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Abstract A set of algebraic numbers has the Northcott property if each of its subsets

of bounded Weil height is finite. Northcott’s Theorem, which has many Diophantine

applications, states that sets of bounded degree have the Northcott property. Bombieri,

Dvornicich and Zannier raised the problem of finding fields of infinite degree with this

property. Bombieri and Zannier have shown that Q(d)
ab , the maximal abelian subfield

of the field generated by all algebraic numbers of degree at most d, is such a field. In

this note we give a simple criterion for the Northcott property and, as an application,

we deduce several new examples, e.g. Q(21/d1 , 31/d2 , 51/d3 , 71/d4 , 111/d5 , ...) has the

Northcott property if and only if 21/d1 , 31/d2 , 51/d3 , 71/d4 , 111/d5 , ... tends to infinity.
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1 Introduction

Let A be a subset of the algebraic numbers Q and denote by H(·) the non-logarithmic

absolute Weil height on Q as defined in [1]. Following Bombieri and Zannier [2] we say

A has the Northcott property, short property (N), if for each positive real number X

there are only finitely many elements α in A with H(α) ≤ X. The 1-dimensional ver-

sion of Northcott’s Theorem (see [15] Theorem 1) states that sets of algebraic numbers

with uniformly bounded degree (over Q) have property (N). Northcott’s Theorem has
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been used extensively, especially to deduce finiteness results in Diophantine geometry.

Other applications will be mentioned briefly in Section 11. Bombieri and Zannier [2]

and more explicitly Dvornicich and Zannier ([4] p.165) proposed the problem of find-

ing other fields than number fields with property (N). In this note we give a simple

sufficient criterion for an infinite extension of Q to have property (N). Our criterion

depends on the growth rate of certain discriminants. The method uses a lower bound

due to Silverman for the height of an element generating the number field. As an appli-

cation we deduce property (N) for several infinite extensions, here is just one example;

with positive integers di the extension Q(21/d1 , 31/d2 , 51/d3 , 71/d4 , 111/d5 , ...) has prop-

erty (N) if and only if 21/d1 , 31/d2 , 51/d3 , 71/d4 , 111/d5 , ... tends to infinity.

For an arbitrary number field K and a positive integer d letK(d) be the compositum

of all field extensions of K of degree at most d. Bombieri and Zannier [2] addressed the

following question: does K(d) have property (N)? So far the only contribution to this

question is due to Bombieri and Zannier ([2] Theorem 1.1). Let us write K
(d)
ab for the

compositum of all abelian extensions F/K with K ⊆ F ⊆ K(d).

Theorem 1 (Bombieri, Zannier) The field K
(d)
ab has property (N), for any positive

integer d.

Since K(2) = K
(2)
ab Theorem 1 positively answers Bombieri and Zannier’s question for

d = 2. However, for d > 2 the question whether K(d) has property (N) remains open.

Another consequence of Theorem 1 is the following result.

Corollary 1 (Bombieri, Zannier) For any positive integer d the field

Q(11/d, 21/d, 31/d, 41/d, 51/d, ...) has property (N).

Dvornicich and Zannier ([4] Theorem 2.1) observed that by a small variation of North-

cott’s argument the ground field Q in Northcott’s Theorem can be replaced by any

field with property (N). This turns out to be a very useful fact so that we state it

explicitly as a theorem.

Theorem 2 Let L be a field of algebraic numbers with property (N) and let d > 0 be

an integer. The set of algebraic numbers of degree at most d over L has property (N).

In particular every finite extension of L has the property (N).

Taking a finite extension of a field with property (N) is of course a very special case

of taking the compositum of two fields with property (N). So one might ask: is the

property (N) preserved under taking the compositum of two fields? We shall see that

this is not always the case.

Before we state our own results let us fix some basic notation. All fields are con-

sidered to lie in a fixed algebraic closure of Q. For positive rational integers a, b the

expression a1/b denotes the real positive b-th root of a, unless stated otherwise. By a

prime ideal we always mean a non-zero prime ideal. Let F,M,K be number fields with

F ⊆ M ⊆ K and write OK for the ring of integers in K. For a non-zero fractional

ideal A of OK in K let DK/M (A) be the discriminant-ideal of A relative to M (for the

definition see [8] p.65) and write DK/M for DK/M (OK) (see also [14] p.201). Let us

denote by NM/F (·) the norm from M to F as defined in [8] p.24. Then we have

DK/F = D
[K:M ]
M/F

NM/F (DK/M ) (1)
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(see [14] (2.10) Corollary p.202). For a non-zero fractional ideal B of OM in M we

interpret the principal ideal NM/Q(B) as the unique positive rational generator of this

ideal. Note that DK/M is an integral ideal in OM and thus NM/Q(DK/M ) is in Z.

