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Abstract. A well known principle says that the number of lattice points in
a bounded subsets S of Euclidean space is about the ratio of the volume and
the lattice determinant, subject to some relatively mild conditions on S. In
the literature one finds two different types of such conditions; one asserts the
Lipschitz parameterizability of the boundary ∂S, and the other one is based on
intersection properties of lines with S and its projections to linear subspaces.
We compare these conditions and address a question, which we answer in some
special cases. Then we give some simple upper bounds on the number of lattice
points in a convex set, and finally, we apply these results to obtain estimates for
the number of rational points of bounded height on certain projective varieties.

1. Introduction

The counting of lattice points in a given bounded subset of the Euclidean space
Rn is an important issue in many parts of number theory and other branches of
mathematics. If the set, say S, behaves nicely then the ratio Vol(S)/ det Λ of the
volume and the lattice determinant is a good estimate for the cardinality |S ∩ Λ|.
In the literature there are two different approaches to formally define the term
“nicely”. The older one is associated with the name of Lipschitz. Roughly speaking
it says that the boundary ∂S of S can be parameterized by a Lipschitz map with a
reasonably small Lipschitz constant. The second approach goes back to Davenport
and was further developed by Schmidt. Here one has to control the diameter of S
and the number of connected components of the intersection of each line with S
and with all of its projections on linear subspaces. Both conditions yield similar
counting results and it is therefore natural to ask how they are related. Masser and
Vaaler [9] pointed out that the Lipschitz condition certainly does not imply the
Davenport condition but that the other implication possibly holds in some form.
One aim of this note is to render this “question” precise and to answer it in the
case where S is convex or when n = 2 and some extra conditions hold. The proof of
the first assertion rests on John’s Theorem for convex sets and simple planimetrical
arguments, the proof of the second assertion relies on results from integral geometry
such as Poincaré’s formula.
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Masser Vaaler [9], and the author [15], [13] have introduced Lipschitz heights
and adelic Lipschitz heights and proved general counting results regarding these.
This led to asymptotic estimates for the number of: algebraic points of fixed de-
gree and bounded Weil height in projective space [9], [13] and on linear varieties
[14], algebraic numbers of bounded Weil height satisfying certain subfield condi-
tions [16], and connected algebraic subgroups of the torus of bounded degree [9].
It is likely that further applications will follow. But to apply the general counting
results from [9], [15], [13] one needs to verify that certain balls, associated to the
distance functions of the heights, have Lipschitz parameterizable boundaries. In
many applications these balls are convex. Therefore it is convenient to have a gen-
eral result, such as Theorem 2.6, which proves the required assertion of Lipschitz
parameterizability in all of these cases.

Moreover, we prove an estimate for |S ∩ Λ| when S is convex. Estimates of this
type are well known and follow immediately from a result of Blichfeldt, but we will
give another proof, again relying on John’s Theorem. Finally, we illustrate the use
of such estimates by an example on counting rational points on certain algebraic
varieties.

2. Definitions and Results

Throughout this article n denotes an integer with n ≥ 2, M and s will always
stand for a positive integer while L will denote a non-negative real number. By a
lattice in Rn we mean the Z-span of n linearly independent vectors v1, ..., vn in Rn.
The determinant of the lattice is then given by the modulus of the determinant of
the matrix whose columns are v1, ..., vn. For a vector x in Rn we write |x| for the
Euclidean length of x. We will use vector and point synonymously. For a point P
in Rn and a real R > 0 we write BP (R) for the closed Euclidean ball with radius R
centered at P . The successive minima λ1, ..., λn of a lattice Λ in Rn are understood
in Minkowski’s sense with respect to the unit ball B0(1), i.e., for i = 1, ..., n

λi = inf{λ;B0(λ) ∩ Λ contains i linearly independent vectors}.
The following definition has its origin in a paper of Davenport [4], in which a count-
ing theorem for lattice points of Zn was proved. Later Schmidt [12] p.347 adjusted
the definition to handle more general lattices, and finally Gao [5] p.14 slightly re-
fined Schmidt’s definition, replacing “compact” by “bounded and measurable”. The
definition in [5] is as follows.
Definition 2.1. A subset S of Rn is called of narrow class s if
(a) S is bounded, measurable and intersects every line in at most s intervals or
single points.
(b) The same is true for any projection of S on any linear subspace of Rn.

Note that a set of narrow class 1 is simply a bounded convex set, and that a
connected subset of R2 is of narrow class s if it satisfies condition (a). The Lipschitz
approach requires the following condition.
Definition 2.2. We say that a set S is in Lip(n,M,L) (or of Lipschitz class
(n,M,L)) if S is a subset of Rn, and if there are M maps φ1, ..., φM : [0, 1]n−1 −→
Rn satisfying a Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]n−1, i = 1, ...,M,(2.1)
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such that S is covered by the images of the maps φi.

