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BAIRE RESULTS OF MULTISEQUENCES

Robert Tichy — Martin Zeiner

ABSTRACT. We extend Baire results about nα-sequences in different ways, in

particular we investigate sequences with multidimensional indices.
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Dedicated to the memory of Professor Edmund Hlawka

1. Introduction

A sequence x = (xn)n∈N of real numbers is called uniformly distributed mod-
ulo 1, if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 the following
condition holds:

lim
n→∞

A([a, b), n,x)

n
= b− a,

where A(I, n,x) is the number of elements xi, i ≤ n with xi ∈ I for an in-
terval I. For a general theory of uniform distribution we refer to Kuipers and
Niederreiter [11] and Drmota and Tichy [4].

In [7] Goldstern, Schmeling andWinkler studied the size (in the sense of Baire)
of the set

U := {α ∈ R/Z : nα is uniformly distributed mod 1}

for a given sequence n = (nj)j∈N of natural numbers; the size of this set depends
on the growth rate of the sequence n. In particular they showed that U is meager
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if n grows exponentially (for theory about Baire categories see Oxtoby [15]).
By Ajtai, Havas, Komlós [2] this condition cannot be weakened.

Moreover, it was proven in [7] that the set

V := {α ∈ R/Z : nα is maldistributed}

is residual if n grows very fast (for the precise statement we refer to [7]).

The aim of this paper (which is closely related to the very recent work of
Winkler [19]) is to generalize these results in different ways. In Section 2 we
consider for a given sequence (nj)j∈N of r-dimensional vectors of nonnegative
integers and an r-dimensional vector α of real numbers the sequence (njα)j∈N,
where njα means the scalar product of two vectors. Afterwards we investigate
in Section 3 uniform distribution in Rd, i.e., for a d-dimensional sequence (nj)
and a d-dimensional vector α we consider the sequence (njα)j∈N, where njα

means the Hadamard product of two vectors.

Section 4 is devoted to the generalization of elementary properties of uniform
distribution of sequences to uniform distribution of nets. Afterwards we extend
in Section 5 the characterization of the set of limit measures of a sequence
(see Winkler [18]) to a special kind of nets over Nd. Finally, we turn in Section 6
to nα-sequences with multidimensional indices. Besides the classical notion of
uniform distribution of such sequences (see Kuipers and Niederreiter [11]) we
study the (s1, . . . , sd)-uniform distribution (see Kirschenhofer and Tichy [10])
and introduce a new concept of uniform distribution modulo 1, which is inspired
by Aistleitner [1]. In most of these cases it turns out that the known results for
the classical case remain true in these generalized settings.

2. Vectors

In this section let (nj)j∈N be a sequence of r-dimensional vectors of nonneg-
ative integers, i.e.,

nj = (nj,1, . . . , nj,r) with nj,i ∈ N,

and let α = (α1, . . . , αr) denote an r-dimensional vector of real numbers
0 ≤ αi ≤ 1, i = 1, . . . , r. We are now interested in the distribution of the
sequence

nα := (njα)j∈N with njα =

r
∑

i=1

nj,iαi.

Note that nα is a one-dimensional sequence of real numbers. To study the size
in the sense of Baire of the set

U = {α ∈ (R/Z)r : (njα)j∈N is uniformly distributed mod 1}
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we follow Goldstern, Schmeling, Winkler [7]. For this purpose we generalize the
definition of ε-mixing sequences of functions:Definition 2.1. A sequence of functions fi : [0, 1)

r → [0, 1) is called ε-mixing
in (δ1, . . . , δr) if for all sequences of intervals J1, J2, . . . of length ε and for all
cuboids J ′ of size δ1 × · · · × δr and for all k ≥ 0

J ′ ∩
k
⋂

i=1

f−1
i (Ji)

contains an inner point.

To proceed further we need a criterion when a sequence of functions is ε-mixing
in (δ1, . . . , δr):Lemma 2.2. Let fj : [0, 1)r → [0, 1) be the function mapping α to njα modulo 1,
where (nj)j∈N is a sequence of r-dimensional vectors of nonnegative integers
satisfying

(1) nj+1,s >
4
εnj,s for all j and

(2) n0,s >
ε

2δs

for a fixed s ∈ {1, . . . , r}. Then (f1, f2, . . . ) is ε-mixing in (δ1, . . . , δr).

