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Abstract

Let (nk)k≥1 be an increasing sequence of positive integers, and let f(x) be a real
function satisfying

f(x+ 1) = f(x),

∫ 1

0

f(x) dx = 0, Var[0,1] f <∞. (1)

If limk→∞
nk+1

nk
=∞ the distribution of∑N

k=1 f(nkx)√
N

(2)

converges to a Gaussian distribution. In the case

1 < lim inf
k→∞

nk+1

nk
, lim sup

k→∞

nk+1

nk
<∞

there is a complex interplay between the analytic properties of the function f , the number-
theoretic properties of (nk)k≥1, and the limit distribution of (2).

In this paper we prove that any sequence (nk)k≥1 satisfying lim supk→∞
nk+1

nk
= 1

contains a nontrivial subsequence (mk)k≥1 such that for any function satisfying (1) the
distribution of ∑N

k=1 f(mkx)√
N

converges to a Gaussian distribution. This result is best possible: for any ε > 0 there
exists a sequence (nk)k≥1 satisfying lim supk→∞

nk+1

nk
≤ 1+ε such that for every nontrivial

subsequence (mk)k≥1 of (nk)k≥1 the distribution of (2) does not converge to a Gaussian
distribution for some f .

Our result can be viewed as a Ramsey type result: a sufficiently dense increasing integer
sequence contains a subsequence having a certain requested number-theoretic property.
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1 Introduction and statement of results

1.1 Revision of results in Ramsey theory

Ramsey theory has often been summarized with the words of T. Motzkin “Complete dis-
order is impossible”. The principle underlying Ramsey theory has often been observed in
mathematics, and has for example been discussed by Burkill and Mirsky [9] and Nešetřil [23].
Let S be a family of objects and let P be a property that an element of S ∈ S may possess.
Which additional property Q, perhaps in some quantitative or qualitative form, does guar-
antee that all S ∈ S with property Q do also have property P? Let us briefly recall two well
known examples of this principle:

1. Let S be the family of 2-coloured complete finite graphs. Let Pn be the property that
a graph S ∈ S contains a monochromatic complete subgraph Kn on n vertices. The
main problem of Ramsey theory is, which size t on the original complete graph Kt ∈ S
does guarantee that Kt has property Pn? It is known (for example), that a complete
2-coloured graph on t =

(
2n
n

)
vertices contains a monochromatic subgraph Kn. A large

proportion of P. Erdős’ papers, and those of the Hungarian combinatorics school, are
devoted to this circle of problems of extremal combinatorics. Methodically, probabilistic
methods play an important role in this area.

2. Similarly, let S denote the family of subsets of the positive integers. Let S have property
Pk, if S contains k integers in arithmetic progression. Szemerédi’s theorem states that
a set of S ∈ S of positive upper density has property Pk. The main open problem is
to determine the correct density condition which guarantees that S ∈ S has property
Pk. Many eminent mathematicians, such as Roth, Szemerédi, Fürstenberg, Bourgain,
Gowers, Tao, Green, Sanders have worked on this problem; for the most recent work
see Sanders [28], with references to the relevant literature. The methods include combi-
natorics, harmonic analysis and ergodic theory. In particular the Szemerédi regularity
lemma (a version of which is part of Szemerédi’s proof of his theorem [31]) has had
enormous impact in graph theory and theoretical computer science.

Informally speaking, one says that by this Ramsey principle, no complete disorder is pos-
sible, as for example for a sufficiently large arbitrarily coloured complete graph a complete
monochromatic induced subgraph (and hence a highly regular substructure) exists. Similarly,
an arbitrary subset S of the positive integers contains a highly regular substructure, namely
an arithmetic progression of length k, if only the set is dense enough.
Burkill and Mirsky [9] and Nešetřil [23] discussed this principle in a wider context, giving
many further examples in different areas, including for example finite and infinite matrices,
functions etc.
Todays’ vast amount of literature on Ramsey type results includes quantitative and qualitative
aspects. The former perhaps mainly coming from the harmonic analysis approach, due to Roth
and Gowers, the latter perhaps primarily coming from the ergodic approach (Fürstenberg).
In spite of the numerous work in the literature, we are not aware that this principle has been
studied in the context of limit distributions, which itself has an enormous body of literature
in classical probabilistic number theory. Informally speaking, in this paper we show that
for an arbitrary sequence, that only satisfies some “subexponential” gap condition, namely
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lim supk
nk+1

nk
≤ 1, there exists some at most exponentially growing subsequence (mk) such

that simultaneously for a large class of real periodic functions f the distribution of∑N
k=1 f(mkx)√

N

converges to a Gaussian distribution. Moreover we show that our result is best possible (a
precise statement follows below). Our proof is based on the observation that a sufficiently
dense integer sequence offers enough choice to find a subsequence having a certain requested
number-theoretic property. On the other hand, if the original sequence is too thin, it is not
possible to find an appropriate subsequence. Our theorem can be seen as a counterpart of
the so-called subsequence principle, a general informal principle in probability theory which
asserts that a sequence of random variables always contains a (possibly extremely thin) sub-
sequence which behaves like a sequence of independent random variables (cf. Chatterji [10]).
Utilizing the Ramsey principle we show that if the original sequence contains sufficiently many
elements, then it is possible to restrict the growth of the subsequence to at most exponential
growth.
It can be hoped for, that this investigation encourages other researchers to find more examples
of the Ramsey principle in areas that have not traditionally been studied from the view point
of Ramsey theory.