We call L a Lipschitz constant for the maps φi. The following theorem was
proved by Schmidt; first in a simpler version ([12] Lemma 1) and then (see [5]
p.15.) in the stated form.

Theorem 2.3 (Schmidt). Let Λ be a lattice in Rn with successive minima λ1, ..., λn.
Let S be a set in Rn of narrow class s and assume S ⊆ B0(R). Then we have∣∣∣∣|S ∩ Λ| − Vol(S)

det Λ

∣∣∣∣ ≤ c1(n, s) max
0≤i<n

Ri

λ1 · · ·λi
.

For i = 0 the expression in the maximum is to be understood as 1. Moreover, one
can choose c1(n, s) = (s+ 2√

33nn)n.

Unfortunately, the author is not aware of any published reference for Theorem
2.3. Therefore we will not make use of it. However, an analogous result was
obtained in [15] (Theorem 5.4) when the boundary of the set lies in Lip(n,M,L).

Theorem 2.4. Let Λ be a lattice in Rn with successive minima λ1, ..., λn. Let S
be a bounded set in Rn such that the boundary ∂S of S is in Lip(n,M,L). Then S
is measurable and moreover,∣∣∣∣|S ∩ Λ| − Vol(S)

det Λ

∣∣∣∣ ≤ c2(n)M max
0≤i<n

Li

λ1 · · ·λi
.

For i = 0 the expression in the maximum is to be understood as 1. Furthermore,
one can choose c2(n) = n3n2/2.

It is easy to see that there are sets, which are not of narrow class s for any
s, but which have a boundary of Lipschitz class (n,M,L); e.g. take the square
[0, 1/π] × [0, 1/π] in R2 where the edge on the x-axis is replaced by the curve
(x, x3 sin(1/x)) for 0 < x ≤ 1/π. On the other hand it has been pointed out in [9]
p.438 that narrow class possibly implies some type of Lipschitz class. We propose
the following question.

Question 2.5. Let S be a set in Rn of narrow class s, and assume S lies in a ball
of radius R. Does there exist a natural number M = M(n, s) and a real number
C = C(n, s) such that ∂S is in Lip(n,M,CR)?

Now suppose s = 1, which is equivalent to S is convex and bounded. Then it is
rather easy to see that ∂S is of Lipschitz class (n, 1, L) for some value of L, but it is
not so obvious that one can choose L = CR with a constant C = C(n). However,
we have the following affirmative answer on Question 2.5.

Theorem 2.6. If S is a set in Rn of narrow class 1, which lies in a ball of radius
R then ∂S is in Lip(n, 1, 8n5/2R).

If S ⊆ BP (R) is of narrow class s then one can try to find convex sets K1, ...,KM

such that ∂S is covered by the union of the boundaries ∂Ki. In this case one
can apply Theorem 2.6 with the convex sets BP (R) ∩ Ki to deduce ∂S lies in
Lip(n,M, 8n5/2R). Unfortunately M can not be bounded in terms of s and n only,
e.g. consider a ball with many “equidistributed” little spikes on its surface.

For n = 2 we can apply Poincaré’s formula from integral geometry to answer
a variation of Question 2.5. In this note a curve means a continuous map ϕ :
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[0, 1] −→ R2. We say the curve ϕ is simple if ϕ is injective on (0, 1), closed if
ϕ(0) = ϕ(1). Finally, we say the curve ϕ = (ϕ1, ϕ2) is piecewise smooth if there
exist finitely many reals 0 = t0 < · · · < tN = 1 such that both components of ϕ
have a continuous derivative on (ti, ti+1) and right-sided (left-sided) derivatives in
ti (ti+1) exist for all 0 ≤ i < N . We call the image ϕ([0, 1]) the path of the curve
ϕ. Let M be the group of motions φ in the plane. Any φ ∈M has the form

φ(x, y) = (x cos θ − y sin θ + a, x sin θ + y cos θ + b),
where −∞ < a <∞, −∞ < b <∞, 0 ≤ θ ≤ 2π. So each motion is determined by
an element (a, b, θ) of 3-space. This space together with the equivalence relation
(a, b, θ) ∼ (a, b, θ + 2πk) (k ∈ Z) is the space of the group of motions, also denoted
by M. The exterior product

dK = da ∧ db ∧ dθ
is the unique (up to a constant factor) left and right invariant 3-form on M and is
called the kinematic density (see [11], p.85 for a reference).

Definition 2.7. A subset S of R2 is called of tight class s if the following two
conditions are fulfilled.

(I) The boundary ∂S of S is the path of a simple, closed, piecewise smooth
curve.

