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BAIRE RESULTS OF MULTISEQUENCES

ROBERT TICHY — MARTIN ZEINER

ABSTRACT. We extend Baire results about na-sequences in different ways, in
particular we investigate sequences with multidimensional indices.

Communicated by Yukio Ohkubo

Dedicated to the memory of Professor Edmund Hlawka

1. Introduction

A sequence x = (Z,,)nen of real numbers is called uniformly distributed mod-
ulo 1, if for every pair a, b of real numbers with 0 < a < b < 1 the following
condition holds:

lim A(la, b),n, x)

n—00 n

=b—a,

where A(I,n,x) is the number of elements x;, i < n with x; € I for an in-
terval I. For a general theory of uniform distribution we refer to Kuipers and
Niederreiter [T1] and Drmota and Tichy [4].
In [7] Goldstern, Schmeling and Winkler studied the size (in the sense of Baire)
of the set
U :={a € R/Z : na is uniformly distributed mod 1}

for a given sequence n = (n;);en of natural numbers; the size of this set depends
on the growth rate of the sequence n. In particular they showed that I/ is meager
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if n grows exponentially (for theory about Baire categories see Oxtoby [15]).
By Ajtai, Havas, Komlds [2] this condition cannot be weakened.
Moreover, it was proven in [7] that the set

V :={a € R/Z : no is maldistributed }

is residual if n grows very fast (for the precise statement we refer to [7]).

The aim of this paper (which is closely related to the very recent work of
Winkler [19]) is to generalize these results in different ways. In Section 2] we
consider for a given sequence (n;);jen of r-dimensional vectors of nonnegative
integers and an r-dimensional vector o of real numbers the sequence (nja);en,
where njo means the scalar product of two vectors. Afterwards we investigate
in Section B uniform distribution in R%, i.e., for a d-dimensional sequence (n;)
and a d-dimensional vector v we consider the sequence (njo)jen, where njo
means the Hadamard product of two vectors.

Section [ is devoted to the generalization of elementary properties of uniform
distribution of sequences to uniform distribution of nets. Afterwards we extend
in Section [l the characterization of the set of limit measures of a sequence
(see Winkler [18]) to a special kind of nets over N% Finally, we turn in Section
to na-sequences with multidimensional indices. Besides the classical notion of
uniform distribution of such sequences (see Kuipers and Niederreiter [I1]) we
study the (si,...,sq)-uniform distribution (see Kirschenhofer and Tichy [10])
and introduce a new concept of uniform distribution modulo 1, which is inspired
by Aistleitner [I]. In most of these cases it turns out that the known results for
the classical case remain true in these generalized settings.

2. Vectors

In this section let (n;),en be a sequence of r-dimensional vectors of nonneg-
ative integers, i.e.,

n; = (nj’l, .. .,TL]'J-) with nji € N,
and let &« = (aq,...,a,) denote an r-dimensional vector of real numbers
0 < a; <1,i=1,...,7. We are now interested in the distribution of the
sequence -
no = (nja)jey  with nja= anai.
=1

Note that na is a one-dimensional sequence of real numbers. To study the size
in the sense of Baire of the set

U={a e (R/Z)": (nja),cy is uniformly distributed mod 1}
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we follow Goldstern, Schmeling, Winkler [7]. For this purpose we generalize the
definition of e-mixing sequences of functions:

DEFINITION 2.1. A sequence of functions f; : [0,1)" — [0, 1) is called e-mixing
in (01,...,0,) if for all sequences of intervals Ji, Ja,... of length ¢ and for all
cuboids J’ of size §; X -+ x §, and for all £k > 0

k
T () fH )
. . . i=1
contains an ner point.

To proceed further we need a criterion when a sequence of functions is e-mixing

in (01,...,0,):

LEMMA 2.2. Let f; : [0,1)" — [0, 1) be the function mapping o to njo modulo 1,
where (nj)jen s a sequence of r-dimensional vectors of nonnegative integers
satisfying

(1) njy1,s > %nj,s for all j and

(2) no,s > ﬁ
for a fized s € {1,...,r}. Then (f1, fa,...) is e-mizing in (d1,...,0,).

Proof. For simplicity we just prove the case r = 2. Let n; = (m;,n;) and
assume that the conditions (1) and (2) hold for the sequence of n;. We will show
(by induction on k) that each set

k
T ()7
=1

contains a cuboid of size ¢ X %k with ¢ > 0. This is true for £k = 0, since

2
52>ﬁ and ¢g := 61 > 0.

Consider k > 0. Note that f, *(Jx) is a union of stripes of height 7 and
distance L=< (see Figure[I]). By induction hypothesis, the set J’ N ﬂf;ll 7T

Nk

contains a cuboid I of size ci_1 X Qn‘ET Since 5= - > I crosses one stripe

2np

— say S — of height -=. Thus I NS contains a cuboid I’ of size ¢} x 5— for
k Nk

some ¢ < ¢x—1 (see Figure [2)). O

2
n

To be able to state the theorem, we need the following definitions.

DEFINITION 2.3. For a sequence x = (x,)nen of real numbers we define the

measures fix,n by L
Hx.n = — § 51:¢a
n <
=1
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where J, denotes the point measure in x. The set of accumulation points of the
sequence (fix n)nen is denoted by M (x) and is called the set of limit measures
of the sequence x.

DEFINITION 2.4. For any sequence x = (Z,)nen and any interval I we define
Py (1) by B
Iix (1) »=sup{p(I) : p € M(x)}.

Now we can establish the theorem, which shows that the set of r-dimensional
real vectors a, such that na is uniformly distributed mod 1 is meager, if at least
one component of the n; grows exponentially.
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THEOREM 2.5. Let (n;);en be a sequence of r-dimensional vectors of nonneg-
ative integers and assume q = liminf;(n; s41/n;s) > 1 for an s € {1,...,r}.
Then the set

U:={aec(R/Z)": (nja),en is uniformly distributed mod 1}

18 meager.
Moreover: There is a number QQ > 0 such that for all intervals I the set

{a: Fina (1) > %A(I)}

Before proving this theorem we state the following fact. It is completely anal-
ogous to the one-dimensional case. For details we refer to [7].

18 residual.

DEFINITION 2.6. For an open cuboid I and a Borel set B we write [ |- B for
“BN1I is residual in I” or equivalently “I \ B is meager”.

Fact 2.7. Let I be an open cuboid.

(1) If By, is a Borel set for every n € {0,1,2,...} and I NJ,, By is residual
in I, then there is some open nonempty cuboid J C I and some n such
that B,, is residual in J, i.e.,

IF|JBy=37CI3neN: JI B,.
neN
(2) If By, is a Borel set for every n € {0,1,2,...}, then IN(, B, is residual
i I iff each I N B, is residual in B,,:

IlIF ﬂBn<:>Vn€N:IH—Bn.
neN

(3) If B is a Borel set, then BN I is not residual in I iff there is some open
cuboid J C I such that B is meager in J:
IWfB<3JCI:JIF B

where B¢ denotes the complement of B.