P r o o f. For simplicity we just prove the case r = 2. Let nj = (mj , nj) and
assume that the conditions (1) and (2) hold for the sequence of nj . We will show
(by induction on k) that each set

J ′ ∩
k
⋂

i=1

f−1
i (Ji)

contains a cuboid of size ck × ε
2nk

with ck > 0. This is true for k = 0, since

δ2 > ε
2n0

and c0 := δ1 > 0.

Consider k > 0. Note that f−1
k (Jk) is a union of stripes of height ε

nk
and

distance 1−ε
nk

(see Figure 1). By induction hypothesis, the set J ′ ∩
⋂k−1

i=1 f−1
i (Ji)

contains a cuboid I of size ck−1 ×
ε

2nk−1
. Since ε

2nk−1
> 2

nk
, I crosses one stripe

— say S — of height ε
nk

. Thus I ∩ S contains a cuboid I ′ of size ck × ε
2nk

for

some ck ≤ ck−1 (see Figure 2). �

To be able to state the theorem, we need the following definitions.Definition 2.3. For a sequence x = (xn)n∈N of real numbers we define the
measures µx,n by

µx,n =
1

n

n
∑

i=1

δxi
,
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Figure 1.

Figure 2.

where δx denotes the point measure in x. The set of accumulation points of the
sequence (µx,n)n∈N is denoted by M (x) and is called the set of limit measures
of the sequence x.Definition 2.4. For any sequence x = (xn)n∈N and any interval I we define
µx(I) by

µx(I) := sup{µ(I) : µ ∈ M (x)}.

Now we can establish the theorem, which shows that the set of r-dimensional
real vectors α, such that nα is uniformly distributed mod 1 is meager, if at least
one component of the nj grows exponentially.
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BAIRE RESULTS OF MULTISEQUENCESTheorem 2.5. Let (nj)j∈N be a sequence of r-dimensional vectors of nonneg-
ative integers and assume q := lim infj(nj,s+1/nj,s) > 1 for an s ∈ {1, . . . , r}.
Then the set

U := {α ∈ (R/Z)r : (njα)j∈N is uniformly distributed mod 1}

is meager.

Moreover: There is a number Q > 0 such that for all intervals I the set
{

α : µnα(I) >
Q

− log λ(I)

}

is residual.

Before proving this theorem we state the following fact. It is completely anal-
ogous to the one-dimensional case. For details we refer to [7].Definition 2.6. For an open cuboid I and a Borel set B we write I 
 B for
“B ∩ I is residual in I” or equivalently “I \B is meager”.Fa
t 2.7. Let I be an open cuboid.

(1) If Bn is a Borel set for every n ∈ {0, 1, 2, . . .} and I ∩
⋃

n Bn is residual
in I, then there is some open nonempty cuboid J ⊆ I and some n such
that Bn is residual in J, i.e.,

I 


⋃

n∈N

Bn ⇒ ∃J ⊆ I ∃n ∈ N : J 
 Bn.

(2) If Bn is a Borel set for every n ∈ {0, 1, 2, . . .}, then I ∩
⋂

n Bn is residual
in I iff each I ∩Bn is residual in Bn:

I 


⋂

n∈N

Bn ⇔ ∀n ∈ N : I 
 Bn.

(3) If B is a Borel set, then B ∩ I is not residual in I iff there is some open
cuboid J ⊆ I such that B is meager in J:

I 6
 B ⇔ ∃J ⊆ I : J 
 BC,

where BC denotes the complement of B.

P r o o f o f t h e t h e o r e m. The proof is completely analogous to the proof of
Theorem 2.4 in [7], we have just to adapt the choice of Q and notation.

Choose Q > 0 so small that ( 1
4Q

− 1)− log 4 > 1.

Without loss of generality we may assume
nj+1,s

nj,s
> q for all k.

Let ε := λ(I). Since µnα > Q
− log λ(I) will be trivially true for large intervals

if we choose Q small enough, we may assume ε < 1
q , so (− log ε) > 1; here log
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always denotes the logarithm to base q. Hence (− log ε)( 1
4Q −1)− log 4 > 1, thus

the interval
(

log 4− log ε,−
1

4Q
log ε

)

has length > 1. Let c be an integer in this interval. Then

• qc > 4
ε

• 1
2c > 2Q

− log ε .

Now suppose that the theorem is false. Since the set {α : µnα(I) > Q
− log ε

}

is a Borel set and not residual, its complement is residual in I ′, for some open
cuboid I ′:

I ′ 


{

α : µnα(I) ≤
Q

− log ε

}

.