(II) Let Γ0 be a line segment. Then the subset M0 of M defined by

|∂S ∩ φ(Γ0)| > 2s has measure zero, i.e.,
∫

M0

dK = 0.

Condition (I) implies that a set S of tight class s is connected, and that ∂S has
measure zero. This in turn implies that S is measurable, but unlike a set of narrow
class s it may be unbounded. Now suppose S is of narrow class s. A “typical” line
l intersects S in j ≤ s intervals, whose endpoints are the only boundary points of
S on l. Of course it can happen that ∂S ∩ l contains more than 2s points, but it
seems likely that the set Ml of motions φ with |∂S ∩ φ(l)| > 2s has measure zero.
We can now state our approach to Question 2.5 in dimension two.

Theorem 2.8. Let S in R2 be a set of tight class s, and assume S lies in a ball of
radius R. Then ∂S is in Lip(2, 1, 2πsR).

In fact we will prove that the arc length of ∂S is bounded by 2πsR. This is best
possible, as we can see by the following examples: for s = 1 we take S as the circle
B0(R), for s even we take S as a “worm” coiled s − 1 times around the slightly
smaller circle B0(R − ε), and for s > 1 odd the latter circle should be considered
the head of the worm and its tail is coiled s− 2 times around the head. Note also
that the inequality |∂S| ≤ 2πsR generalizes (at least for sets of tight class) the well
known fact that the arc length of the boundary of a convex set in BP (R) ⊆ R2

cannot exceed |∂BP (R)|. A reference for the latter can be found in [17] p.15.

Next we aim at giving some upper bounds on the number of lattice points in a
subset S of Euclidean space. Let us assume for a moment that S is a bounded convex
set in Rn, Λ is a lattice in Rn, and S ∩ Λ is not contained in an affine subspace of
dimension n−1. For n = 2 Pick’s Theorem gives |S∩Λ| ≤ 2Vol(S)/ det Λ+2. From
an article of Henk and Wills [6] the author has learnt that Blichfeldt [2] generalized
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this to arbitrary dimensions n, i.e., |S ∩ Λ| ≤ n!Vol(S)/ det Λ + n. Unfortunately
the author was unable to get a copy of Blichfeldt’s article [2]. Henk and Wills
[6] have shown |S ∩ Λ| ≤ Vol(S)/ det Λ + cn(n − 1)!F (S)/det Λn−1, where c is a
universal constant, F (S) denotes the surface area, and det Λn−1 is the minimal
determinant of an (n − 1)-dimensional sublattice of Λ. For our applications the
concrete dependence on n is not important. But we have to sum these estimates
over an infinite set of lattices, and thus the “+n” and even “+F (S)/ det Λn−1” may
cause problems. However, in dimension 2 a simple triangulation argument shows
that |S ∩ Λ| ≤ 6Vol(S)/ detS. A higher dimensional version follows easily from
Blichfeldt’s result; S ∩ Λ is not contained in an affine subspace of dimension n− 1
means we can find w, v1, ..., vn in S ∩ Λ, such that v1 − w, ..., vn − w are linearly
independent. Now the convex hull of w, v1, ..., vn lies in S and has volume at least
det Λ/n!. Thus |S ∩Λ| ≤ (n+ 1)!Vol(S)/ det Λ. We will give another proof, relying
on John’s Theorem, but first we introduce some more notation. For a nonempty
subset H of Rn we define AH to be the minimal affine subspace containing H.
Note that dimAH = 0 if and only if |H| = 1. For 1 ≤ j ≤ n let us write Volj
for the j-dimensional Lebesque measure. If S is a bounded convex set in Rn then
Volj(S ∩ A) is well defined for any affine subspace A of dimension j.

Proposition 2.9. Let Λ be a lattice in Rn with successive minima λ1, ..., λn. Let
S be a bounded convex set in Rn. Suppose |S ∩Λ| > 1 and set l = dimAS∩Λ. Then
we have

|S ∩ Λ| ≤ c3(l)
Voll(S ∩ AS∩Λ)

λ1 · · ·λl
.

One can choose c3(l) = 8ll3l(l/2+1).

Now suppose |S ∩Λ| is not contained in an (n− 1)-dimensional affine subspace.
This means dimAS∩Λ = n and thus we deduce, using Minkowski’s Second Theorem,
the following corollary.

Corollary 2.10. Let Λ be a lattice in Rn and let S be a bounded convex set in Rn.
Suppose S ∩Λ is not contained in an affine subspace of dimension n− 1. Then we
have

|S ∩ Λ| ≤ c4(n)Vol(S)
det Λ

.

One can choose c4(n) = πn/2n!
2nΓ(n/2+1)c3(n).