Proof of the theorem. The proof is completely analogous to the proof of
Theorem 2.4 in [7], we have just to adapt the choice of @ and notation.

Choose @ > 0 so small that (g5 — 1) —log4 > 1.

Without loss of generality we may assume mj—l > q for all k.

Let € := A\(I). Since Ti,,, > %A(I) will be trivially true for large intervals
if we choose @ small enough, we may assume & < %, so (—loge) > 1; here log
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always denotes the logarithm to base ¢. Hence (— log s)(ﬁ —1)—log4 > 1, thus

the interval )
log4 — 1 ——1
( og oge, 10 og 6)

has length > 1. Let ¢ be an integer in this interval. Then
° qC > é

2Q
® 3> —loge"

Now suppose that the theorem is false. Since the set {a : T, (1) > logs}
is a Borel set and not residual, its complement is residual in I’, for some open

cuboid I': o
I+ (1) < .
{a: muatn <=2}

Since fiyo (1) > limsup,,_, o fina,n the set {a: T, (1) < } is contained in

— log €

2
{a: IM VYN >m: pnan(I) < @ }
—loge

Denote the set {j < N :nja € I} by ZN( ). SO pina,N(I) = %(a) Therefore

0 o B )

m N>m
So, by Fact 27 we can find an open cuboid J C I’ and a k* such that

T { #ZN( )g_ﬁg},

N>k
or equivalently, for all N > k*:
#Zn(e) 2Q
J - < 1
{ N = —loge]’ )

Let §; := A\;(J), where \;(J) is the length of the edge in the ith dimension.
Without loss of generality we assume nysc s > 55~ (otherwise we just increase k*).
Now consider the functions frec, fr 1) - - - » f(2k*—1)c, defined as in Lemma [2.2]
Since

Nk 4it1)e,s S0 > 4
N(k*+i)e,s €
and ng-cs > 3, these functions are e-mixing in (d1,...,d,) by Lemma

So there is an open cuboid K C J such that for all« € K and all i € {0,...,k*}:
€ f(7€1+z)c(‘[) i‘e‘a n(k*-l—i)ca cl.
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Hence for all & € K

HZokc(a) = #{i < 2k™c: mya € I} > #{k™c, (k" + 1)c,..., (2K — 1)c} = k™

So for all @ € K 4 oo y 1
2k*c T 2¢’

i > 29 and K C J, (@) with N := 2k*c implies

—loge
#Z2k*c<a> < i
2k*c  ~ 2cf

(2)

Since

Kl {a ; (3)

Now consider the set {a : %’fﬁcm) < ﬁ} N K. By (2)), this set is empty, but

by @) it is residual in K, which is a contradiction. O

Note that the above theorem still remains true, if we require instead of
q :=liminf;(njs41/njs) >1 for an s € {1,...,r} only that there exists
s€{l,...,r} and a constant C' with

Hj: 2" <njs < 2”1}‘ <C Vr

Then you can choose each ¢ := 2C[2 — log, ]th term to obtain a growth of
factor 4/¢, and @ has to be chosen so small, that % > _?g’ég. Indeed, one can
use instead of the base 2 in the above condition any number K > 1, but we will

state all theorems in terms of the base 2 throughout this paper.

REMARK 2.8. With the same argument as above, Theorem 2.4 in [7] holds also
for sequences (n;);en with

2" <n; <27 <O v
{s J H

So far we gave sufficient conditions that na is u.d. mod 1 only for « in a set
of first category. If we weaken the growth condition in the following way, there
will be sequences n, such that na is u.d. mod 1 for « in a set of second category.
Therefor we start with an extension of a result due to Ajtai, Havas, Komlés [2].

LEMMA 2.9. Given any r sequences
(€jk)jen, 1<k<r €;p>0, limejr=0 forall k,
j*)OO
there is a sequence of r-dimensional vectors of nonnegative integers (n;) ey with

j41,k

>1+¢ej,, 1<kE<Zr
Nk

such that for all oc with "._, o € Q the sequence nex is u.d. mod 1.
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Proof. Set ¢; := max{e;; : 1 <k <r}. Then, by [2 Lemma 1], there exists
a sequence (nj)jen with n;11/n; > 1+ ¢; such that nja is u.d. mod1 for all
irrational . Define n; := (n;,...,n;). Then

T T
nja = g njo; = n; E a; = njo
i=1 i=1

with irrational o. - - O

To get a statement in Baire’s categories, we need a lemma which tells us that
the set of d-dimensional real vectors, whose entries are linearly independent over
Q, is residual in R%

LEMMA 2.10. The set
Z:={a: 1,a1,...,a4 are linearly independent over Q}

is residual, and hence of second category, in R%

Proof. Note that
I:Rd \ U S(al,...ad),

ag,...,ag€Q
(ao;-.-,ad)#(0;...,0)

where
S(a1,...ad):{a:a0+a1a1+...+adad:0}.

Since S(ai,...aq) is a subspace of dimension smaller than d, all these sets
S(aq,...aq) are nowhere dense. Therefore,

U S(al,...ad)

ag,...,ad€Q
(ag,..-,aq)#(0,...,0)

is of first category. O

Consequently we have

THEOREM 2.11. Given any r sequences (€jr)jen, 1 < k < 7, g5 > 0,
lim; g5 = 0 for all k, there is a sequence of r-dimensional vectors of non-
negative integers (n;)jen with
s
TR S qe, 1<k<7
T,k

such that the set
{a: na is u.d. mod 1}

is residual.
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In [7] Goldstern, Schmeling and Winkler also proved, that if the sequence
(nj)jen grows very fast (i.e., if lim; .o, nj41/n; = 00), then the set of «, for
which na is maldistributed, is residual. A sequence x = (x,, )nen is called mald-
istributed, iff the set M (x) is the whole set of Borel probability measures on
[0,1]. Tt is as easy as the modification of the proof of [7, Theorem 2.4] to the
proof of Theorem 2.7 to obtain a generalization of [7, Theorem 2.6]:

THEOREM 2.12. Let (n;);cn be a sequence of r-dimensional vectors of nonneg-
ative integers and assume that there is an s € {1,...,r} such that

lim ng gy1/ns5 = 00.
k—oo
Then the set

{a € (R/Z)" : na is maldistributed}
1s residual.

3. na-sequences in R?