We write ∆K for the absolute discriminant of K so that DK/Q is the principal ideal

generated by ∆K . In particular (1) yields

|∆K | = |∆M |[K:M ]NM/Q(DK/M ). (2)

We will also frequently use the following fact (see [6] Theorem 85 p.97): let F,K be

two number fields. A prime p in Z ramifies in the compositum of F and K if and only

if it ramifies in F or in K.

So far Theorem 1, and its immediate consequences, were the only sources for fields

of infinite degree with property (N). Our first result is a simple but rather general

criterion for the property (N) concerning subfields of Q. Roughly speaking it states

that the union of fields in a saturated (i.e. without intermediate fields) nested sequence

of number fields with enough ramification at each step has property (N).

Theorem 3 Let K be a number field, let K = K0 ( K1 ( K2 ( .... be a nested

sequence of finite extensions and set L =
S
iKi. Suppose that

inf
Ki−1(M⊆Ki

“
NKi−1/Q(DM/Ki−1

)
” 1

[M:K0][M:Ki−1] −→∞ (3)

as i tends to infinity where the infimum is taken over all intermediate fields M strictly

larger than Ki−1. Then the field L has the Northcott property.

If the nested sequence of number fields is saturated then (3) simplifies to

NKi−1/Q(DKi/Ki−1
)

1
[Ki:K0][Ki:Ki−1] −→∞. (4)

In the sequel we give several applications of Theorem 3. For a number field K and a

prime ideal ℘ of OK we say D = xd + a1x
d−1 + ... + ad in OK [x] is a ℘-Eisenstein

polynomial if aj ∈ ℘ for 1 ≤ j ≤ d and ad /∈ ℘2. Such a polynomial is irreducible over

K (see [10] p.256). As a consequence of Theorem 3 we deduce the following theorem.

Theorem 4 Let K be a number field, let p1, p2, p3, ... be a sequence of positive prime

numbers and for i = 1, 2, 3, ... let Di be a pi-Eisenstein polynomial in Z[x]. Denote

degDi = di and let αi be any root of Di. Moreover suppose that pi - ∆Q(αj) for

1 ≤ j < i and that p
1/di

i −→ ∞ as i tends to infinity. Then the field K(α1, α2, α3, ...)

has the Northcott property.

Theorem 4 implies a refinement of Corollary 1. This refinement shows that the condition

p
1/di

i −→∞ in Theorem 4 cannot be weakened.

Corollary 2 Let K be a number field, let p1 < p2 < p3 < ... be a sequence of pos-

itive primes and let d1, d2, d3, ... be a sequence of positive integers. Then the field

K(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...) has the Northcott property if and only if |p1/di

i | −→ ∞ as

i tends to infinity. Here p
1/di

i is any di-th root of pi and | · | denotes the complex

modulus.
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If the di are prime and not uniformly bounded then Q(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...) contains

elements of arbitrarily large prime degree and thus it cannot be generated over Q
by algebraic numbers of bounded degree. The conclusion remains true if we drop the

primality condition on di. This can be deduced from Proposition 1 in [2] which implies

for any subfield L ⊆ Q(d) the local degrees [Lv : Qv] are bounded solely in terms of d.

Now the local degrees of L = Q(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...) are not uniformly bounded and

so L is not contained in Q(d) for any choice of d. To the best of the author’s knowledge

Corollary 2 provides the first such example of a field with property (N). Moreover,

Corollary 2 easily implies the following statement.

Theorem 5 Property (N) is not generally preserved under taking the composite of two

fields. More concretely: let pi be the i+ 1-th prime number and set di = [
√

log pi]. Let

L1 = Q(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...),

L2 = Q(p
1/(d1+1)
1 , p

1/(d2+1)
2 , p

1/(d3+1)
3 , ...).

Then L1 and L2 both have property (N) but their composite field does not have property

(N).