Now let d be a fixed positive integer. We apply the latter result to deduce
an estimate for the number of rational points of bounded height on the algebraic
variety Vd ⊆ P2 × P2 defined by

x0y
d
0 + x1y

d
1 + x2y

d
2 = 0.(2.2)

Let Hn be the multiplicative Weil height on Pn(Q); so if P = (x0 : ... : xn) with
coprime integers x0, ..., xn then Hn(P ) = max{|x0|, ..., |xn|}. We define the height
H on P2(Q) × P2(Q) via the Segre embedding σ : P2 × P2 → P8 as H(P,Q) =
H8(σ(P,Q)). Then we have H(P,Q) = H2(P )H2(Q). Let N(Vd, t) be the counting
function

N(Vd, t) = |{(P,Q) ∈ Vd(Q) : H(P,Q) ≤ t}|.
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Corollary 2.11. For t ≥ 1 and any ε > 0 we have

t2 � N(Vd, t)�ε


t9/4 : if d = 1,
t2+ε : if d = 2,
t2 : if d ≥ 3.

(2.3)

The implicit constant in “�ε” depends on ε if d = 2 and only on d if d 6= 2.

Of course the lower bound is trivial; just fix e.g. (y0 : y1 : y2) = (1 : 0 : 0) and
count the points (0 : x1 : x2). The upper bound � t9/4 can easily be shown using
only Corollary 2.10. But for d > 1 we need also a general result of Pila.

3. Proof of Theorem 2.6

The proof of Theorem 2.6 rests on John’s Theorem and the following lemma.

Lemma 3.1. Let S in Rn be a convex set, P a point in S and r,R positive reals
such that

BP (r) ⊆ S ⊆ BP (R).

Then the boundary ∂S is in Lip(n, 1, 8
√
n− 1R2/r).

Proof. Let P = (ζ1, ..., ζn) and let
ϕ : [0, 2π]× [0, π]n−2 −→ ∂BP (r)

be the standard parameterization of ∂BP (r) via polar coordinates such that
x1 =r cos θ1 cos θ2 cos θ3 · · · cos θn−1 + ζ1

x2 = r sin θ1 cos θ2 cos θ3 · · · cos θn−1 + ζ2

x3 = r sin θ2 cos θ3 · · · cos θn−1 + ζ3

...
xn = r sin θn−1 + ζn.

Of course for n = 2 this is to be understood as a map ϕ : [0, 2π] −→ ∂BP (r). Let
A,B be different points in Rn then we denote by [A,B] the line segment between A
and B (A,B are included). Similarly (A,B) denotes the line segment without the
points A,B. We claim that intersecting the ray, starting in P and containing ϕ(θ),
with ∂S, gives a parameterization ϕ̃ of ∂S. It suffices to show that each such ray
contains no more than one boundary point of S. So assume such a ray contains two
distinct boundary points, say A and B, where A is closer to P . Now consider the
union of all line segments (B,F ) starting in B and ending on any boundary point
F of BP (r). Then each point of the line segment (B,P ) lies in the interior of this
union. Due to the convexity of S this union of line segments is a subset of the topo-
logical closure of S, and since A lies in (B,P ) we conclude that A lies in the interior
of S, a contradiction. This argument will be used once more at the end of the proof.

The next step of the proof is to show that ϕ̃ is a Lipschitz parameterization with
Lipschitz constant (4/π)

√
n− 1R2/r, so that after normalizing properly to get a

map as in (2.1) one gets the Lipschitz constant 8
√
n− 1R2/r.

Let us write AB for the length of the line segment [A,B]. Let A,B,C be three
different points. Let β be the angle between the line segments [A,B] and [A,C],
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that is the value in [0, π] such that cosβ = 〈B −A,C −A〉/(AB ·AC), where 〈·, ·〉
denotes the Euclidean scalar product. If the points do not lie on one line then
we may consider the triangle 4(A,B,C) with vertices A,B,C. Let ϕ̃(θ1) = A,
ϕ̃(θ2) = B be two distinct points on the boundary of S. We may assume

0 < |θ2 − θ1| <
π

2
√
n− 1

,

for otherwise we get automatically

AB ≤ 2R ≤ (4/π)
√
n− 1R|θ2 − θ1|.

Denote by α the angle between [P,A] and [P,B], and write | · |l1 for the l1-norm.
Then we have

α ≤ |θ2 − θ1|l1 ,

which is a simple consequence of the triangle inequality in the metric space Sn−1

(see p.17 in [3]). Hence

α ≤
√
n− 1|θ2 − θ1|.(3.1)

If A,B, P lie on a common line then either α = π and so |θ2 − θ1| ≥ π/
√
n− 1

or A = B; both contradicting our assumptions. So the lines joining P,A and P,B
span a plane, say P. Write B for the interior of BP (r) and L for the line joining
A and B. The line in P perpendicular to L, which joins P , intersects L in a point
denoted by C. The proof splits into the following three cases:

(1) L does not meet B (C not in B).
(2) L meets B between A and B (C is in [A,B] and in B).
(3) The remaining case (A is in [B,C] or B is in [A,C], and C is in B).