In this section we investigate uniform distribution in R?. For a sequence
(n;);en of d-dimensional vectors of nonnegative integers and a d-dimensional
vector & = (g, ..., aq) of real numbers we are interested in the sequence

no = (nj71a1, Ce ,nj,dad)jeN.
To obtain results for such sequences we use the connection between uniform
distribution modulo 1 in [0,1]¢ and uniform distribution in [0,1]. As in the

previous section our first theorem shows that the set of a such that na is u.d.
is meager if at least one component of the n; grows exponentially.

THEOREM 3.1. Let (nj);en be a sequence of d-dimensional vectors of nonnega-
tive integers and assume that there exists s € {1,...,d} and a constant C' with

H] 22" <njs < 2T+1H <C Vr.
Then

A={ac (R/Z)¢: na is u.d. mod 1 in Rd}
18 meager.

Proof. By [IIl, Theorem 6.3], uniform distribution of n@ implies that each

component n;60; := (n;,;6;)jen, 1 < i < d is u.d. mod 1, especially n,f, is u.d.

mod 1. Therefore
ACRX - xRxA; xR x --- xR,

where
Ag:={0: nsd ud. mod1}.

By Remark 2.8 the set A is meager. Hence, by [I5, Th. 15.3.], A is meager. [
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As before the grow condition in the theorem above cannot be weakened:

LEMMA 3.2. Given any d sequences (€j7k)jeN, 1 <k < d, g5 =2 0,
lim; 05,1 =0 for all k, there is a sequence of d-dimensional vectors of non-
negative integers (n;)jen with

s
THLE S 1 4ey g, 1<k<d
g, k
such that for all o with 1,9, ..., aq linearly independent over Q, the sequence
(nji0a,...,n5404)jen is u.d. mod 1 in R4

Proof. Set ¢; := max{e;; : 1 <k <d}. Then, by [2, Lemma 1], there exists
a sequence (nj)jen with n;i1/n; > 1+ ¢; such that nja is u.d. mod1 for all
irrational a. Define n; := (n;,...,n;). By [1I, Theorem 6.3] we have to show
that for all h € Z¢, h # 0 the sequence (h,n;a) is u.d. mod1 for all o with
1,a1,...,qaq linearly independent over Q. This is true since

d d
(h, nja> = Z hinjai =Ny Z hiai = nja’
with o/ € R\ Q. =t =t O
Using Lemma 2.T0] we get as an immediate consequence

THEOREM 3.3. Given any d sequences (gjr)jen, 1 < k < d, €51 > 0,
lim;_,o €5,k = 0 for all k, there is a sequence of d-dimensional vectors of non-
negative integers (n;)jen with

s
LR St 1<k<d
Ny k
such that the set /
{a: (nj101,...,nj a0q)jen i u.d. mod 1 in Rd}

1s residual.
Again using [I5, Th. 15.3.] we obtain for fast growing sequences (n;):

THEOREM 3.4. Let (n;);en be a sequence of d-dimensional vectors of nonneg-
ative integers and assume limg_ oo Ny g1 /ne ) = 00 for all t € {1,...,d}, then

the set d . -
{a € (R/Z)?: na is maldistributed}
1s residual.

We can combine the ideas of this and the previous section: Consider a sequence
of d x r-matrices of nonnegative integers

(Nj)jen  with Nj=<ng'k), i=1,....d k=1,...r
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We are now interested in the distribution of the sequence Na := (Nja)jen,
where N;a means the classical matrix-vector-product. Same argumentation as
in the proof of Theorem [B.1] yields

THEOREM 3.5. Let (N;)jen be a sequence of d x r-matrices of nonnegative in-
tegers and assume that there exist s€{1,...,d}, t€{1,...,r} and a constant C
with
‘{] o< nd, < 27'+1}‘ <C Vr
Then the set
A:={a=(a,...,0,;): Neisud modl in R}
is meager.

4. Uniform distribution of nets

In this section we define uniform distribution of nets of elements of a locally
compact Hausdorff space and give a list of some elementary properties which
generalize the results for classical sequences given in Bauer [3], Helmberg [8],
Kuipers and Niederreiter [IT] and Winkler [18]. The proofs are analogous to the
ones of the case of one-dimensional sequences, so we omit them and just state
the theorems. As explained in the following such nets induce nets of certain
discrete probability measures. Uniform distribution properties of nets of general
probability measures on locally compact groups were studied in Gerl [5] and
Maxones and Rindler [13, 14]. A special kind of nets are sequences indexed by
d-dimensional vectors in N¢. Such sequences of random variables also appear in
probability theory, see e.g., Jacod and Shiryaev [9]. For an introduction to nets
we refer to Willard [17].

Throughout this and the following section let X # () be a locally compact
Hausdorff space with countable topology base. Moreover, let M(X) be the com-
pact sets of nonnegative finite Borel measures with p(X) = 1 if X is compact
and p(X) < 1if X is not compact, equipped with the topology of weak conver-
gence. On M(X) we use the metric given in [I§]. Furthermore let A (equipped
with two relations (<1, <3)) be a countable directed set (w.r.t. both relations)
with the additional property that for all A € A the sets V;(A) :={v : v <; A}
(i = 1,2) is finite. Moreover, assume

HA: [Vi(A)|}H =0o(n®) as n—o00 and a€R.

For a net x = (z))xea of elements in X and a function f € K(X), the space
of all continuous real-valued functions on X whose support is compact, we define

the net p; = (i f)ren by
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A = T > fla (4)

IASPY

If the nets pu; converges (w.r.t. the relation <) to the integral

)[fdu

for all f € K(X) then we say x is p-uniformly distributed (p-u.d.) in X.

Now we give some basic properties:
(i) If ¥ is a class of functions from K(X) such that sp(¥') is dense in K(X),
then ¥ is convergence-determining with respect to any p in X.

(ii) If sp(¥") is a subalgebra of K(X) that separates points and vanishes
nowhere, then 7 is a convergence-determining class with respect to any

win X.
(iii) The net x = ())aea is p-u.d. in X iff the nets y™ = (y)reca defined by
v _ AL A)
YN = oo
Vi(A)

converge (w.r.t. <o) to pu(M) for all compact u-continuity sets M C X.
Here A(M;A) =3 ")< 5 Tu (o).

(iv) In a locally compact Hausdorff space X with countable space, there ex-
ists a countable convergence-determining class of real-valued continuous
functions with compact support with respect to any p € M(X).

(v) Let S be the set of all u-u.d. sequences in X, viewed as a subset of X, :=
[Iica- Then poo(S) = 1.

(vi) If X contains more than one element, then the set S from the above the-
orem is a set of first category in Xj,.

(vii) The set S is everywhere dense in X, .

Generalizing the concept of uniform distribution we introduce the set M (x),
the set of limit measures of the net x, as the set of cluster points of the net
(w.r.t. <9) g = () rea of induced measures defined by

] 2 9 (5)

£<)\

HX = |V1

If M(x)={p} (€ M(X)), then this net is p-u.d. in X. If M(x) = M(X) we
say X is maldistributed in X.
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As in the classical case (see [I8]) only very few (in a topological sense) nets
are p-u.d. Moreover, almost all nets are maldistributed. We have:

The typical situation in the sense of Baire is M (x) = M(X), i.e., the set

Y = {XG XA| M(X) :M(X)} C Xp

is residual.