1.2 Revision of relevant results on limit distributions in probabilistic num-
ber theory

A sequence (xk)k≥1 of real numbers from the unit interval is called uniformly distributed
modulo one (u.d. mod 1) if for all subintervals [a, b) of the unit interval

1

N

N∑
k=1

1[a,b)(xk)→ (b− a) as N →∞.

The “quality” of the distribution of a sequence can be measured by the so-called discrepancy
function DN . The discrepancy DN (x1, . . . , xN ) of the first N elements of (xk)k≥1 is defined
as

DN (x1, . . . , xN ) = sup
0≤a<b≤1

∣∣∣∣∣ 1

N

N∑
k=1

1[a,b)(xk)− (b− a)

∣∣∣∣∣ .
It is easy to see that a sequence is u.d. mod 1 if and only if its discrepancy tends to zero
as N → ∞ (we refer to [11] and [22] for an introduction to uniform distribution theory and
discrepancy theory).

In his seminal paper of 1916, Hermann Weyl showed that a sequence (xk)k≥1 is u.d. mod 1
if and only if

1

N

N∑
k=1

cos 2πhxk → 0,
1

N

N∑
k=1

sin 2πhxk → 0, for all h ∈ Z, h 6= 0.

This criterion can be used for an easy proof of the fact that the sequence (〈kx〉)k≥1, where
〈·〉 denotes the fractional part, is u.d. mod 1 for irrational x. In many cases it is very
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difficult to decide whether a certain sequence is u.d. or not; famous examples are the se-
quence (〈(3/2)k〉)k≥1 and (〈2k

√
2〉)k≥1. By a general principle of Weyl, sequences of the form

(〈nkx〉)k≥1, where (nk)k≥1 is a fixed sequence of distinct integers, are u.d. mod 1 for almost
all values of x (in the sense of Lebesgue measure). For fast growing (nk)k≥1 much more
is true: in this case the sequence of functions (〈nkx〉)k≥1, where x ∈ [0, 1] (these functions
may be seen as random variables over the probability space ([0, 1],B([0, 1]), λ[0,1])), exhibits
many asymptotic properties which are typical for sequences of independent and identically
distributed (i.i.d.) random variables.

In this context Weyl’s theorem that (〈nkx〉)k≥1 is u.d. mod 1 for almost all x (which implies
that the discrepancy of (〈nkx〉)k≥1 tends to zero for almost all x) can be either seen as a
variant of the Glivenko-Cantelli theorem for the random variables (〈nkx〉)k≥1 or as a strong
law of large numbers for (cos 2πnkx)k≥1 and (sin 2πnkx)k≥1. As we mentioned before, for fast
growing (nk)k≥1 much more is true. For example, classical results of Salem and Zygmund
[26],[27] and Erdős and Gál [13] show that for any increasing sequence of positive integers
(nk)k≥1 satisfying the growth condition

nk+1

nk
> q > 1, k ≥ 1, (3)

the system (cos 2πnkx)k≥1 satisfies the central limit theorem (CLT)

λ

{
x ∈ (0, 1) :

∑N
k=1 cos 2πnkx√

N/2
≤ t

}
→ Φ(t), t ∈ R,

where λ denotes the Lebesgue measure and Φ the standard normal distribution function. A
sequence satisfying (3) is called a “lacunary” sequence.

If the function cos 2π· is replaced by a more general 1-periodic function f , the situation
becomes much more complicated, and the asymptotic behaviour of the distribution of∑N

k=1 f(nkx)√
N

(4)

is controlled by a complex interplay between analytic properties of f and number-theoretic
properties of (nk)k≥1. The sequence (4) does not necessarily possess a limit distribution, and
if such a limit distribution exists it may be non-Gaussian. For example, Erdős and Fortet
(see [20, p.646]) showed that in the case

f(x) = cos 2πx+ cos 4πx, nk = 2k + 1,

the distribution of (4) converges to a non-Gaussian limit distribution. Typically it is assumed
that f satisfies

f(x+ 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1] f(x) <∞. (5)

For functions satisfying these conditions, the asymptotic distribution of (4) is a Gaussian
distribution if, for example (cf. [18], [32]),

• nk+1

nk
→∞ as k →∞ (6)
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• nk+1

nk
is an integer for k ≥ 1

• nk+1

nk
→ θ for some θ satisfying θr 6∈ Q, r = 1, 2, . . .

Gaposhkin [19] observed that the asymptotic behaviour of (4) has an intimate connection
with the number of solutions (k, l) of Diophantine equations of the form

ank ± bnl = c, a, b, c ∈ Z, (7)

and Aistleitner and Berkes [3] found a necessary and sufficient condition, formulated in terms
of the number of solutions of Diophantine equations of the type (7), which guarantees that
the distribution of (4) converges to a Gaussian distribution.