We start with the first case. Now L does not meet B is equivalent to PC ≥ r.
The area of 4(P,A,B) is PC · AB/2. It is clear that 4(P,A,B) does not exceed
the area of a sector of BP (R) ∩ P with angle α, which is αR2/2. Thus

AB ≤ R2

r
α.

For the second case we have [A,B] contains C. Denote the angle between [P,C]
and [P,A] by α1, and the angle between [P,C] and [P,B] by α2, so that α = α1+α2
and 0 ≤ α1, α2 ≤ α ≤ π/2. Hence

AC = PA sinα1 ≤ PAα1 ≤ Rα1,

and similar BC ≤ Rα2, leading to

AB ≤ Rα.

Since A,B lie on the boundary of S none of them can lie in B. Thus the re-
maining case occurs if either A is in [B,C] or B lies in [A,C]. Since C is in B
there is a positive ε such that BC(ε) lies in B. But now we use the same argu-
ment as in the beginning of the proof to show that due to the convexity either A
or B lies in the interior of S, a contradiction. Thus the remaining case is impossible.
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Recalling (3.1) and R ≥ r proves that in all cases we have

|ϕ̃(θ1)− ϕ̃(θ2)| = AB ≤ (4/π)
√
n− 1R

2

r
|θ1 − θ2|.

Properly normalizing to get a map as in (2.1) gives an additional factor 2π and
completes the proof. �

We are now in position to prove Theorem 2.6.

Recall that a set of narrow class 1 is convex. Suppose the interior int(S) of S
is empty. Pick P0 in S; then the points of S − P0 cannot span Rn as a R-vector
space, else S would contain a small (nonempty) open parallelepiped. Hence S
lies in a hyperplane, and so ∂S lies in a ball BP ′(R′) in Rn−1 for some R′ ≤ R.
So it suffices to know that BP ′(R′) lies in Lip(n, 1, 2R), which can be seen by
parameterizing a (n − 1)-dimensional cube containing BP ′(R′). From now on we
may assume int(S) 6= ∅. Therefore we have a point P1 in int(S) and a real number
r > 0 such that BP1(r) lies in int(S). On the other hand there is a point P2
such that S is in BP2(R). The triangle inequality implies that S lies in BP1(2R).
Applying Lemma 3.1 proves the existence of a Lipschitz parameterization of the
boundary. Unfortunately the Lipschitz constant L has a disallowed dependence on
r, and moreover, the exponent on R should be 1, not 2. We can overcome these
problems using John’s Theorem (see [7] or [1], p.242). It guarantees the existence
of an ellipsoid E, with center say P , such that

E ⊆ S ⊆ n(E − P ) + P.(3.2)

After a translation by P and an orthogonal transformation we can assume that E
is defined by (x1/a1)2 + · · · + (xn/an)2 = 1 with certain real numbers 0 < a1 ≤
a2 ≤ · · · ≤ an. Moreover, S lies in a ball of radius R, and thus so does E. Hence

0 < a1 ≤ a2 ≤ · · · ≤ an ≤ R.(3.3)

Let Φ be the endomorphism which sends xi −→ xi/ai for 1 ≤ i ≤ n. Applying this
map to (3.2) yields

B0(1) ⊆ Φ(S) ⊆ B0(n).

Applying Lemma 3.1 with r = 1 and R = n yields a map ϕ̃ : [0, 1]n−1 −→ Rn with
the image containing ∂(Φ(S)) such that

|ϕ̃(x2)− ϕ̃(x1)| ≤ 8n5/2|x2 − x1|.

Since Φ is linear and bĳective the maps Φ and its inverse Φ−1 are continuous. So
the boundary of S is the image under Φ−1 of the boundary ∂Φ(S). Thus Φ−1(ϕ̃(·))
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is a parameterization of ∂S. Let us calculate a Lipschitz constant:

|Φ−1(ϕ̃(x2))− Φ−1(ϕ̃(x1))| = |Φ−1(ϕ̃(x2)− ϕ̃(x1))|
≤ sup
|z|=1

|Φ−1(z)||ϕ̃(x2)− ϕ̃(x1)|

= sup
|z|=1

(
n∑
i=1

(aizi)2
)1/2

|ϕ̃(x2)− ϕ̃(x1)|

≤ sup
|z|=1

an

(
n∑
i=1

z2
i

)1/2

|ϕ̃(x2)− ϕ̃(x1)|

= an|ϕ̃(x2)− ϕ̃(x1)|

≤ an8n5/2|x2 − x1|

≤ 8n5/2R|x2 − x1|.