At the end of this section we define two notions of uniform distribution on
A = N?, which we will use in the following. First let N¢ be equipped with the
relations (<1, <s) = (<, <) defined by x < y iff z; < y; (1 < i < d). The
second concept is to introduce the relation < defined by x <; y iff |x| < |y|,
where |x| := H?:l z; and to consider (N?, <, <,). A p-u.d. net w.r.t. to this
relation on N we will call strongly uniformly distributed (s.u.d.). The set of
limit measure we denote by M (x). The first concept is in accord with Kuipers
and Niederreiter [IT], the second concept is motivated by Aistleitner [I], who
studied the discrepancy of sequences with multidimensional indices.

5. Characterization of M (x) and distribution of subnets
for a special kind of nets on N¢

This section is devoted to the generalization of the characterization of the
sets of limit measures given in Winkler [I8, Theorem 3.1] to nets defined on
A = (N?, <, <) (see Section H).

To simplify notation we introduce some operations on multidimensional in-

dices. For an index i = (i1, ...,iq) we define
itc=(i1+ec,...,iq+c),
imod ¢ = (iymod ¢, ...,igmod c).

Furthermore, we define the index-sets
ILjl:={k:k>iand 3¢: ky < jo},
ILj):={k:k>iand 3¢: ky < jo} =1I[i,j— 1],
I(i,jl:={k:k>iand 3¢: ky < g} =1I[i+1,]]

A sequence of the form x = (xj);erp1,n) We call an angle-sequence, and by the

periodic continuation of an angle-sequence by a finite sequence y = (vi)1<i<N,
we mean the sequence x’ = (2);cne defined by

/ { i if i € I[1, N,

i_

k e
Yi—N mod N, ifi>N.
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Here we assume N = (N, ..., N) and N; = (Ny, ..., N7). In fact, we could define
the above construction for arbitrary indices N and Ny, but in the following we
will just need this definition.

ExAMPLE 5.1. In two dimensions the periodic continuation of x with period y
looks like the following;:

y y y
y y

The following lemma generalizes [I8, Section 2] and gives some properties of
the set M (x).

LEMMA 5.2. For all sequences x € X“* "> the set M(x) has the following
properties: M(x) is

(i) monempty,

(i) contained in M(X),

(iii) closed (hence compact),

(iv) connected.
Proof. (i): M(x) # (0 since every net in a compact space has a convergent
subnet and all Ax € M(X).

(ii): The proof is completely analogous to the proof in [I§], you just have to
take the multidimensional limit.

(iii): M (x) is the set of cluster points of the net y = (yn)nenk, and the set
of cluster points of any net in any topological space is closed.

(iv): Assume that M = M (x) is not connected. Therefore there are nonempty
disjoint closed subsets My, My C M with M = M; U M>. Since compact Haus-
dorff spaces are normal, we can find open sets O; and V;, i = 1,2, in M(X)
satisfying .

M;CO;CO;CV;, i=1,2, and ViNnVy=0.
Thus the closures of the O; are compact and disjoint. This yields that they have
positive distance

d(61,62> = inf d(,ul,,l@) =¢e>0.
ni€0;

Now consider the compact set L = M(X)\ Oy \ Oz. Since both M; and M,
contain cluster points of A, the net has to be infinitely many times in O; as well as
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in O for all tails (AN)N>n with n € N9, Observe that d(An, Any1) < ¢/ (N +1),
where N = (N, ..., N). Thus the distance of subsequent members in the diagonal
of A gets arbitrarily small, say less than €. This means that A has to intersect
L infinitely many times for all tails (AN)n>n With n € N%. Since L is compact,
there must be a cluster point of A in L, but we also have

LOM:LO(MluMg)Q(LﬂOl)U(LﬂOg):Q),

which is a contradiction. O

The parts (i), (ii), and (iii) of the lemma above are valid for arbitrary nets as
considered in Section [, whereas part (iv) fails in general. We give the following
example: Let X = (2 m)(n,m)en> be the net defined by

[0 ifm=0,
Tm) =Y 1 ifm>0

and consider the pair of relations (<, <;). Then the set of limit measures is the set
Mx)={X: M0)=21, A1) =1-L1}u{a}.

Now we turn to the main result of this section. The proof uses two lemmas
which we will present afterwards. With the definitions given in Section ll we have

THEOREM 5.3. Let X be a locally compact Hausdorff space with countable topo-
logical base and x = (Tn)nene @ net. Then:

(1) Every M(x) is a nonempty, closed (hence compact) and connected subset
of M(X).

(2) Let M C M(X) be nonempty, compact and connected. Then there is a net
x € XWX X qith M(x) = M.

Proof. (1) see Lemma [5.2]

(2) By Lemma [5.4] there exists a net (ux)xene in M whose set of cluster
points equals M and with the additional property that limg_,. ex = 0 with a
monotonically nonincreasing sequence of ex > dg, where dy is the maximum
of the distances of uy to its successors (see Lemma [5.4]). Now we construct a
sequence X = (Zn)nene such that the induced sequence of the AN approximates
the px in the following sense: There are indices N3 < Ny < --- such that
d(p, An(x)) < 2ex for all N € I[Ny, Nyy1), where N; = (Nj, ..., N;). Then the
relation M = M (x) is an immediate consequence.

To construct such a sequence we take a finite sequence xo = (2{)1<i<n,
such that d(An, (x0), 1) < €1 (the existence of xq is guaranteed by Section []).
Consider the sequence x; = (Xil)ieNd with :1:11 = Zimod N, such that there is
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a number Ny with d(An(x1), 1) < €1 for all N > N;. Now we proceed by
induction:
For arbitrary k > 1 assume that there is an angle-sequence xj = (z¥);c I[1,N,]
with the following properties:
(1) d(An, (%K), i) < €
(2) There is a finite sequence y;, = (yF )1<i<(K,...,k) such that for the periodic
continuation x§ of x; with period y; we have d(An(x$,), pr) < e for all
N > Nyg.
By Lemma[5.6] there is an angle-sequence x" = (7{)ier(N,,N,,] Such that for the
angle-sequence X1 = (:va’l)ieI[l,NkH] defined by

wer [ @ ifie I[N,
BT 2 ifie I(Ny, Ny

1

~

the following conditions hold:

(i) If N € I[Ng,Ng41), then there is a point p on the linear connection
between uy and pg+1 with d(AN(Xk+1), ) < Ceg, where C' is a constant
depending only on the dimension d.