Another example proving Theorem 5, again coming from Corollary 2, is as follows: con-

sider the fields L1 = Q(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...) and L2 = Q(ζ1p

1/d1
1 , ζ2p

1/d2
2 , ζ3p

1/d3
3 , ...),

where di is as in Theorem 5 and ζi are primitive di-th roots of unity. Then plainly L1, L2

have the property (N) (by Corollary 2) but L1L2 does not because it contains infinitely

many roots of unity.

Let us give one more immediate consequence of Theorem 4. This result can be

considered as a very small step towards the validity of property (N) for K(d).

Corollary 3 Let d be a positive integer, let F0 be an arbitrary number field and let

F1, F2, F3, ... be a sequence of finite extensions of F0 with [Fi : F0] ≤ d. Moreover

suppose there exists a sequence p1, p2, p3, ... of positive prime numbers such that pi
ramifies totally in Fi but does not ramify in Fj for 1 ≤ j < i. Then the compositum of

F0, F1, F2, F3, ... has the Northcott property.

In the case d = 3 one can apply the criterion from Theorem 3 directly to prove a

stronger result.

Corollary 4 Let F0 be an arbitrary number field and let F1, F2, F3, ... be a sequence

of field extensions of F0 with [Fi : F0] ≤ 3 such that for each positive integer i there

is a prime pi with pi | ∆Fi
and pi - ∆Fj

for 0 ≤ j < i. Then the compositum of

F0, F1, F2, F3, ... has the Northcott property.

As a next step towards K(3) we would like to replace Fi in Corollary 4 by its Galois

closure F
(g)
i over F0. Unfortunately we have to impose an additional technical condition

and we also restrict F0 to Q.

Corollary 5 Let F1, F2, F3, ... be a sequence of field extensions with [Fi : Q] ≤ 3 such

that for each integer i > 1 there is a prime pi with pi | ∆Fi
and pi - ∆Fj

for 1 ≤ j < i.

Furthermore suppose that for each i > 1 at least one of the following conditions holds:

(a)Fi/Q is Galois.

(b)Fi = Q(α) for an α with α3 ∈ Q.
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(c)Fi = Q(α) for an algebraic integer α with 2 - ordpi Disc(Dα) for the monic minimal

polynomial Dα ∈ Z[x] of α.

(d)Fi = Q(α) for a root α of a polynomial of the form x3 +a0c
3xl+bl0c

3 with l ∈ {1, 2}
and rational integers a0, b0, c satisfying gcd(2a0c, 3b0) = 1.

Then the compositum of F
(g)
1 , F

(g)
2 , F

(g)
3 , ... has the Northcott property.

Theorem 4, Corollary 3, Corollary 4, and Corollary 5 can be generalized in various

ways, for instance the constraints in these results can be relaxed by computing the

contribution to the relative discriminant of more than just one prime.

2 A simple observation

Let L be a field of algebraic numbers of infinite degree. Now we consider a nested

sequence of fields

K0 ( K1 ( K2 ( K3 ( ...

such that

(i) K0 has the property (N),

(ii) [Ki : Ki−1] <∞ for i > 0,

(iii)L =

∞[
i=0

Ki.

For a finite extension M/F of subfields of Q we define

δ(M/F ) = inf{H(α);F (α) = M}.

Note that if M has the property (N) then the infimum is attained, i.e. there exists

α ∈M with F (α) = M and H(α) = δ(M/F ).

Since each Ki is a finite extension of K0 we deduce by (i) and Theorem 2 that each

field Ki has property (N).

Proposition 1 L has property (N) if and only if

inf
Ki−1(M⊆Ki

δ(M/Ki−1) −→∞ as i→∞

where the infimum is taken over all intermediate fields M strictly larger than Ki−1.

Although it is not needed here, we point out that for i > 0

inf
Ki−1(M⊆Ki

δ(M/Ki−1) = inf
α∈Ki\Ki−1

H(α)

and this holds even if Ki does not have property (N). The inequality “≤” is ob-

vious. For “≥” let M be a field with Ki−1 ( M ⊆ Ki and let α1, α2, α3, ... be a

sequence in M with Ki−1(αj) = M and H(αj)→ δ(M/Ki−1) as j →∞. Then clearly

αj ∈ Ki\Ki−1 and thus H(αj) ≥ infα∈Ki\Ki−1
H(α). This shows that δ(M/Ki−1) ≥

infα∈Ki\Ki−1
H(α) which proves the inequality “≥”.