There are only few precise results in the case of sub-lacunary growing sequences (nk)k≥1.
Generally speaking, in the lacunary case the behaviour of (f(nkx))k≥1 is somewhat similar to
the behaviour of sequences of i.i.d. random variables, whereas this is not necessarily true for
sub-lacunary (nk)k≥1. In the sub-lacunary case one needs either very strong number-theoretic
conditions (cf. [1], [5], [6], [16], [17], [25]), or obtains only results for “almost all” sequences
(nk)k≥1 in an appropriate statistical sense (cf. [4], [8], [14], [15]). An exception is the sequence
nk = k, k ≥ 1, where very precise results are known due to the fact that the behaviour of
(〈kx〉)k≥1 is intimately connected with the properties of the continued fraction expansion of
x (cf. [12], [21], [29], [30]).

In this paper we will show, roughly speaking, the following principle: if (nk)k≥1 is a sub-
lacunary sequence, then it always contains a subsequence (mk)k≥1 such that for any f satis-
fying (5) the distribution of ∑N

k=1 f(mkx)√
N

(8)

converges to a Gaussian distribution. On the other hand, if (nk)k≥1 is already lacunary,
then it may happen that (8) does not converge to a Gaussian distribution for every possible
nontrivial subsequence (mk)k≥1 of (nk)k≥1. In this informal statement we call a subsequence
“nontrivial” if it is not superlacunary (that means lim supk→∞ nk+1/nk =∞ is not allowed).
This restriction is necessary, since trivially an arbitrary sequence (nk)k≥1 contains a superla-
cunary growing subsequence, for which by (6) the CLT is always true.

We mention that a similar problem has been considered in a more general context by Bobkov
and Götze [7]. Let X1, X2, . . . be a sequence of uncorrelated random variables. Then under
certain weak assumptions, such as e.g.

max
1≤k≤N

|Xk| = o(
√
N), and

X2
1 + · · ·+X2

N

N
→ 1 in probability,

the sequence X1, X2, . . . contains a subsequence Xi1 , Xi2 , . . . for which the distribution of

Xi1 + · · ·+XiN√
N

converges to the standard normal distribution. In this result the sequence (ik)k≥1 can be
chosen to grow slowly, in the sense that for any prescribed (jk)k≥1 satisfying jk/k →∞ it is
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possible to have ik ≤ jk for sufficiently large k. We note that this result of Bobkov and Götze
does not apply in our situation, since our random variables (f(nkx))k≥1 are (generally) not
uncorrelated.

1.3 Statement of results

We will prove the following two theorems:

Theorem 1 Let (nk)k≥1 be a strictly increasing sequence of positive integers. If

lim sup
k→∞

nk+1

nk
= 1, (9)

then there exists a subsequence (mk)k≥1 of (nk)k≥1, satisfying

q1 ≤
mk+1

mk
≤ q2, k ≥ 1, for some 1 < q1 < q2 <∞,

such that for all functions f satisfying (5) and for all t ∈ R

λ

{
x ∈ (0, 1) :

∑N
k=1 f(mkx)√
‖f‖22N

≤ t

}
→ Φ(t)

holds.

In the formulation of this theorem,

‖f‖2 =

(∫ 1

0
f(x)2 dx

)1/2

.

Theorem 2 shows that condition (9) in Theorem 1 is optimal:

Theorem 2 Let ε > 0. Then there exists a strictly increasing sequence (nk)k≥1 of positive
integers, satisfying

nk+1

nk
≤ 1 + ε, k ≥ 1,

such that for every subsequence (mk)k≥1 of (nk)k≥1, which satisfies

lim sup
k→∞

mk+1

mk
<∞,

there exists a trigonometric polynomial f such that the distribution of∑N
k=1 f(mkx)√

N

does not converge to a Gaussian distribution.
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The similar problem concerning the law of the iterated logarithm (LIL) seems to be much
more complicated. In this context we formulate the following
Open problem: Under which assumptions does the sequence (nk)k≥1 contain a nontrivial sub-
sequence (mk)k≥1 for which (f(mkx))k≥1 satisfies the (exact) law of the iterated logarithm,
for all functions f satisfying (5)?
This problem is related to the problem of finding the best possible condition, formulated in
terms of Diophantine equations of the form (7), which guarantees the (exact) law of the iter-
ated logarithm for f(nkx) for lacunary (nk)k≥1 (cf. [2]). As in the case of the CLT, if (nk)k≥1

is already lacunary, there does in general not necessarily exist a subsequence having the re-
quired properties concerning the LIL. On the other hand, it is unclear if lim supnk+1/nk = 1
is sufficient for the existence of a nontrivial subsequence (mk)k≥1 for which the exact LIL is
satisfied (a “not exact” version of the LIL is true for an arbitrary lacunary sequence, see [24]).

