which induces convergence to
discrete normal distributions.

Theorem 5.1. Suppose that Xn ∼ KB(n, θn, q), such that the sequence
θn satisfies (5.1) and {f(n)} = β is constant. Then (Xn−µn)/σn converges
for n → ∞ to a limit X, with, for x ∈ Z,

P

(
X = − (β + c)

1

σ
+

1

σ
x

)
= eq(q)eq(−qβ)eq(−q1−β)q(x−1)(x−2β)/2, (5.2)

where c = c(β, q) is a constant and σ = limk→∞ σnk
.

The discrete normal distribution is defined by

P(X = x) =
q−xαqx

2/2∑∞
k=−∞ q−kαqk2/2

α ∈ R, x ∈ Z.
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So the limit distributions in the preceding theorem are (scaled and shifted)
discrete normal distributions with parameters

α = 1
2 + β if β < 1

2
α = −1

2 + β if β > 1
2

α = 0 if β = 1
2

.

For q → 1, they converge to the standard normal distribution, see Szablowski
(2001). Therefore, as in Proposition 4.1 and Theorem 4.1, the limits q → 1
and n → ∞ can be exchanged. Indeed, for q → 1, the distribution of Xn in
Theorem 5.1 tends to the binomial distribution B(n, 12). The latter converges
to the standard normal distribution after normalization.

To prepare the proof of Theorem 5.1, we will carry out a rather fine
analysis of the asymptotics of the sequence of means µn. The following two
propositions clarify its asymptotics up to order o(1).

Proposition 5.1. Let Xn ∼ KB(n, θn, q) with θn as in (5.1). Then
there is a function c such that, for n → ∞,

µn = f(n) + c({f(n)}, q) + o(1). (5.3)

In other words, the O(1) term of µn is constant if {f(n)} is constant.
Proof. We start from

µn =
n−1∑
i=0

qi−f(n)

1 + qi−f(n)
=

n−1∑
i=0

1

1 + qf(n)−i
(5.4)

and split the sum into two parts (w.l.o.g. f(n) < n): By expanding the
denominator as a geometric series and changing the order of summation we
find

⌊f(n)⌋−1∑
i=0

1

1 + qf(n)−i
=

∑
ℓ≥0

(−1)ℓqℓf(n)
⌊f(n)⌋−1∑

i=0

q−ℓi

= ⌊f(n)⌋ −
∑
ℓ≥1

(−1)ℓqℓ{f(n)}

1− q−ℓ
+O

(
qf(n)

)
.

Expanding the denominator as a geometric series and changing the order of
summation again yields

⌊f(n)⌋−1∑
i=0

1

1 + qf(n)−i
= ⌊f(n)⌋ −

∑
j≥0

1

1 + q−j−1−{f(n)} +O
(
qf(n)

)
. (5.5)
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For the upper portion of the sum, we find

n−1∑
i=⌊f(n)⌋+1

1

1 + qf(n)−i
=

∞∑
i=⌊f(n)⌋+1

1

1 + qf(n)−i
+O

(
qn−f(n)

)

=

∞∑
i=0

1

1 + q{f(n)}−i−1
+O

(
qn−f(n)

)
. (5.6)

The result now follows from (5.5) and (5.6). 2

We next determine the Fourier series of the O(1)-term from Proposi-
tion 5.1, which shows that it is a 1

2 -periodic function of {f(n)}.
Proposition 5.2. Let Xn ∼ KB(n, θn, q) with θn = q−f(n). Then, as

n → ∞,

µn = f(n) +
1

2
+

∑
k>0

2π sin(2kf(n)π)

sinh
(
2kπ2

log q

)
log q

+ o(1). (5.7)

Proof. We write

µn =

n−1∑
i=0

1

1 + qf(n)−i
=

∞∑
i=0

1

1 + qf(n)−i
+O

(
qn−f(n)

)
and apply the Mellin transformation (see Flajolet, Gourdon and Dumas,
1995) to the function

h(t) =
∞∑
i=0

1

1 + tq−i
.

The linearity of the Mellin transformation M and its properties M
(

1
1+t

)
=

π
sinπs and Mh(αt)(s) = α−sM(h)(s) give

M(h)(s) =

∫ ∞

0
x−sh(x)dx

=

∞∑
i=0

(
q−i

)−s π

sinπs
=

1

1− qs
π

sinπs
.

From the inverse transformation formula we get

h
(
qf(n)

)
=

1

2πi

1/2+i∞∫
1/2−i∞

q−f(n)s 1

1− qs
π

sinπs
ds. (5.8)
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Upon pushing the line of integration to the left, each pole of the integrand
yields a term in the asymptotic expansion of h at infinity, see Flajolet, Gour-
don and Dumas (1995). If k is a non-zero integer, then 1/(1−qs) has a simple
pole at 2πik/ log q with residue

iπe−2if(n)kπ

sinh
(
2kπ2

log q

)
log q

. (5.9)

The residue at the double pole at zero is easily computed, too, and equals
f(n) + 1

2 . Merging the terms (5.9) corresponding to k and −k gives the
result. 2

The following two lemmas complete our analysis of the means µn and
prepare the proof of the main result of this section, viz. Theorem 5.1. Recall
that (5.1) is assumed to hold throughout the present section.

Lemma 5.1. If the fractional part {f(n)} = β is constant, then:

(i) c(0, q) = c(1/2, q) = 1/2

(ii) c(β, q) + c(−β, q) = 1

(iii) ⌊c(β, q) + β⌋ =

{
0 if 0 ≤ β < 1/2

1 if 1/2 ≤ β < 1

Proof. For (i) and (ii), use (5.7) and simple properties of sin. Part (iii)
follows easily from (i), (ii), and the fact that the quantity c({f(n)}, q)− 1+
{f(n)} increases w.r.t. {f(n)}, which in turn is readily seen from the proof
of Proposition 5.1. 2

We can now evaluate the integer part of the means µn.