6

Proof (of Proposition 1) For brevity let us write

Ai = inf
Ki−1(M⊆Ki

δ(M/Ki−1).

First we show that property (N) for the field L implies Ai →∞.

For each i > 0 we can find αi ∈ Ki\Ki−1 with H(αi) = Ai, in particular the elements

αi are pairwise distinct. Now suppose (Ai)
∞
i=1 has a bounded subsequence. Hence we

get infinitely many elements αi ∈ L with uniformly bounded height and so L does not

have property (N).

Next we prove that Ai →∞ implies property (N) for the field L.

Suppose L does not have property (N). Hence there exists an infinite sequence α1, α2, α3, ...

of pairwise distinct elements in L\K0 with H(αj) ≤ X for a certain fixed real number

X. Let i = i(αj) be such that αj ∈ Ki\Ki−1. Thus

Ki−1 ( Ki−1(αj) ⊆ Ki

and hence

Ai ≤ δ(Ki−1(αj)/Ki−1) ≤ H(αj) ≤ X.

Since each field Ki has the property (N) we conclude i(αj) −→ ∞ as j → ∞. Thus

(Ai)
∞
i=1 has a bounded subsequence.

3 Silverman’s inequality

In order to apply Proposition 1 we need a lower bound for the invariant δ(M/K). A

good lower bound was proven by Silverman if both fields are number fields. So let

K,M be number fields with K ⊆M and m = [M : K] > 1. Let α be a primitive point

of the extension M/K, i.e. M = K(α). We apply Silverman’s Theorem 2 from [18]

with F = K and K = M and with Silverman’s SF as the set of archimedean absolute

values. Then Silverman’s LF (·) is simply the usual norm NF/Q(·) and we deduce

H(α)[K:Q] ≥ exp

„
− δK logm

2(m− 1)

«
NK/Q(DM/K)

1
2m(m−1) (5)

where δK is the number of archimedean places of K. Since Silverman used an “absolute

height relative to K” rather than an absolute height, we had to take the [K : Q]-th

power on the left hand side of (5).

4 Proof of Theorem 3

From Proposition 1 we know it suffices to show

inf
Ki−1(M⊆Ki

δ(M/Ki−1) −→∞ as i→∞.
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So let M be an intermediate field Ki−1 ( M ⊆ Ki and set m = [M : Ki−1]. We

apply (5) with K replaced by Ki−1. Then taking the [Ki−1 : Q]-th root and using

δKi−1 ≤ [Ki−1 : Q] we conclude for any α ∈M with Ki−1(α) = M

H(α) ≥ m−
1

2(m−1) (NKi−1/Q(DM/Ki−1
))

1
2[Ki−1:Q]m(m−1) .

In particular

inf
Ki−1(M⊆Ki

δ(M/Ki−1) ≥ (1/2) inf
Ki−1(M⊆Ki

(NKi−1/Q(DM/Ki−1
))

1
2[Ki−1:Q]m(m−1) .

(6)

Now using [Ki−1 : Q]m = [K0 : Q][M : K0] and the hypothesis of the theorem we see

that the right hand-side of (6) tends to infinity as i tends to infinity. This completes

the proof of Theorem 3.

5 Proof of Theorem 4

Let us recall the following well-known lemma.

Lemma 1 Let F,K be number fields with F ⊆ K. Let ℘ be a prime ideal in OF . The

following are equivalent:

(i) ℘ ramifies totally in K.

(ii) K = F (α) for a root α of a ℘-Eisenstein polynomial in OF [x].

Proof See for instance Theorem 24. (a) p.133 in [5]

We can now prove Theorem 4. Let K0 = K and for i > 0 let Ki = Ki−1(αi). By

assumption we have pi - ∆Q(αj) for 1 ≤ j < i. Since Ki−1 is the compositum of

K0,Q(α1), ...,Q(αi−1) we conclude that only primes dividing ∆K0∆Q(α1)...∆Q(αi−1)

can ramify in Ki−1. By assumption we know that pi −→∞ which implies that there is

an i0 such that pi - ∆Ki−1 for all i ≥ i0. Now we shift the index i by i0 steps so that the

new Ki, pi, di are the old Ki+i0 , pi+i0 , di+i0 and therefore pi is unramified in Ki−1 for

all i ≥ 1. Now clearly K0 ( K1 ( K2 ( .... and of course
S∞
i=0Ki = K(α1, α2, α3, ...).