2 Proof of Theorem 1

Let (nk)k≥1 be given, and assume that

lim sup
k→∞

nk+1

nk
= 1. (10)

For r ≥ 1 we set
Ir =

[
2r0+4r, 2r0+4r+1

)
, (11)

where r0 is fixed and sufficiently large, such that we can find a positive nondecreasing integer-
valued function g(r) such that

g(r) ≥ 3, g(r)→∞ as r →∞

and
#{k ∈ N : nk ∈ Ir} ≥ g(r), r ≥ 1,

and a positive nondecreasing function h(r) such that h(r)→∞ as r →∞ and

h(r) ≥ 1,
r

h(r)
≥ r − 1

h(r − 1)
, dh(r)e4 < g(r), r ≥ 1. (12)

By (10) it is possible to find such r0, g, h. In particular (12) holds if h is growing very slowly.

Now we construct the sequence (mk)k≥1 inductively. For m1 we choose one of the values of
(nk)k≥1 in the interval I1, for m2 we choose one of the values of (nk)k≥1 in I2, and generally,
in the r-th step, we choose for mr one of the values of (nk)k≥1 in Ir. Additionally, (mk)k≥1

shall have the following property:

• for every N ≥ 1 and all integers a, b satisfying 1 ≤ a < b ≤ h(N), a 6= b, log2(b/a) ≥ 2,
and all integers c the number of solutions (k, l), k, l ≤ N, k 6= l, of the Diophantine
equation

amk − bml = c

where

a ≤ h(k), b ≤ h(l), (13)
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and k − l =

∥∥∥∥ log2(b/a)

4

∥∥∥∥ , (14)

is at mostN/h(N) (in this statement ‖·‖ denotes the nearest integer, i.e. for y = byc+〈y〉
we set ‖y‖ = byc or ‖y‖ = dye, depending on whether 〈y〉 < 1/2 or 〈y〉 ≥ 1/2).

To show that it is always possible to find inductively an appropriate mr, we assume that
m1, . . . ,mr−1 are already constructed, and (mk)1≤k≤r−1 satisfies the above conditions. For
fixed a < b, there are at most dh(r)e2 values of c for which the number of solutions (k, l), k, l ≤
r − 1, k 6= l, of

amk − bml = c, subject to conditions (13), (14),

is greater than or equal to (r − 1)/dh(r)e2. Since there are at least g(r) > dh(r)e4 elements
of (nk)k≥1 in Ir, and since there are at most h(r)2 possible choices for a, b such that 1 ≤ a <
b ≤ h(r), log2(b/a) ≥ 2, there exists at least one number mr equal to one of the elements of
(nk)k≥1 in the interval Ir, for which for all 1 ≤ a < b ≤ h(r), log2(b/a) ≥ 2, and all c ∈ Z,

#{(k, l), k, l ≤ r − 1, k 6= l, satisfying (13), (14) and amk − bnl = c}
+1(amr − bmr−‖log2(b/a)/4‖ = c)

≤ (r − 1)/dh(r)e2 + 1

≤ (r − 1)/h(r)2 + 1

≤ r/h(r)

(where the last inequality follows from h(r) ≥ 1).

Lemma 1 The sequence (mk)k≥1 constructed as above satisfies

8 ≤ mk+1

mk
≤ 32, k ≥ 1, (15)

and for all fixed positive integers a, b and all integers c

# {(k, l) : 1 ≤ k, l ≤ N, amk − bml = c} = o(N) as N →∞, (16)

uniformly in c (with the exception of the trivial solutions k = l in the case a = b, c = 0).

Theorem 1 follows from Lemma 1 and the following theorem, which can be found in [3]:

Theorem 3 Let (mk)k≥1 be a lacunary sequence of positive integers, and let f be a function
satisfying (5). Assume that for all fixed positive integers a, b and for all integers c

# {1 ≤ k, l ≤ N : ank − bnl = c} = o(N) as N →∞,

uniformly in c (with the exception of the trivial solutions k = l in the case a = b, c = 0).
Then

λ

{
x ∈ (0, 1) :

∑N
k=1 f(mkx)√
‖f‖22N

≤ t

}
→ Φ(t)

for all t ∈ R.
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It remains to prove Lemma 1. Equation (15) is true by construction. In fact, since mk ∈ Ik,
and mk+1 ∈ Ik+1, clearly

mk+1

mk
∈
[
23, 25

]
, k ≥ 1

(the intervals Ik were defined in (11)).

Thus (mk)k≥1 is a lacunary sequence (and (amk)k≥1 for a ≥ 1 is also a lacunary sequence),
which implies that (16) is true in the case a = b, since for every lacunary sequence (µk)k≥1

the number of solutions (k, l), k 6= l of

µk − µl = c

is bounded by a constant, uniformly in c ∈ Z (cf. [33, p. 203]).

Now assume a < b (which is also sufficient for the case a > b, since amk−bml = c is equivalent
to bml − amk = −c). If log2(b/a) < 2, then by (15) the sequences (amk)k≥1 and (bmk)k≥1

have no elements in common, and the sequence containing all numbers amk, k ≥ 1 and
bmk, k ≥ 1 is a lacunary sequence. Therefore (16) holds in this case.

If log2(b/a) ≥ 2 and k − l < ‖ log2(b/a)/4‖, then 4(k − l) + 2 ≤ log2(b/a) and

amk

bml
≤ 24(k−l)+1−log2(b/a) ≤ 1

2
.