(ii) There is a finite sequence yi+1 = (Yf“hgig(l{/,‘.‘,m) such that for the
periodic continuation of xj41 with yx4+1, which we denote by x, we have
d()\N(x),ukH) < ggy for all N > Ngqq.

Then the limit sequence limg_ oo X141, generated by the above induction, has
the desired properties. U

LEMMA 5.4. Let M be a nonempty closed and connected subset of M(X).
Then there is a net (pix)kene @ M, whose set of cluster points equals M and

with the additional properties limy oo dx = 0, where dy is the mazimum of
the distances of px to its successors, i.e., dy = maxyer, d(ux, px), where
I = {(Ky,...,.Kq) : K; € {kik;+1},i=1,...,d} if k = (k1,...kq), and
P! = ik k,... k), where K" runs over all indices which coincide with (k, ..., k) in

at least one coordinate.

EXAMPLE 5.5. In two dimensions such a net has the following form:

H1o p2 p3 o p4 Hs
H1 o M2 pH3 M4 fiq
H1 o M2 p3 M3 43
H1 o p2 p2 p2 2
M1 g1 p1 M1
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Proof. By [I8, Lemma 3.3], there exists a sequence (ug)ren in M whose set
of accumulation points equals M and with limg_o d(pg, tk+1) = 0. The net
determined by pu,... x) = ik has the desired properties. (I

LEMMA 5.6. Let py, pr+1 € M(X) and e > epp1 > 0 be given. Assume
that x3, = (l’?)iel[l,Nk] with N = (Ng, ..., Ng) is an angle-sequence with the
following properties:
(1) d(AN, (xk); ) < €
(2) There exists a finite sequence yy = (y?)lgig(KP.‘,K) such that for the pe-
riodic continuation x5 of X, with period yy, the following property holds:
d(An(x5), tx) < €k for all n > Ny,.
Then there is an angle-sequence X' = (2{)ier(N.,Ny1] Such that for the angle-
sequence Xp11 = (xf“)ie[[l’NkH] defined by

2 =

b ifie I[1,Ny],
; ifie I(Nk,Nk+1]

the following conditions hold:

(i) Ifn € I[Ny, Nyi1) then there is a point ju on the linear connection between
pr and pgpr1 with d(An (Xg+1), 1) < Ceg, where the constant C depends
only on the dimension d.

(ii) There is a finite sequence yr11 = (yf+1)1§i§(K/w7K/) such that for the
sequence x, which denotes the periodic continuation of Xpy1 with period
Vi+1, we have d(An(X), pk+1) < k41 for alln > Nyq.

Proof. By Section [ there is a sequence y with limit distribution pj1q. Take
the initial part yr+1 = (yikH)lSiS(K/,m,K/) in such a way that the induced
measure A = A\g/ . i) (Yr+1) satisfies

A\, prt1) < €1 < €k

and K|K'. Consider the angle-sequence x;; = (zF?

{7 )ier[1,N,,) constructed in
the following way:

b if i e I[1,Ny],

2P = U Ny mod K if i € I(Ng, N +myK],
Yie (Ny+muK)mod k7 if 1€ I(Ng +mp K, Ngyq],

where N1 = (Nk+1, e Nk+1) and Ni+1 = Ng +ka+mk+1K/ with suitable
chosen my and my41; this is done below. Let x denote the sequence obtained
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from X311 by periodic continuation with period yy1. We first prove the second
statement of the lemma. Given my, we can choose my41 large enough that

d(An(x), prt1) < egy1 for all n > Npiq

since for n = (ny,...,nq) with n; = Ny + mpK + mp1 K’ + s, K’ + ¢; with
0<¢; < K'and s; > 0 we have

d(AN(X), pie+1) = d <|111| (K'dH M1 + 5i)A + Z) Mk+1>

Lk H M1+ 8i)d(A, prr1)

=1

] = K TTE (mes + 5:)
|

=1 = (1 =dX prt1))

- |n|

+
d

1
HK/d H(mk+1 + 8i),
i=1

. d . . .
where " is a sum over |n| — K" [];_, (mg+1 + ;) indicator functions. For my1
so large that

1—¢
K/dek+1+S) $

| — d(A, 1)’

the statement is true.

Now we turn to the first assertion. Firstly we give a detailed proof of the
two-dimensional case, afterwards we prove the general case. Indeed, the general
case uses the same idea as the two-dimensional case, but it is not necessary (and
in higher dimension also very awful to write things down) to be so accurate as
we are in the two-dimensional case, but this accuracy will be very helpful to
understand what’s going on.

So we have to show that for all n € T[Ny, Ny,1) we have

d(An(Xg41), 1) < Cey,

for some p on the linear connection between py and pyy1. For
n € I[N, Ny + my K]

this is true by assumption. Now consider a point

N = (N1, N2) = (Ng, + mpK + sK' + d, N, + mpK +tK' +e)
with
0<s,t<mpy; and 0<d,e< K’
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We can write AN as

st

Nin = N2, ——)
N k+1 miJrl Nit1

st

— (Nk + mpK) (N +mpK +mp1K') 3 ANy 4+m K, Nig1)
k1
st

= (Nie + i K) (N - mpe K+ miyein KY) —5— ANy, Nt mic )
k1

+ (Nk + ka) (Nk + mp K + tK' + 6) )‘(NkerkK,Nz)
+ (Ni + mpK) (N +mp K + sK' + d) Ay Nyetm )

st
+ < T — 1) (N + 1m0k K)? ANy 4 K, Ny )
M1

+2
6
=t a1\ + Zai)\i + Z )
i=2

where > is a sum over de + esK' 4+ dtK' indicator functions. The first term is
needed to count the indicator functions induced by the complete yj1-blocks.
In AN, ., we have m3 41 such blocks and we need st blocks, so we multiply

with mét . But with this measure we count too many indicator functions,
k41
namely those in the areas

A=1((1,Ns),(Ni +miK, Np+1)] and B = I((N1,1), (Ngs1, N +mpK)]

(see Figure[3)). This error is corrected by subtracting the terms with the measures
A(Ni+mi K, Nisr) a0d AN, 1 Ny +my. k) - But now we have eliminated all contribu-
tions from the areas

I((1, Ng +mpK), (Ng +mi K, No)] and  I((Ny +miK, 1), (N1, Nk, + mi K)]

too, so we add the terms with A(n, 4m, Kk ,N,) and A(n, | N, +m, k)~ Last we correct
the contribution of I[1, (Ny + miK, Ni + m;K)]. The measure > contains all
the indicator functions from the incomplete y1-blocks.