We will apply Theorem 3 but first we have to make sure that condition (3) holds.

Now let i > 0 and let M be an intermediate field with Ki−1 ( M ⊆ Ki. Moreover

set m = [M : Ki−1]. Let ℘ be any prime ideal in OKi−1 above pi. Since pi is unramified

in Ki−1 we conclude that Di is a ℘-Eisenstein polynomial in OKi−1 [x]. According

to the Eisenstein criterion this implies that Di is irreducible over Ki−1 and since

Ki = Ki−1(αi) we get [Ki : Ki−1] = di. Moreover we conclude by Lemma 1 that ℘

ramifies totally in Ki/Ki−1. Let

(pi) = ℘1...℘s

be the decomposition into prime ideals in OKi−1 . Since ℘j ramifies totally in Ki/Ki−1

it also ramifies totally in M/Ki−1. Hence

℘j = Bm
j
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for 1 ≤ j ≤ s and prime ideals Bj in OM . Let DM/Ki−1
be the different of M/Ki−1

(for the definition see [14] p.195). Then we have Bm−1
j | DM/Ki−1

(see [14] (2.6)

Theorem p.199) and therefore

(B1...Bs)
m−1 | DM/Ki−1

.

The discriminant DM/Ki−1
is the norm of the different DM/Ki−1

from M to Ki−1 (see

[14] (2.9) Theorem p.201). Taking then norms from Ki−1 to Q we conclude

NKi−1/Q(DM/Ki−1
) = NKi−1/Q(NM/Ki−1

(DM/Ki−1
)) = NM/Q(DM/Ki−1

).

Therefore

NM/Q((B1...Bs)
m−1) | NKi−1/Q(DM/Ki−1

). (7)

On the other hand we have

NM/Q((B1...Bs)
m−1) = (NM/Q(

sY
j=1

Bm
j ))

m−1
m = (NM/Q(

sY
j=1

℘j))
m−1

m

= (NM/Q(pi))
m−1

m = p
[Ki−1:Q](m−1)
i .

Combining the latter with (7) and not forgetting that 1 < m = [M : Ki−1] ≤ di we

end up with

NKi−1/Q(DM/Ki−1
)

1
[M:K0][M:Ki−1] ≥ p

[Ki−1:Q](m−1)
[M:K0]m

i = p
[K0:Q](m−1)

m2

i ≥ p
1

2m
i ≥ p

1
2di
i .

By hypothesis of the theorem p
1

di
i tends to infinity. Hence we can apply Theorem 3

and this completes the proof of Theorem 4.

6 Proof of Corollary 2

Since H(p
1/di

i ) = |p1/di

i | we see that condition |p1/di

i | −→ ∞ is necessary to obtain

property (N). Now let us prove that this condition implies property (N). The hy-

pothesis implies that there is an i1 such that pj > dj for all j > i1. Therefore we have

pi ≥ pj > dj for all i ≥ j > i1. Clearly there exists an i2 such that pi > max{d1, ..., di1}
for all i ≥ i2. Thus pi > max{d1, ..., di1 , di1+1, ..., di} for all i ≥ i0 := max{i1, i2}.
This implies pi - d1p1...di−1pi−1 for all i ≥ i0. Set Di = xdi − pi, αi = p

1/di

i , K0 = K

and Ki = K(α1, ..., αi). Since ∆Q(αj) divides |Disc(Dj)| = d
dj

j p
dj−1
j we conclude

pi - ∆Q(αj) for all i ≥ i0 and 1 ≤ j < i. Now shift the index by i0 steps, more pre-

cisely: define eKi = Ki0+i, epi = pi0+i,
eDi = Di0+i,

edi = di0+i, eαi = αi0+i. Henceepi - ∆Q(eαj) for all i and 1 ≤ j < i. Clearly K(α1, α2, α3, ...) = eK0(eα1, eα2, eα3, ...) and

|ep1/edi

i | −→ ∞. Applying Theorem 4 with K = eK0 and epi, eDi, edi, eαi completes the

proof.
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7 Proof of Theorem 5

Note that p
1/di

i and p
1/(di+1)
i tend to infinity whereas p

1/(d2i +di)
i is bounded as i tends

to infinity. Hence Corollary 2 tells us that

L1 = Q(p
1/d1
1 , p

1/d2
2 , p

1/d3
3 , ...), L2 = Q(p

1/(d1+1)
1 , p

1/(d2+1)
2 , p

1/(d3+1)
3 , ...)

both have property (N). But p
1/di

i /p
1/(di+1)
i = p

1/(d2i +di)
i and so the compositum of

L1 and L2 contains the field

Q(p
1/(d21+d1)
1 , p

1/(d22+d2)
2 , p

1/(d23+d3)
3 , ...)

which according to Corollary 2 does not have property (N). Therefore the compositum

of L1 and L2 does not have property (N).