Lemma 5.2. Suppose again that the fractional part {f(n)} = β is con-
stant.

(i) If β ̸= 1
2 , then f(n) + c(β, q) ̸∈ Z. Thus

⌊µn⌋ = ⌊f(n) + c(β, q)⌋ = ⌊f(n)⌋+ ⌊β + c(β, q)⌋.

(ii) For β = 1
2 ,

µn > f(n) +
1

2
, if 2f(n) ≤ n− 1 and µn < f(n) +

1

2
, if 2f(n) ≥ n.
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Thus

⌊µn⌋ = f(n) +
1

2
, if 2f(n),≤ n− 1

and

⌈µn⌉ = f(n) +
1

2
, if 2f(n) ≥ n.

Proof. Part (i) is proved similarly to the preceding lemma. As for
part (ii), assume 2f(n) ≤ n− 1 first. Then µn equals

n−1∑
i=0

qi−f(n)

1 + qi−f(n)
=

f(n)− 1
2∑

i=0

qi−f(n)

1 + qi−f(n)
+

2f(n)∑
i=f(n)+ 1

2

qi−f(n)

1 + qi−f(n)

+

n−1∑
2f(n)+1

qi−f(n)

1 + qi−f(n)

=

f(n)− 1
2∑

i=0

q−i− 1
2

1 + q−i− 1
2

+

f(n)− 1
2∑

i=0

qi+
1
2

1 + qi+
1
2

+ o(1)

= f(n) +
1

2
+ o(1).

The o(1)-term is non-negative (and vanishes only for 2f(n) = n − 1). If
2f(n) ≥ n, then the third sum vanishes and the second sum just runs up to
n− 1 < 2f(n), so µn < f(n) + 1

2 . 2

Now we are in a position to establish the announced convergence of the
normalized Xn to a discrete normal random variable.

Proof of Theorem 5.1. Note that σn converges, which follows from
the identity

σ2
n =

n∑
i=0

qi−f(n)

(1 + qi−f(n))2
=

⌊f(n)⌋∑
i=0

qi−f(n)

(1 + qi−f(n))2
+

n∑
i=⌊f(n)⌋+1

qi−f(n)

(1 + qi−f(n))2
.

First we consider the case β ̸= 1/2. To evaluate the product in the denomi-
nator of

P(Xn = ⌊µn⌋+ x) =

[
n

⌊µn⌋+ x

]
q

q−(⌊µn⌋+x)f(n)+(⌊µn⌋+x)(⌊µn⌋+x−1)/2∏n−1
i=0

(
1 + qi

qf(n)

) ,

(5.10)
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we split it into two parts:

n−1∏
i=0

(
1 +

qi

qf(n)

)
=

⌊f(n)⌋∏
i=0

(
1 +

qi

qf(n)

) n−1∏
i=⌊f(n)⌋+1

(
1 +

qi

qf(n)

)
.

Using Relation I.3 of Gasper and Rahman (1990), we obtain

n−1∏
i=0

(
1 +

qi

qf(n)

)
= q−f(n)(⌊f(n)⌋+1)+(⌊f(n)⌋+1)⌊f(n)⌋/2×(

−qβ ; q
)
⌊f(n)⌋+1

(
−q−β+1; q

)
n−⌊f(n)⌋−2

. (5.11)

The last two terms in (5.11) tend to eq
(
−qβ

)
and eq

(
−q−β+1

)
, respectively.

The q-binomial coefficient in (5.10) tends to eq(q). By Lemma 5.2, we can
simplify the exponent of q resulting from (5.10) and (5.11) to

1

2
(x− 1 + δ)(δ − 2β + x),

where c = c(β, q) and

δ = ⌊β + c⌋ =
{

0 β < 1/2
1 β > 1/2

by Lemma 5.1 (iii). Putting things together, we obtain

P(Xn = ⌊µn⌋+ x) → eq(q)eq

(
−qβ

)
eq

(
−q−β+1

)
q

(δ+x−1)(δ+x−2β)
2 .

By normalizing Xn we get (5.2).

For β = 1/2 define

G(µn) :=

{
⌊µn⌋ if 2f(n) ≤ n− 1
⌈µn⌉ if 2f(n) ≥ n.

Then

P (Xn = G(µn) + x) =

[
n

G(µn) + x

]
q

q−(G(µn)+x)f(n)+(G(µn)+x)(G(µn)+x−1)/2∏n−1
i=0

(
1 + qi

qf(n)

) .

The q-binomial-coefficient tends to eq(q), and the product can be trans-

formed as above. This time the exponent of q equals x2

2 . So we have

P (Xn = G(µn) + x) → eq(q)eq

(
−q

1
2

)2
q

x2

2 ,
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from which (5.2) follows by normalizing Xn. 2

With little extra effort one can see that the limit distribution is symmetric
if and only if β = 0 or β = 1/2.

Again, the convergence of the distributions in Theorem 5.1 yields a con-
vergence property of the corresponding orthogonal polynomials. The or-
thogonal polynomials for the discrete normal distribution are the Stieltjes-
Wigert polynomials Sk(x; q), see Christiansen and Koelink (2006), Koekoek
and Swarttouw (1998).

Corollary 5.2. Let x be a real number, and f(n) as in (5.1), with
{f(n)} constant. Then, as n → ∞, the q-Krawtchouk polynomial given by
Kk(q

−x−f(n)+o(1); qf(n)−n, n; q) tends to (q; q)k × Sk(q
−x; q).
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