This agrees with our claim and thereby completes the proof.

4. Proof of Theorem 2.8

Let Γ0,Γ1 be the paths of two simple, piecewise smooth curves of arc lengths
|Γ0|, |Γ1| (as the curves are simple the arc lengths depend only on the paths).
Poincaré’s formula tells us (see [11], p.111, eq. (7.11))∫

M

ndK = 4|Γ0||Γ1|,(4.1)

where M is the group of motions φ in the plane, n = n(φ) = |Γ1 ∩ φ(Γ0)| (possibly
infinite) is the intersection number of Γ1 and φ(Γ0), and dK is the kinematic
density. Maak [8] gave a generalization of formula (4.1), but Maak’s definition of
the intersection number n is different from ours, so that we prefer not to rely on his
result. Now ∂S lies in a ball of radius R, say BP (R). Suppose Γ0 is a line segment.
Let M1 = M1(Γ0) be the subset of M defined by n(φ) = |∂S ∩ φ(Γ0)| ≤ 2s. Then
condition (II) of Definition 2.7 above implies∫

M

ndK =
∫

M1

ndK.(4.2)

Moreover, n(φ) = 0 for any φ with φ(Γ0) ∩ BP (R) = ∅. The measure of the set of
motions φ with φ(Γ0) ∩BP (R) 6= ∅ is not hard to compute (see [11], p.90, (6.33)),
and one finds ∫

M
φ(Γ0)∩BP (R)6=∅

dK = 2π2R2 + 4πR|Γ0|.(4.3)

Now combining (4.1), (4.2) and (4.3) yields

4|Γ0||∂S| =
∫

M1
φ(Γ0)∩BP (R) 6=∅

ndK ≤ 2s
∫

M1
φ(Γ0)∩BP (R)6=∅

dK = 2s
∫

M
φ(Γ0)∩BP (R)6=∅

dK

= 2s(2π2R2 + 4πR|Γ0|).

Thus we have |∂S| ≤ 2πsR+ π2R2s/|Γ0| for any length |Γ0|, and therefore |∂S| ≤
2πsR. It is well known that the path of a rectifiable curve can be parameterized
by the arc length. Let ψ be such a parameterization of ∂S, scaled from [0, |∂S|]
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to [0, 1], then we have |ψ(t) − ψ(t′)| ≤ |∂S||t − t′|. This shows that ∂S lies in
Lip(2, 1, 2πsR) and thereby completes the proof.

5. Proof of Proposition 2.9

By definition AS∩Λ is the minimal affine subspace containing S ∩Λ. For brevity
let us write A for AS∩Λ. Now we have A = span{v − w : v ∈ S ∩ Λ} + w for
any w in A. In particular we can assume w ∈ S ∩ Λ. Thus we can find a basis
v1 − w, ..., vl − w of W = span{v − w : v ∈ S ∩ Λ} with w, v1, ..., vl ∈ S ∩ Λ. Now
clearly (S ∩ Λ) ⊆ A = W + w. Hence we conclude

|S ∩ Λ| = |(S ∩ (W + w)) ∩ (Λ ∩ (W + w))| = |((S − w) ∩W ) ∩ (Λ ∩W )|
= |S′ ∩ Λ′|,

where S′ = (S − w) ∩W and Λ′ = Λ ∩W . Of course S′ is convex and lies in some
Rl. First suppose l = 1. Then, as |S ∩Λ| > 1, we have Vol1(S′) ≥ λ1(Λ′) ≥ λ1 and
hence

|S ∩ Λ| ≤ (Vol1(S′))/λ1 + 1 ≤ c3(1)(Vol1(S′))/λ1.

From now on we assume l > 1. Suppose S′ (as a subset of Rl) has empty interior.
Then S′ lies in an affine subspace of dimension l− 1, and so does (S ∩Λ) ⊆ S′+w.
But this contradicts the minimality of A. Therefore we can apply John’s Theorem,
i.e., we can find an ellipsoid E, with center say P ∈ S′, such that

E ⊆ S′ ⊆ l(E − P ) + P.