Figure Ml illustrates this procedure (except the error »_ ): We have the thick-
border area and want to construct the grey area, using only rectangles starting
in the origin. So we substract the vertical and horizontal dotted areas first, then
we have to add their intersection, the thick-bordered square again. Afterwards
we add the diagonally lined areas and correct the error we made by substracting
their intersections, again thick-bordered square.
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|
| |
: ! (Nk+l’Nk+l)
| A ]
Ny +mK+tK+e.. A --@ |
S b o |
Ny + mK +tK : :‘ |Z: |
| ! ' : :
| L— = - - =N+ mK
| .
|
|
|
[ _1_3_____Nk
N, +mK +sK’ +d
N, + m K + sK’
FIGURE 3.

FIGURE 4.

Now define p := |_1i1| (al,ukH + [ (226 5 a; +de + dtK' + esK’)). Then u

1=

is on linear connection between uy and pry; and we have
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6
ald
d(A < A i d(A
(AN(Xpt1), 1) < NlNg( 1(Xk41)s Het1) + 22|a| i(Xk41)5 k)
de + dtK' + esK'
+2
N1 Ny
2K?(s+t+1)
6 2— -
< beg + NN,

Now we reduce the fraction by max(s,t), hence

3

12
d(AN(Xg+1), ) < 6ep + 4K BN, k)

< Teg

if my, is chosen large enough.

In a similar way we can decompose AN with N = (N1, No) = (N + mp K +
sK'+d, N+ mp K +tK' +e), s < mgy1, t > mpy1 and 0 < d,e < K’ (the case
t < mpgy1, > Myy1 is symmetric) into

st

NiN2AN = Niga (Ni, + mi K + (6 + 1)K') T EF 1) (Vs Nt mi K+ (1))

st

B m(m +miK) (Nie +miK + (¢ + 1K) AN tmi K Ny mi K+ (641 K
st

- m]\jk+l (Ni+ e F) X,y g )
+ (N + M) NoA(Ny+my K,N)
+ N1 (Nie +miK) ANy, Ny+my K)

st
+ <7 — 1) (Ng +mpK)? A(Nytmy, K, Ny +mp K)
ME+1 )

t+1
+>

where > is a sum over de + esK' + dtK’ indicator functions and obtain that for
suitable chosen p on the linear connection between py and pr41

d()\N(Xk+1), ,u) < Teg.

Now we turn to the general case. Therefor consider a point N = (N1, ..., Ng) with
N; = Ng +mi K +s;K' +d; and s; < mgy1 and 0 < d; < K’ first. Then we can write

ANk+1 + Z asznZ + Z

NJAn = |Nk+1|H
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where n; is of the form n; = (ni,...nq) with all n; € {Ngy1, Ny + mpK} or all
n; € {N;, N, + mi K} but not all n; = N;. The coefficients

a; = vi|n;le; with v; € {1,—-1} and ¢ € {1, %}
k41
The above formula is true, since after taking A, ,, we have to substract the error we
made. Therefore we substract the Ay, with exactly one n; = Ny + mi K and for all
the other j # ¢ with n; = Ni41; there are p1 = d such measures. Each two of them
have an intersection, so we have the correct this, which leads to p2 = (g) summands
(each such index has exactly two entries Ny + miK). Each of them have again an
intersection (now there are p3 = (%2) of them) and so on (piy1 = (%)). After d steps
this procedure must end. Afterwards we start adding the terms with those n; with
exactly one entry equals N + mi K and the other entries equal N;. There are p; of
them. Then we correct the intersections again and so on. Last we add the term due to

the non-complete yx blocks, this is denoted by > and is a sum over
e S Sl I T
J=1 AC{1,...,d pEA  ge{l,...,d}\A

indicator functions.
Hence T' < 2Zf:1 pi < F(d), where F(d) is a constant only depending on the
dimension d. Taking

1 d
— N H
N| k1]

Hk+1 + = (Z a; + S) Ik

1=1
we find that

25
d(AN(Xkt1), 1) < F(d)er + N[

By reducing the fraction on the right-hand side by the product of the (d — 1) greatest
s; and estimating d; < K’ we see

QdK/d
d(AN(Xk41), ) < F(d)er +2

K'd_l(Nk + ka)

So we have to choose my in such a way that the fraction becomes small. A similar
construction holds for the other points N € I[Ny + mi K, Niy1) . O

After this characterization of M (x) we will study the distribution of certain
subnets of a given net and generalize results due to Goldstern, Winkler and
Schmeling [6]. We study subnets as studied in Losert and Tichy [12]: Choose d
sequences ay, . ..,aq € {0,1}" and define a = (an)pena by

d
A(ny,...;na) = H A -
=1

Then the subnet ax of x is the net obtained by taking those elements z, for
which a, = 1 and using the given relation <.
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The next theorem is a consequence of Theorem and generalizes [0, Theo-
rem 1.2]:

THEOREM 5.7. Let x € XN and M C M(X). Then there exists a subsequence
ax with M (ax) = M iff M is closed and connected with ) # M C M(A(x)),
where A(x) is the set of cluster points of the net x.

Proof. This proof runs along the same lines as the one in [6]: First assume M =
M (ax). Using Lemma [5.2] we get that M is nonempty, closed and connected. It
remains to show that M C M(A(x)). For this purpose it suffices to show that
every € X \ A(x) has a neighborhood U with limn_; s pin,ax(U) = 0. Therefore
take a neighborhood U with compact closure U and with UNA(x) = 0. If 2, € U

for an infinite increasing sequence of indices n; < ny < ---, U would contain a
cluster point of x, which is a contradiction. Hence x,, € U for all n > Ng. Thus
. . |No|
1 U)< lim — =0.
NoYoo Hax(U) < Neo |N|
The other direction is completely analogous to [6]. d

Similarly to [6l Theorem 1.3] we get that a typical subsequence of a given
sequence is maldistributed in A(x):

THEOREM 5.8. M (ax) = M(A(x)) holds for all a € R from a residual set
RC[0,1).

6. na-nets over N¢

In this section we specialize on na-nets over N, i.e., we consider X = [0,1)
and p the Lebesgue-measure. Besides the two notions of uniform distribution
mod 1 according to Section [ we consider the (s1, ..., sq)-u.d. (see Kirschenhofer
and Tichy [10]). After some elementary properties and examples of these three
concepts we turn to the generalization of results given in Goldstern, Schmeling
and Winkler [7] and Ajtai, Havas and Komlés [2].

In Section [ we introduced two special notions of uniform distribution. In the
context of this section we call a net x uniformly distributed mod 1 iff for any a
and b with 0 <a <b<1,

lim A([a,b); N)

—b—
Ni,...,Nqg—o00 |N| a’

where A([a,b); N) is the number of zx, 1 < k <N with a < {zx} < b.
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This definition is a direct extension of uniform distribution in the case d = 2
given by Kuipers and Niederreiter [I1] and a special case of the concept studied
in Losert and Tichy [12]. Following [I1] one gets immediately the theorems given
below.