On the other hand, if log2(b/a) ≥ 2 and k − l > ‖ log2(b/a)/4‖, then 4(k − l)− 2 > log2(b/a)
and

amk

bml
≥ 24(k−l)−1−log2(b/a) > 2.

This implies that in the case log2(b/a) ≥ 2 the existence of (k1, l1) and (k2, l2), satisfying
ki − li 6= ‖ log2(b/a)/4‖, i = 1, 2, and

amk1 − bml1 = amk2 − bml2

implies k1 = k2, l1 = l2. Therefore for given positive integers a < b, log2(b/a) ≥ 2, and any
c ∈ Z there is at most one solution (k, l) of the Diophantine equation

amk − bml = c (17)

for which k − l 6= ‖ log2(b/a)/4‖.

The number of solutions (k, l), k, l ≤ N, of (17), for which k − l = ‖ log2(b/a)/4‖ is o(N),
uniformly in c (for any fixed a < b), by the construction of (mk)k≥1 (more precisely, it is
bounded by N/h(N), where h is the function in (12)). This proves Lemma 1.

3 Proof of Theorem 2

Let ε > 0. We construct a sequence (nk)k≥1 satisfying

1 +
ε

2
≤ nk+1

nk
≤ 1 + ε, k ≥ 1,
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such that for every subsequence (mk)k≥1 of (nk)k≥1 with

lim sup
k→∞

mk+1

mk
<∞

there exists a trigonometric polynomial f for which the distribution of∑N
k=1 f(mkx)√

N
(18)

does not converge to a Gaussian distribution.

First we choose coprime integers p, q such that

1 +
5ε

8
≤ p

q
≤ 1 +

7ε

8
, (19)

and define a sequence (νk)k≥1 by

νk =

⌈
pk

qk

⌉
−
⌈

2p

p− q

⌉
, k ≥ 1.

Write k0 for the smallest index for which

νk ≥ 1, and 1 +
ε

2
≤ νk+1

νk
≤ 1 + ε for all k ≥ k0,

(it is possible to find such a k0 because of (19)).

Define
nk = νk+k0 , k ≥ 1.

Then (nk)k≥1 satisfies

1 +
ε

2
≤ nk+1

nk
≤ 1 + ε for all k ≥ 1. (20)

Let (mk)k≥1 be an arbitrary subsequence of (nk)k≥1 satisfying

lim sup
k→∞

mk+1

mk
<∞. (21)

We want to show that there exists a trigonometric polynomial f such that the distribution
of (18) does not converge to a Gaussian distribution.

As a consequence of (21) there exists a number q2 > 1 such that

mk+1

mk
≤ q2, k ≥ 1.

For consecutive elements of (mk)k≥1 we define a function

d(mk,mk+1) = w − v,
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where v and w are the (uniquely defined) indices for which mk = nv, mk+1 = nw (i.e.
d measures the difference of the indices of the numbers mk and mk+1 within the original
sequence (nk)k≥1). Let

s = min

{
h ≥ 1 : lim sup

N→∞

(
1

N

N∑
k=1

1(d(mk,mk+1) = h)

)
> 0

}
,

and define
f(x) = cos 2πpsx+ cos 2πqsx.

Since by the definition of s and the orthogonality of the trigonometric system

∫ 1

0

 1√
N

∑
1≤k≤N,

d(mk,mk+1)<s

f(mkx)


2

dx ≤ 4

N

∑
1≤k≤N,

d(mk,mk+1)<s

1→ 0 as N →∞,

we have
1√
N

∑
1≤k≤N,

d(mk,mk+1)<s

f(mkx)→ 0 in distribution,

and therefore we can assume w.l.o.g. that d(mk,mk+1) ≥ s for all elements of (mk)k≥1.

If d(mk,mk+1) = s, then by the definition of (νk)k≥1 the numbers mk and mk+1 are of the
form ⌈

pr

qr

⌉
−
⌈

2p

p− q

⌉
,

⌈
pr+s

qr+s

⌉
+

⌈
2p

p− q

⌉
for some r ≥ 1, and therefore

qsmk+1 − psmk = qs
(⌈

pr+s

qr+s

⌉
−
⌈

2p

p− q

⌉)
− ps

(⌈
pr

qr

⌉
−
⌈

2p

p− q

⌉)
.

Thus, if d(mk,mk+1) = s,

qsmk+1 − psmk ≥ qs
pr+s

qr+s
− qs 2p

p− q
− qs − ps p

r

qr
− ps + ps

2p

p− q

≥ (ps − qs) 2p

p− q
− 2ps > 0,

and

qsmk+1 − psmk ≤ qs
pr+s

qr+s
+ qs − qs 2p

p− q
− ps p

r

qr
+ ps

2p

p− q
+ ps

≤ 2ps +
2ps+1

p− q
.