There exists a translation tP by P and an orthogonal map ψ such that ψ ◦ tP (E)
is defined by (x1/a1)2 + · · · + (xl/al)2 = 1 for certain positive reals a1, ..., al. Put
R = (a1 · · · al)1/l. Moreover, there exists a linear endomorphism Φ with det Φ = 1
that sends E − P to B0(R). Hence we have Φ(E) = BP ′(R), with P ′ = Φ(P ), and
therefore

BP ′(R) ⊆ Φ(S′) ⊆ BP ′(lR).(5.1)

Note that 0 = w − w ∈ S′. Using (5.1) and the triangle inequality yields Φ(S′) ⊆
B0(2lR). The linearly independent lattice points v1 −w, ..., vl −w all lie in S′ and
thus

λ′l ≤ max{|Φ(v1 − w)|, ..., |Φ(vl − w)|} ≤ 2lR

for the successive minimum λ′l of the lattice Φ(Λ′). Applying Theorem 2.3 with
Φ(S′), Φ(Λ′) and using 2lR ≥ λ′l we conclude

|S′ ∩ Λ′| = |Φ(S′) ∩ Φ(Λ′)| ≤ |BP ′(lR) ∩ Φ(Λ′)| ≤ Vol(BP ′(lR))
det Φ(Λ′)

+ c1(l, 1) (2lR)l−1

λ′1 · · ·λ′l−1

2lR
λ′l

.

However, due to the lack of a published reference, we will apply Theorem 2.6 instead.
From Lemma 3.1 we see that ∂BP ′(lR) lies in Lip(l, 1, 8

√
l − 1lR), which gives

|S′ ∩ Λ′| ≤ Vol(BP ′(lR))
det Φ(Λ′)

+ c2(l)
(8
√
l − 1lR)l

λ′1 · · ·λ′l
.

Next we observe
Vol(BP ′(R)) ≤ Vol(Φ(S′)) ≤ Vol(BP ′(lR)),

Vol(Φ(S′)) = Vol(S′) = Voll(S ∩ A).
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Writing c′2 = 1 + c2(l)(4
√
l − 1)ll! and applying Minkowski’s Second Theorem we

conclude

|S′ ∩ Λ′| ≤ c′2
Vol(BP ′(lR))

det Φ(Λ′)
= c′2l

lVol(BP ′(R))
det Λ′

≤ c′2ll
Voll(S ∩ A)

det Λ′
.

Finally, we use Minkowski’s Second Theorem once more, together with
λ1(Λ′) · · ·λl(Λ′) ≥ λ1 · · ·λl,

and the result drops out, after noting that (2l)lc′2/Vol(B0(1)) ≤ 8ll3l(l/2+1).

6. Proof of Corollary 2.11

For a vector y = (y0, y1, ..., yn−1) ∈ Zn we write Wy for the orthogonal com-
plement of yR in Rn. Put Λy = Wy ∩ Zn and yd = (yd0 , yd1 , ..., ydn−1). If y is
primitive (i.e., y 6= 0 and gcd(y0, y1, ..., yn−1) = 1) then Λy is a lattice of rank
n − 1 with det Λy = |y|. Let Λ∗y be the set of primitive vectors in Λy, and set
|y|∞ = max{|y0|, |y1|, ..., |yn−1|}.

We fix a primitive vector y ∈ Z3 and we count all primitive vectors x satisfying
(2.2) and |x|∞ = H((x0 : x1 : x2)) ≤ t/H((y0 : y1 : y2)) = t/|y|∞. Then summing
over all primitive vectors y we see that

N(Vd, t) ≤
∑
y∈Z3

y primitive

∣∣∣∣[− t

|y|∞
,

t

|y|∞
]3 ∩ Λ∗yd

∣∣∣∣ .(6.1)

Let us first estimate the number of (x,y) with x0x1x2 = 0. By symmetry we can
assume x2 = 0. Then the term in our sum above becomes∣∣∣∣[− t

|y|∞
,

t

|y|∞
]2 ∩ Λ∗(yd0 ,yd1 )

∣∣∣∣ .(6.2)

We write (y0, y1) = m(y′0, y′1) = my′ with coprime y′0, y′1. Note that if y0 = y1 = 0
then y2 = ±1 and so we have � t2 of these points (x,y). Thus we can assume
my′ 6= 0. Now Λ(yd0 ,yd1 ) = Λy′d is a 1-dimensional lattice with determinant |y′d|.
This means that any primitive vector (x0, x1) in Λy′d has length |y′d|, and moreover,
there are only 2 primitive vectors in each Λy′d . So (6.2) is either 0 or 2, and if it
is 2 then:

√
2t/|y|∞ ≥ |(x0, x1)| = |y′d| ≥ |y′d|∞. As |y|∞ ≥ m|y′|∞ we conclude

|y′|∞ ≤ (
√

2t/m)1/(d+1). This shows that the total number of points (x,y) with
x0x1x2 = 0 and my′ 6= 0 is

≤ 3
[t]∑
m=1

∑
y=(my′0,my

′
1,y2)

|y2|≤t
|y′0|,|y

′
1|≤(

√
2t/m)1/(d+1)

∣∣∣∣[− t

|y|∞
,

t

|y|∞
]2 ∩ Λ∗y′d

∣∣∣∣ ≤ 6
[t]∑
m=1

∑
y=(my′0,my

′
1,y2)

|y2|≤t
|y′0|,|y

′
1|≤(

√
2t/m)1/(d+1)

1.