THEOREM 6.1. The sequence (xx)kend 48 u.d. mod 1l if and only if for every
Riemann-integrable function f on [0, 1]
1

., lim llef{wk} /<>dw,

N
where Y 4 = Zk:lSkSN'

THEOREM 6.2. The sequence (Tk)xene 8 u.d. mod 1 if and only if

| XN
lim - 627Tih96k _
Ni,...,Ng—o0 |N| l;_
for all integers h #£ 0.

Moreover, a net x = (xk)xenae is said to be strongly uniformly distributed
(s.u.d.) mod 1 iff for any a@ and b with 0 <a < b <1,

. A([a,b);N)
lim ——F"——~>=b—a
IN|—o00 |N]|
Here lim|y|00 f(N) = f means that Ve > 0 3N € N : VN with [N| > N :

If(N) = fl <e.
The following theorems hold:

THEOREM 6.3. The sequence (Ty)xend 5 S.u.d. mod 1 iff for every Riemann-
-integrable function f on [0, 1]

1
|N|—> |N| Zf (o) :O/f

THEOREM 6.4. The sequence (Ik)keNd is s.u.d. mod 1 if and only if

|N| Z 627mh1:k -0

|N|—>oo

for all integers h #£ 0.

As in the one-dimensional case, a sequence with multidimensional sequences
is strongly uniformly distributed modulo 1 if and only if the multidimensional
discrepancy introduced by Aistleitner [I] tends to 0.

36



BAIRE RESULTS OF MULTISEQUENCES

Clearly, strong uniform distribution implies uniform distribution. The con-
verse is not true: Consider the double sequence x defined by z;; = j# with
0 irrational. Then this sequence is u.d. mod1 (this follows easily from Theo-
rem [6.2)), but not s.u.d., since this sequence is constant for fixed k. Thus x is
not s.u.d. mod 1 by the following theorem:

THEOREM 6.5. Let xy be s.u.d. mod 1. Then all “one-dimensional sequences”,
i.e., sequences (T(x,, . k;,...ka) k;eN With fived ks, s # j, are u.d. mod 1.

Proof. By the criterion of Weyl, we have to show that
1 2mih
li _ TINT (..., kj_1mkjqiq,es kqg) — 0 6
Jim =D e ok (6)

for all ks € N, s # j and h € Z \ {0}. We use induction. From Theorem
we get readily that (@) holds for ks = 1, s # j for all integers h # 0 and all j.
Assume that (@) holds for all

kg Z:( /1,..., ;-_1, ;-_i_l,...,kél) < (kfl,...,kjfl,kj+1,...,kd) = kj.
Again by Theorem [6.4] we have

k/<k n=1

for k; big enough. Hence

n=11<k/ <k;

The second term on the right hand side tends to 0 by (). Thus
i Z 627fihm(k1 ..... i1k p1eaka) | s Q)

for k; — oco. Therefore () holds. O

We give an example of a sequence which is s.u.d. mod 1. This sequence can be
seen as a generalization of the one-dimensional sequence (n#),ecn. This sequence
is u.d. mod1 for all irrational #. Choose now ny = Zle ki — (d—1). In two
dimensions this sequence is
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4 5 6 7 8
3 4 5 6 7
2 3 4 5 6
1 2 3 45

We will prove now that this sequence is s.u.d. mod 1 for all irrational «. The
proof is similar to the proof of the one-dimensional case (see [11]).We have to

show that
1 & a
lim — 627riho¢ Dl ks — 0
In|—oc n 1;1

for all integers h # 0 and irrational «. Here we assume ny > ng > -+ > ng.
Therefore n; — co. With S(n) = Y;_, n; we have

(n2,..nq) S(n)—S(k

_ |_1| Z Z 27rihaj
n

k=1 j=S(k)

n
- E e2miha S ks
=1

]

1 |21 oriha(S(n)-S()+1) _ 2mihas(k)

m = 1— e27riha
1 2 H& 2Ms

|Il| |1 _ e27mha|

1 1

ny |1 _ 627Tzha|

We give another example: In the one-dimensional case the sequence ({k!e})xen
has 0 as the only limit point (see [11]). Consider now the sequence ny = (S(k) —
d+ 1)! =: k!. Then

eOé

kle=A4+ ——— 0 1, Ae N
e +S(k)—d+1’ <a<l, S

Thus {kle} = e*/(S(k) —d+ 1) — 0 in the first sense. Therefore it is not u.d.
mod 1 (and hence not s.u.d. mod 1).

The third concept is the (si,...,sq)-uniform distribution introduced by
Kirschenhofer and Tichy [10]. According to the definitions above we gave an
equivalent definition to that one stated in [10].
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DEFINITION 6.6. A sequence (Tk)xend 18 (S1,...,8q)-u.d. iff for all a;,  ;, and
bil.”i with 0 < Aiyig < bilmid <land1l< ij < Sj for 1 <j3< d

d

d 1
. N;
lim H (s) A(far1..1,011..1), -5 [@sy .50 Dsys); N1y oo oy Nag 81, ... Sa)

Ni,...,Ng—o0

i=1 d S5
= H Hbjlmjd_ Ajy..jas
i=17;=1
where A ([a11..1,011..1)s -+, [@sy...5050sy...50); N1y« o, Ng; 81, ... 8q) s the num-

ber of (s1---sq)-tuples (@i, s, -- .xilsl,,‘,ide) with 1 <ij, <+ <i;, <N,
forall 1 <j<din[ai1. 1,b11..1) X -+ X [@s; .54, Ds,...50)-

As in [II] we have that the set S of (sq, ..., sq)-u.d. sequences is everywhere
dense in X«**« By [10], (s1,...,Sq)-uniform distribution implies uniform
distribution. Thus from Section @ we conclude: If X contains more than one
element, then the set S of (s1,...,s4) — p-u.d. sequences is a set of first category
11’1 X(AJX XOJ.

After these examples and elementary properties of uniform distribution of
sequences with multidimensional indices, we turn to the generalization of [7]
Theorem 2.4] for these cases. For the sake of completeness we mention that
in [16] Salat proved that for a sequence (ny)reny with ng = Hle q¢j, where
(gj)jen is a sequence of integers greater than 1, then the set U = {a € R :
(nra) is u.d. mod 1} is meager. By modifying the proof slightly, we get

THEOREM 6.7. Let (qx)xene be a sequence of integers greater than 1. Put

an = H Qx, ne N%
k=1

Then the set

U:={aeR: (nga) is u.d. mod 1}
is meager. Consequently the sets

U :={aeR: (nga) is s.u.d. mod 1}
and

U ={aeR: (nxa) is(si,...,sq)-u.d.}

are meager.

Now we turn to the stronger result. We will generalize [7l Theorem 2.4]. For
this purpose we will follow [7] again. Recall the definitions of Section[l Moreover,
let A denote the Lebesgue measure on R/Z.