8 Proof of Corollary 3

For i > 0 the extension Fi/Q is generated by a root, say αi, of a pi-Eisenstein polyno-

mial Di in Z[x] (see Lemma 1 Section 5) of degree di ≤ d[F0 : Q]. Therefore Fi = Q(αi)

and the compositum of F0, F1, F2, F3, ... is given by F0(α1, α2, α3, ...). From the hy-

pothesis we know that pi - ∆Q(αj) for 1 ≤ j < i, in particular the primes pi are pairwise

distinct and thus p
1/di

i −→∞. Applying Theorem 4 yields the desired result.

9 Proof of Corollary 4

Write Ki for the compositum of F0, ..., Fi. For i > 0 we have 1 ≤ [Ki : Ki−1] ≤ 3, in

particular Ki/Ki−1 does not admit a proper intermediate field and so (3) simplifies to

(4). By assumption there is a prime pi which ramifies in Fi but not in Fj for 0 ≤ j < i.

By virtue of (2) we conclude that

p
[Ki:Fi]
i | ∆[Ki:Fi]

Fi
| ∆Ki

.

On the other hand pi does not ramify in F0, ..., Fi−1 and so does not ramify in the

compositum Ki−1, that is pi - ∆Ki−1 . Appealing to (2) again we conclude

p
[Ki:Fi]
i | NKi−1/Q(DKi/Ki−1

)

and therefore

NKi−1/Q(DKi/Ki−1
)

1
[Ki:K0][Ki:Ki−1] ≥ p

[Ki:Fi]
[Ki:K0][Ki:Ki−1]

i . (8)

Since [Ki : Fi] = [Ki : K0]/[Fi : K0] and [Fi : K0] ≤ 3 and [Ki : Ki−1] ≤ 3 we see that

the right hand-side of (8) is at least p
1/9
i . Now clearly pi −→ ∞ as i tends to infinity

and so the statement follows from Theorem 3.
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10 Proof of Corollary 5

Note that the primes pi are pairwise distinct. Hence there exists an integer i0 > 1 such

that pi > 3 for all i ≥ i0. Write ζ3 = (−1 +
√
−3)/2 and define K0 as the compositum

of Q(ζ3), F
(g)
1 , ..., F

(g)
i0

and for i > 0 define Ki as the compositum of K0, F
(g)
1 , ..., F

(g)
i .

Now ∆Q(ζ3) = −3 and using our assumption we conclude that pi - ∆Ki−1 for all i ≥ i0.

We will show that for i ≥ i0 the prime pi ramifies in M for each intermediate field

Ki−1 ( M ⊆ Ki. By similar arguments as in the proof of Corollary 4 we derive

NKi−1/Q(DM/Ki−1
)

1
[M:K0][M:Ki−1] ≥ p

1
18
i .

Applying Theorem 3 proves the statement. So let us now prove that pi ramifies in M .

If (a) holds we have M = Ki and since pi | ∆Fi
| ∆Ki

we are done. Next suppose

(b) holds. Since ζ3 lies in K0 we have [Ki : Ki−1] ≤ 3 and so M = Ki as before.

Now suppose (a) does not hold. Then F
(g)
i /Q must have Galois group isomorphic

to S3. The unique quadratic subfield, let us call it Ei, is then given by Q(
p
Disc(D))

where D is the minimum polynomial of any α with Fi = Q(α). Note that [Ki : Ki−1] =

[Ki−1F
(g)
i : Ki−1] = [Ki−1F

(g)
i : Ki−1Ei][Ki−1Ei : Ki−1] ≤ [F

(g)
i : Ei][Ei : Q] = 3·2.