In other words, if d(mk,mk+1) = s, then

qsmk+1 − psmk ∈
[
1, 2ps +

2ps+1

p− q

]
. (22)
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It is easy to see that the sequence consisting of all elements of the form psmk, k ≥ 1, and all
elements of the form

qsmk k ≥ 1, except those k for which d(mk,mk+1) = s,

sorted in increasing order, is a lacunary sequence. Since for every lacunary sequence (µk)k≥1

the number of solutions (k, l) of
µk − µl = c

is bounded by a constant, uniformly in c ∈ Z (cf. [33, p. 203]), this proves that the number
of solutions (k, l), k 6= l, of

psmk − qsml = c,

subject to d(ml,ml+1) 6= s, is bounded by a constant, uniformly in c. If d(ml,ml+1) = s,
then by (22)

psmk − qsml = c

implies that

psmk − psml+1 ∈
[
c− 2ps +

2ps+1

p− q
, c+ 2ps +

2ps+1

p− q

]
.

This equation has only finitely many solutions (k, l) for which k 6= l + 1 (since (mk)k≥1 is
lacunary). Therefore the number of solutions (k, l) of

psmk − qsml = c, where either d(ml,ml+1) 6= s or k 6= l + 1, (23)

is bounded by a constant, uniformly in c, and in the case d(ml,ml+1) = s and k = l + 1 we
always have

psmk − qsml ∈
[
1, 2ps +

2ps+1

p− q

]
.

Divide N into consecutive blocks ∆1,∆
′
1,∆2,∆

′
2, . . . , where

|∆i| = dlog log ie , |∆′i| =
⌈
log(1+ε/2) 4ps

⌉
(| · | denotes the number of elements of a set, and log x should be understood as max(1, log x)).
Then by (20) for arbitrary i1 > i2 ≥ 1 and k1 ∈ ∆i1 , k2 ∈ ∆i2 we have

mk1

mk2

≥
(

1 +
ε

2

)k1−k2
≥
(

1 +
ε

2

)dlog(1+ε/2) 4pse
≥ 4ps. (24)

Since for every r ∈ Z

1∑N
h=1 |∆h|

#

{
(k, l), k, l ∈

N⋃
h=1

∆h : psmk − qsml = r

}
∈ [0, 1], N ≥ 1,

by the Bolzano-Weierstrass theorem it is possible to choose a subsequence (hj)j≥1 of N such

that for all r, 1 ≤ r ≤ 2ps + 2ps+1

p−q ,

1∑Nj

h=1 |∆h|
#

(k, l), k, l ∈
Nj⋃
h=1

∆h : psmk − qsml = r

→ γr as j →∞ (25)

12



for some appropriate constants γr, 1 ≤ r ≤ 2ps + 2ps+1

p−q . For these constants γr necessarily

2ps+ 2ps+1

p−q∑
r=1

γr = 1,

since by (22) and (23)

2ps+ 2ps+1

p−q∑
r=1

1∑N
h=1 |∆h|

#

{
(k, l), k, l ∈

N⋃
h=1

∆h : psmk − qsml = r

}
→ 1 as N →∞.

Let t ∈ R, and define

ψ(x) =
1 + 2

∑2ps+ 2ps+1

p−q

r=1 γr cos 2πrx

2
.

The functions ψ(x) and e−t
2ψ(x)/2 are Lipschitz-continuous, and therefore, as some simple

calculations show, for every positive integer w∫ 1

0
e−t

2ψ(x)/2 cos 2πwx dx� w−1

(here and in the sequel “�” is the Vinogradov symbol). Using standard trigonometric iden-
tities we can write the function

Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

 (26)

in the form

∑∗

 it

2

√∑Nj

h=1 |∆h|

χ1+···+χNj

×

×

 Nj∏
h=1

(4|∆h|)χh−1

 cos 2π
(
±χ1µ1mk1 ± · · · ± χNjµNjmNj

)
x, (27)

where
∑∗ contains all the sums∑

k1∈∆1

· · ·
∑

kNj
∈∆Nj

∑
(χ1,...,χj)∈{0,1}Nj

∑
(µ1,...,µNj

)∈{ps,qs}Nj

∑
±
,

where ∑
±

is meant as a sum over all the 2Nj many possible choices of signs “+” and “−” inside the
cos-function.

13



The factor 2
−(χ1+···+χNj

)
in (27) comes from cosx = (cosx + cos(−x))/2 and the iterative

use of the formula cosx cos y = 2−1(cos(x + y) + cos(x − y)), while the norming factors in
the product come from the surplus contribution of the sums

∑
ki

∑
µi

∑
± in the case χi = 0.

For the vector (χ1, . . . , χNj ) 6= (0, . . . , 0), write ĥ for the largest index of a nonzero element

of this vector (i.e. ĥ(χ1, . . . , χNj ) = max{h : 1 ≤ h ≤ Nj , χh = 1}). By (24) the order of
magnitude of the sum

±χ1µ1mk1 ± · · · ± χNjµNjmNj

is determined by
µkĥmkĥ

.

More precisely, it follows from (24) that, independent of the choice of signs + and −, the
frequency of

cos 2π
(
±χ1µ1mk1 ± · · · ± χNjµNjmNj

)
x

lies in the interval [
µkĥmkĥ

/2, 2µkĥmkĥ

]
,

which means that in this case∫ 1

0
e−t

2ψ(x)/2 cos 2π
(
±χ1mk1 ± · · · ± χNjmNj

)
x dx� m−1

kĥ
.