We start with an elementary property.
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THEOREM 6.8. Given a sequence X = (Tn)pend we have O # M(x) C M,(x).
Now we can establish the main result of this section.

THEOREM 6.9. Let n = (nk)xend be a sequence of nonnegative integers and
assume that there exists a constant QQ such that

#{k:2" <me <2} <Q, Vr=0,1,2,...
Then the set
U:={a eR/Z: na is uniformly distributed w.r.t. \}

is meager. Moreover, there is a number P > 0 such that for all intervals I the set

{a e (1) > %}(I)}

is residual (here iy, is defined analogously to Definition[2.4).
Consequently, the sets

U :={a€R/Z: na is s.u.d modl}
and
U ={aeR/Z: (nxa) is (s1,...,54)-u.d.}

are meager.
Before proving the theorem we note the following lemma:

LEMMA 6.10. Assume that (ng)xena @S a sequence of positive integers with the
property that whenever you choose T'+ 1 elements nyx, < --- < ng,,, you know
that ny,, /nx, > U. Then in a cuboid with X > T 4 1 elements there are D :=

| XL +1 elements ny, , . . ., s, such that nw,, /nw, > U fori=1,...,D—1.
Proof. Let ng, < nk, < -+ < nk, be a sorting of the X elements in the
cuboid and choose the elements with indices ki, k41, ..., k| (x—1)/7j741- U

Proof of the theorem. Choose P > 0 so small, that

1

and assume \(I) =: ¢ < % Then there exists an integer c in the interval

1
1—loge, —mloge .
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1 2P
Thus 2d+1Qc > —loge

false. Since the set {a : Ty, (1) > _11: } is a Borel set and not residual, its
ge
complement is residual in I, for some open interval I:

Ill—{a: Tina () < P }

—loge

and 2¢ > 2/e. Again we assume that the theorem is

As in Section 2] the set {a: T, (I) <

< —L£_} is contained in the set
—loge

2P
{a: dm VYN >m: pnenN(I) < }
—loge

Denote the set {j < N : nja € I'} by Zn(e). S0 pina,N(I) = #Znle) Therefore

COIN[
#2Zn(a) 2P
ey 0 o FR S )

m N>m

So, by Fact 27 we can find an open interval J C I and a k* such that

 #Zn(a) 2P
JIE {a. N g_logg},

N>k*

or equivalently, for all N > k*:

 #Zn(a) 2P
J I {a. N —1oga}’ (8)

Let ¢ := A(J). Without loss of generality we assume k* = (k,k,..., k) and
nk > ¢e/d forallk > (ke, ..., kc). Now consider the cuboid starting at (kc, . .., kc)
and ending at (kc(2Q + 1),...,kc(2Q + 1)) =: K. Then, by Lemma with
U=2/e, T=2Qcand X = (2Qkc + 1)?, there are at least

d_ drydpd, .d
(2Qkc+1)" -1 +122ch::D
2Qc 2Qc
elements ny,,...,nk, with nyx,  /ne, > 2/e for i = 1,...,D — 1. Thus the

corresponding functions are e-mixing in ¢ by Lemma [7, Lemma 2.13]. So there
is an open interval K C J such that for all « € K

#7x(0) = #{j<K: njacl}>D.
Thus for all o € K

#Zx (o)  #Zk(a) < D 1 (9)
K| R0 + 14~ klcidiQi 20+ 1Qe
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Since ﬁ > 2 and K C J, ) with N := K implies

—loge
Kﬂk{a. K] ;gzMJQC}. (10)

Now consider the set {o : #Zu‘él(a) < 2d+11Qc} N K. By (@), this set is empty, but

by (IQ) it is residual in K, which is a contradiction. O

To obtain the extension of [7, Theorem 2.6], the theorem about the fast grow-
ing sequences, we call - in analogy to the classical case - a sequence with multi-
dimensional indices maldistributed in [0, 1], if M (x) = .

THEOREM 6.11. Let n = (nk)xene be a sequence of nonnegative integers and
assume that there are R,Q € N, such that

Qr=1{k: 2"<m <2} <Q Vr=0,1,2,...,
and that Q, < 1 for all > R. Moreover, let (r;);jen be the sequence of those

indices rj with Q; > 0. Define a sequence (7;)jen by 7y =1;—71;-1 ( > 0) and
7o = 0. Suppose 7; — oo. Then the set

{a € R/Z : na« is maldistributed}
is residual. Consequently, the set

{a € R/Z : na« is strongly maldistributed}
1s residual.

Proof. We follow [7] and adapt the notation. With similar arguments it suffices
to show that for each list € and each 7 the set

{a: for all tails there is an index N such that pina,n € Mey,} (11)

is residual. Now assume that this fails. Therefore we can find a nonempty
interval I, an index Ny, a sequence € = (eg,...,ey—1) of natural numbers and
an 7 € R with

I'lF{a: VN >N : fina,N & Me,}.
W.l.o.g. we assume Ny = (ng,...,np) > (%, e %), that e := " e; divides | Ny,
> 20 if nyr > ny.

Nyt

nN, > ﬁ and that

Nk
Choose a sequence of intervals (Ij : 1 < j < N3) where N3 = (n3,...,nd)

such that for all 0 < ¢ < /¢ — 1 we have
41 €; 2
= —|Np|~.
3 / >}‘ €| 0|

~

IS N

Hj:lstN%,Ijz[
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So each interval I; has length 4. Let fj(z) = njz for Ng < j < N2. Let (f;) be
a sorting of these functions such that n;y1/n; > 2¢. Then, by [7, Lemma 2.13],
the f; are %—mixing in A(T), i.e., we can find an interval

JCIn()f 1)
j

We will show that f1,,,n2 € Me,y for all a € J, which is a contradiction to (II)).
Indeed, if a € J, then for all j we have f;(a) € I;. Consequently (writing O(1)
for a quantity between —1 and 1) we obtain

i 141 - 1 €; 2 2(d—1)+1Y €; dO(l)
:unoz,Ng (|:£7 E >> - |N0|2 <€ |NO|+O(1) d TLO ) = o + o ,

SO fina,N2 € Mey, since n% <. O

Replacing in [2] N by N and the one-dimensional limits by the multidimen-
sional limits, we get immediately

THEOREM 6.12. Given any sequence

Pyeeyijt 1,

Jiryosia€Nj=1,...d  With ;77

01,0005+ 1,004 d
—0
( i

[ARTIRN PPN ¥
in the classical (strong) sense, there is a sequence ny of positive integers with

Nhy,.. ki+1,...k E1yeoskj41,00k
— < >1 +ep kj+ o
Nki,.okjyeeska B
such that for any irrational o the sequence na is (strongly) uniformly dis-
tributed mod 1.
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