The latter is

�
[t]∑
m=1

t(t/m)2/(d+1) = t1+2/(d+1)
[t]∑
m=1

m−2/(d+1) �

{
t2 log(2t) : if d = 1,
t2 : if d > 1.

It remains to estimate the number of points (x,y) that satisfy x0x1x2 6= 0. We
note that for fixed x0, x1, x2 with x0x1x2 6= 0 the equation x0y

d
0 + x1y

d
1 + x2y

d
2 = 0

defines an affine irreducible variety over R of dimension 2 and degree d. To see this
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it suffices to show the irreducibility of f(x) = xd + yd− 1 in C[y][x]. But the latter
follows from Eisenstein’s criterion. Next we need an upper bound for the term in
the sum of (6.1). Now either [−t/|y|∞, t/|y|∞]3 ∩ Λ∗yd is not contained in a line,
or all points lie on one single line (passing through the origin). In the former case
we can apply Corollary 2.10 to deduce the upper bound � t2|y|−(d+2), and in the
latter we have at most 2 primitive vectors x. Hence the number of points (x,y)
that satisfy x0x1x2 6= 0 is

�
∑

y primitive
|y|∞≤t

t2

|y|d+2 +
∑

y primitive
|y|∞≤t

1∗(t,y)(6.3)

with

1∗(t,y) =

{
1 : if λ1(Λyd)|y|∞ ≤

√
3t,

0 : otherwise.

The simple calculation

∑
y primitive
|y|∞≤t

t2

|y|d+2 ≤
[t]∑
e=1

t2
|{y; |y|∞ = e}|

ed+2 � t2
[t]∑
e=1

e2

ed+2 = t2
[t]∑
e=1

e−d(6.4)

shows that the first sum in (6.3) is bounded from above by the right-hand side
of (2.3). To estimate the second sum we need an upper bound on the number of
primitive vectors y with λ1(Λyd)|y|∞ � t. We distinguish two cases. For brevity
we write τ = τ(t) = t(3d

2−4d+2)/(5d−1), λ1 for λ1(Λyd) and λ2 for λ2(Λyd).
Case 1: λ2/λ1 ≤ τ .
Here we find

|y| � (det Λyd)1/d � (λ1λ2)1/d ≤ (λ1λ1τ)1/d = λ
2/d
1 τ1/d.

As we have λ1|y| � λ1|y|∞ � t we conclude |y| � t2/(d+2)τ1/(d+2). This means
that we have at most

� t6/(d+2)τ3/(d+2) = t6/(d+2)+3(3d2−4d+2)/((d+2)(5d−1)) = t9d/(5d−1)

possibilities for y in case 1, and this in turn proves Corollary 2.11 in case 1.

Case 2: λ2/λ1 > τ .
Here we have

t� λ1|y| � λ1(λ1λ2)1/d > λ1(λ2
1τ)1/d = λ

(d+2)/d
1 τ1/d,

and therefore λ1 � td/(d+2)τ−1/(d+2). Now let x = (x0, x1, x2) be a primitive vector
in Λyd with |x| = λ1 and x0x1x2 6= 0. Thus we have |x| � td/(d+2)τ−1/(d+2), and
the height bound gives |x||y| � t. Now for each fixed vector x as above we count
the number of primitive vectors y such that x is a minimal vector of Λyd and
|x||y| � t. Then we sum these upper bounds over all primitive vectors x with
|x| � td/(d+2)τ−1/(d+2) and x0x1x2 6= 0. So the number of vectors y is

�
∑

x primitive
x0x1x2 6=0

|x|�td/(d+2)τ−1/(d+2)

∣∣∣∣{y primitive;x0y
d
0 + x1y

d
1 + x2y

d
2 = 0, |y| � t

|x|
}
∣∣∣∣ .
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The term in the sum above is certainly� t2/|x|2. Similar as in (6.4) this yields the
upper bound � t2+d/(d+2)τ−1/(d+2) for the number of vectors y, and this in turn
proves Corollary 2.11 for d = 1. However, for d > 1 we apply a general result of
Pila (Theorem A in [10]) to deduce the better bound�ε (t/|x|)1+1/d+ε for the term
in the sum above (here we used the fact that for fixed x0, x1, x2 with x0x1x2 6= 0
the equation x0y

d
0 + x1y

d
1 + x2y

d
2 = 0 defines an affine irreducible variety over R of

dimension 2 and degree d). This gives the upper bound

�ε t
1+2(d2+1)/(d(d+2))+ετ−(2d−1)/(d(d+2)) = t9d/(5d−1)+ε

for the number of vectors y, and thereby completes the proof of Corollary 2.11.
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