We assume w.l.o.g. |t| ≤ |∆Nj |, which is true for sufficiently large j, and which implies∣∣∣∣∣∣ t√∑Nj

h=1 |∆h|

∣∣∣∣∣∣� N
−1/2
j . (28)

For a fixed vector (χ1, . . . , χNj ) 6= (0, . . . , 0), the sum (27) is a sum of Nj∏
h=1

|∆h|

 22Nj

cos-functions, all of which have coefficient it

2

√∑Nj

h=1 |∆h|

χ1+···+χNj
 Nj∏
h=1

(4|∆h|)χh−1


and a frequency in [

qs
(

min
k∈∆ĥ

mk

)
/2, 2ps

(
max
k∈∆ĥ

mk

)]
(where ĥ(χ1, . . . , χNj ) is defined as above).
Thus by (28)∣∣∣∣∣∣∣

∫ 1

0
e−t

2ψ(x)/2
∑
k1∈∆1

· · ·
∑

kNj
∈∆Nj

∑
(µ1,...,µNj

)∈{ps,qs}Nj

∑
±
×
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×

 it

2

√∑Nj

h=1 |∆h|

χ1+···+χNj
 Nj∏
h=1

(4|∆h|)χh−1

×
× cos

(
2π
(
±χ1µ1mk1 ± · · · ± χNjµNjmNj

)
x
)
dx

∣∣∣∣∣ (29)

�

 Nj∏
h=1

|∆h|

 22Nj

 Nj∏
h=1

(4|∆h|)χh−1

(min
k∈∆ĥ

mk

)−1 (
2−1N

−1/2
j

)χ1+···+χNj

�

 Nj∏
h=1

(4|∆h|)χh

(min
k∈∆ĥ

mk

)−1 (
2−1N

−1/2
j

)χ1+···+χNj

�
(
2|∆ĥ|

)ĥ
N
−1/2
j

(
min
k∈∆ĥ

mk

)−1

.

For the vector (χ1, . . . , χNj ) = (0, . . . , 0), which corresponds to multiplying Nj times the
factor 1 in the product (26), the integral (29) gives∫ 1

0
e−t

2ψ(x)/2 dx.

Since there are at most 2v vectors (χ1, . . . , χNj ) for which the index ĥ of the largest nonzero
element is v, this implies∣∣∣∣∣∣

∫ 1

0
e−t

2ψ(x)/2

Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

 dx−
∫ 1

0
e−t

2ψ(x)/2 dx

∣∣∣∣∣∣
� N

−1/2
j

Nj∑
v=1

2v (2|∆v|)v
(

min
k∈∆v

mk

)−1

� N
−1/2
j . (30)

In the sequel, the symbol E denotes the expected value with respect to x and λ[0,1].

Writing e(x) = ex and using the well-known estimate

e(ix) = (1 + ix)e−x
2/2+w(x), where |w(x)| ≤ |x3|,

we have

E

e
 it∑Nj

h=1

∑
k∈∆h

f(mkx)√∑Nj

h=1 |∆h|


= E

 Nj∏
h=1

e

 it∑k∈∆h
f(mkx)√∑Nj

h=1 |∆h|



= E

 Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

 e

− t2
∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|

 eWj

 ,
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where, using |f(x)| ≤ 2 and |t| ≤ |∆Nj |, we have

|Wj | :=

Nj∑
h=1

w

 t∑k∈∆h
f(mkx)√∑Nj

h=1 |∆h|


≤

Nj∑
h=1

|t|3 8|∆h|3(∑Nj

h=1 |∆h|
)3/2

� Nj(log logNj)
6N
−3/2
j

� N
−1/4
j . (31)

Using 1 + x ≤ ex, we have∣∣∣∣∣∣
Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

∣∣∣∣∣∣ ≤
Nj∏
h=1

∣∣∣∣∣∣
1 +

it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

∣∣∣∣∣∣
≤ e

 t2
∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|

 .

Therefore, ∣∣∣∣∣∣E
e

 it∑Nj

h=1

∑
k∈∆h

f(mkx)√∑Nj

h=1 |∆h|

− Ee−t
2ψ(x)/2

∣∣∣∣∣∣
�

∣∣∣∣∣∣E
 Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

×
×e

− t2
∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|

(eWj − 1
)
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣E
 Nj∏
h=1

1 +
it
∑

k∈∆h
f(mkx)√∑Nj

h=1 |∆h|

×
×

e
− t2

∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|

− e−t2ψ(x)/2



∣∣∣∣∣∣∣+N

−1/2
j

� E|eWj − 1|+N
−1/2
j

+E

∣∣∣∣∣∣∣1− e
 t2

∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|
− t2ψ(x)/2


∣∣∣∣∣∣∣ . (32)

Using (31) we obtain

E|eWj − 1| � N
−1/4
j .
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The function

ψj(x) :=

Nj∑
h=1

∑
k∈∆h

f(mkx)

2

is a sum of
Nj∑
h=1

(2|∆h|)2

cos-functions. Since

Nj∑
h=1

∑
k∈∆h

f(mkx)

2

=

Nj∑
h=1

∑
k1,k2∈∆h

(cos 2πpsmk1x+ cos 2πqsmk1x) (cos 2πpsmk2x+ cos 2πqsmk2x)