Hence if Ki/Ki−1 has Galois group isomorphic to S3 then each strict intermediate field

of Ki/Ki−1 is either the compositum of Ki−1 and a conjugate field of Fi/Q or the

compositum of Ki−1 and Ei. Since pi ramifies in all conjugate fields of Fi/Q it remains

to show that pi ramifies in Ei. Suppose (c) holds. Write Q for the largest square dividing

Disc(Dα) and set A = Disc(Dα)/Q. Then pi | A and A | ∆Ei
. In particular pi ramifies

in Ei. Now suppose (d) holds. By Corollary 1 of [17] we see that in this case F
(g)
i /Ei

is unramified at all finite primes. Since pi ramifies in F
(g)
i it must already ramify in

Ei. This shows that for i ≥ i0 the prime pi ramifies in M for each intermediate field

Ki−1 ( M ⊆ Ki and thereby completes the proof.

11 Some applications of the Northcott property

Applications to algebraic dynamics were a motivation for Northcott to study heights

and related finiteness properties. Let S be a set and let f : S −→ S be a self map of

S. When we iterate this map we obtain an orbit Of (α) for each point α ∈ S

Of (α) = {α, f(α), f ◦ f(α), f ◦ f ◦ f(α), ...}.

We say a point α in S is a preperiodic point under f if Of (α) is a finite set. We are

interested in the case where S = Q and f is a polynomial map. An important problem is

to decide whether there are finitely many preperiodic points (under f) in a given subset

T of S. A more specific version was proposed by Dvornicich and Zannier ([4] Question):

let T be a subfield of Q and let f ∈ T [x] be a polynomial map with deg f ≥ 2. Can one

decide whether the set of preperiodic points in T (under f) is finite or infinite? If T

is the cyclotomic closure of a number field Dvornicich and Zannier’s Theorem 2 in [3]

positively answers the question by explicitly describing all polynomials f ∈ T [x] with

infinitely many preperiodic points and deg f ≥ 2. If T has property (N) the situation

is much simpler and a well-known argument due to Northcott (see [16] Theorem 3)

answers the question in the affirmative.
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Theorem 6 (Northcott) Suppose T is a subset of Q with property (N) and suppose

f ∈ Q[x] with deg f ≥ 2. Then T contains only finitely many preperiodic points under

f .

Proof For each non-zero rational function g ∈ Q(x) there exists a positive constant

bg < 1 such that H(g(α)) ≥ bgH(α)deg g for all α ∈ Q and α not a pole of g (see [4]

or [9] Proposition 1). We apply this inequality with g = f . Suppose α is preperiodic

under the polynomial f and H(α) > 1/b2f > 1. Hence H(f(α)) ≥ bfH(α)deg f >

H(α)deg f−1/2 ≥ H(α)3/2. Thus with fn the n-th iterate of f we get H(fn(α)) >

H(α)(3/2)
n

> 1 which is a contradiction for n large enough. Therefore H(α) ≤ 1/b2f
and since T has property (N) this proves the lemma.

Using our results on property (N) we get, presumably new, answers on Dvornicich and

Zannier’s question.

In [11] Narkiewicz introduced the so-called property (P ) for fields. A field F has the

property (P ) if for every infinite subset Γ ⊂ F the condition f(Γ ) = Γ for a polynomial

f ∈ F [x] implies deg f = 1. Narkiewicz proposed several problems involving property

(P ), e.g. the analogue of Bombieri and Zannier’s question ([12] Problem 10 (i)): does

Q(d) have property (P )? Or less specifically ([13] Problem XVI): give a constructive

description of fields with property (P ). Dvornicich and Zannier have noticed ([3] p. 534)

that for subfields of Q property (N) implies property (P ) (see also [4] Theorem 3.1

for a detailed proof). Hence an affirmative answer on Bombieri and Zannier’s question

would also positively answer Narkiewicz’s first problem, and the explicit examples of

fields with property (N) shed some light on Narkiewicz’s second problem. But property

(P ) does not imply property (N) as shown in [3] Theorem 3. However, Dvornicich and

Zannier also remarked ([3] p. 533 and [4] Proposition 3.1) that the property (P ) already

implies the finiteness of the set of preperiodic points under a polynomial map of degree

at least 2. Kubota and Liardet [7] proved the existence and Dvornicich and Zannier

([3] Theorem 3) gave explicit examples of fields with property (P ) that cannot be

generated over Q by algebraic numbers of bounded degree. These examples refuted

a conjecture of Narkiewicz ([13] p.85). Corollary 2 provides further examples of such

fields but, opposed to Dvornicich and Zannier’s example, they also have property (N).
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