=

Nj∑
h=1

∑
k1,k2∈∆h

(
cos 2π(psmk1 + psmk2)x+ cos 2π(psmk1 − psmk2)x

+2 cos 2π(psmk1 + qsmk2)x+ 2 cos 2π(psmk1 − qsmk2)x

+ cos 2π(qsmk1 + qsmk2)x+ cos 2π(qsmk1 − qsmk2)x
)
,

and since the equations

psmk1 + psmk2 = c

psmk1 + qsmk2 = c

qsmk1 + qsmk2 = c

trivially have only finitely many solutions (k1, k2), uniformly in c ∈ Z, since the equations

psmk1 − psmk2 = c

qsmk1 − qsmk2 = c

only have finitely many solutions (k1, k2), uniformly in c ∈ Z (except the trivial solutions
k1 = k2 in case c = 0), and since

psmk1 − qsmk2 = c

has only finitely many solutions, uniformly in c ∈ Z\
{

1, . . . , 2ps + 2ps+1

p−q

}
, this implies that

for

ψj(x) =

∞∑
r=0

ar cos 2πrx =

2ps+ 2ps+1

p−q∑
r=0

ar cos 2πrx︸ ︷︷ ︸
=:ψ

(1)
j (x)

+

∞∑
r=2ps+ 2ps+1

p−q
+1

ar cos 2πrx

︸ ︷︷ ︸
=:ψ

(2)
j (x)
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we have for r > 2ps + 2ps+1

p−q

|ar| � 1, uniformly in r, and therefore ‖ψ(2)
j ‖ �

 Nj∑
h=1

|∆h|2
1/2

. (33)

By (25),

ψ
(1)
j (x)∑Nj

h=1 |∆h|
→ ψ(x), as j →∞, uniformly in x ∈ [0, 1].

Now for the last term in (32) we have

E

∣∣∣∣∣∣∣1− e
 t2

∑Nj

h=1

(∑
k∈∆h

f(mkx)
)2

2
∑Nj

h=1 |∆h|
− t2ψ(x)

2


∣∣∣∣∣∣∣

= E

∣∣∣∣∣∣1− e
 t2

(
ψ

(1)
j (x) + ψ

(2)
j (x)

)
2
∑Nj

h=1 |∆h|
− t2ψ(x)

2

∣∣∣∣∣∣
= E

∣∣∣∣∣1− e
(
t2

2

((
ψ

(1)
j (x)∑Nj

h=1 |∆h|
− ψ(x)

)
+

ψ
(2)
j (x)

2
∑Nj

h=1 |∆h|

))∣∣∣∣∣ . (34)

Since
ψ

(2)
j (x)∑Nj

h=1 |∆h|
≤ 4|∆Nj |, uniformly in x,

and since by (33)

P

x ∈ (0, 1) : ψ
(2)
j (x) >

 Nj∑
h=1

|∆h|

3/4
� N

−1/2
j ,

we obtain that (34) is

� E

∣∣∣∣∣∣∣∣∣∣
1− e

 t
2

2


∣∣∣∣∣ ψ

(1)
j (x)∑Nj

h=1 |∆h|
− ψ(x)

∣∣∣∣∣+

(∑Nj

h=1 |∆h|
)3/4

∑Nj

h=1 |∆h|︸ ︷︷ ︸
→0 uniformly in x



∣∣∣∣∣∣∣∣∣∣
+ e

t2|∆Nj
|
N
−1/2
j︸ ︷︷ ︸

→0

.

Combining all our estimates, we have shown that for every fixed t

E

e
 it∑Nj

h=1

∑
k∈∆h

f(mkx)√∑Nj

h=1 |∆h|

→ e−t
2ψ(x)/2

as j →∞.
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It is easy to see that ∑Nj

h=1

∑
k∈∆′h

f(mkx)√∑Nj

h=1(|∆h|+ |∆′h|)
→ 0 in distribution.

Thus ∑Nj

h=1

∑
k∈∆h

f(mkx)√∑Nj

h=1 |∆h|

and consequently also ∑Nj

h=1

∑
k∈∆h∪∆′h

f(mkx)√∑Nj

h=1(|∆h|+ |∆′h|)

converge in distribution to a non-Gaussian distribution (as j → ∞). Therefore it is not
possible that the distribution of ∑N

k=1 f(mkx)√
N

converges to a Gaussian distribution, which proves Theorem 2.
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[23] J. Nešetřil. Ramsey theory. In Handbook of combinatorics, Vol. 1, 2, pages 1331–1403.
Elsevier, Amsterdam, 1995.

[24] W. Philipp. Limit theorems for lacunary series and uniform distribution mod 1. Acta
Arith., 26(3):241–251, 1974/75.

[25] W. Philipp. Empirical distribution functions and strong approximation theorems for
dependent random variables. A problem of Baker in probabilistic number theory. Trans.
Amer. Math. Soc., 345(2):705–727, 1994.

[26] R. Salem and A. Zygmund. On lacunary trigonometric series. Proc. Nat. Acad. Sci. U.
S. A., 33:333–338, 1947.

20



[27] R. Salem and A. Zygmund. La loi du logarithme itéré pour les séries trigonométriques
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