Since µnα(I) ≥ lim supn→∞ µnα,n the set {α : µnα(I) ≤
Q

− log ε} is contained in
{

α : ∃m ∀N ≥ m : µnα,N (I) ≤
2Q

− log ε

}

.

Denote the set {j < N :njα ∈ I} by ZN (α). So µnα,N(I) = #ZN (α)
N . Therefore

I ′ 

⋃

m

⋂

N≥m

{

α :
#ZN(α)

N
≤

2Q

− log ε

}

.

So, by Fact 2.7, we can find an open cuboid J ⊆ I ′ and a k∗ such that

J 


⋂

N≥k∗

{

α :
#ZN(α)

N
≤

2Q

− log ε

}

,

or equivalently, for all N ≥ k∗:

J 


{

α :
#ZN(α)

N
≤

2Q

− log ε

}

, (1)

Let δi := λi(J), where λi(J) is the length of the edge in the ith dimension.
Without loss of generality we assume nk∗c,s >

ε
2δs

(otherwise we just increase k∗).
Now consider the functions fk∗c, f(k∗+1)c, . . . , f(2k∗−1)c, defined as in Lemma 2.2.
Since

n(k∗+i+1)c,s

n(k∗+i)c,s
≥ qc >

4

ε

and nk∗c,s > ε
δs
, these functions are ε-mixing in (δ1, . . . , δr) by Lemma 2.2.

So there is an open cuboid K ⊆ J such that for all α ∈ K and all i ∈ {0, . . . , k∗}:

α ∈ f−1
(k∗+i)c(I) i.e., n(k∗+i)cα ∈ I.

18



BAIRE RESULTS OF MULTISEQUENCES

Hence for all α ∈ K

#Z2k∗c(α) = #{i < 2k∗c : niα ∈ I} ≥ #{k∗c, (k∗ + 1)c, . . . , (2k∗ − 1)c} = k∗.

So for all α ∈ K
#Z2k∗c(α)

2k∗c
≥

1

2c
. (2)

Since 1
2c > 2Q

− log ε and K ⊆ J , (1) with N := 2k∗c implies

K 


{

α :
#Z2k∗c(α)

2k∗c
≤

1

2c

}

. (3)

Now consider the set {α : #Z2k∗c(α)
2k∗c < 1

2c} ∩K. By (2), this set is empty, but
by (3) it is residual in K, which is a contradiction. �

Note that the above theorem still remains true, if we require instead of
q := lim infj(nj,s+1/nj,s) > 1 for an s ∈ {1, . . . , r} only that there exists
s ∈ {1, . . . , r} and a constant C with

∣

∣

{

j : 2r ≤ nj,s < 2r+1
}∣

∣ ≤ C ∀r.

Then you can choose each c := 2C⌈2 − log2 ε⌉th term to obtain a growth of

factor 4/ε, and Q has to be chosen so small, that 1
2c > 2Q

− log ε . Indeed, one can

use instead of the base 2 in the above condition any number K > 1, but we will
state all theorems in terms of the base 2 throughout this paper.Remark 2.8. With the same argument as above, Theorem 2.4 in [7] holds also
for sequences (nj)j∈N with

∣

∣

{

j : 2r ≤ nj < 2r+1
}∣

∣ ≤ C ∀r.

So far we gave sufficient conditions that nα is u.d. mod 1 only for α in a set
of first category. If we weaken the growth condition in the following way, there
will be sequences n, such that nα is u.d. mod 1 for α in a set of second category.
Therefor we start with an extension of a result due to Ajtai, Havas, Komlós [2].Lemma 2.9. Given any r sequences

(εj,k)j∈N, 1 ≤ k ≤ r, εj,k ≥ 0, lim
j→∞

εj,k = 0 for all k,

there is a sequence of r-dimensional vectors of nonnegative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k, 1 ≤ k ≤ r

such that for all α with
∑r

i=1 αi 6∈ Q the sequence nα is u.d. mod 1.
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P r o o f. Set εj := max{εj,k : 1 ≤ k ≤ r}. Then, by [2, Lemma 1], there exists
a sequence (nj)j∈N with nj+1/nj > 1 + εj such that njα is u.d. mod 1 for all

irrational α. Define nj := (nj , . . . , nj). Then

njα =

r
∑

i=1

njαi = nj

r
∑

i=1

αi = njα
′

with irrational α′. �

To get a statement in Baire’s categories, we need a lemma which tells us that
the set of d-dimensional real vectors, whose entries are linearly independent over
Q, is residual in Rd.Lemma 2.10. The set

I := {α : 1, α1, . . . , αd are linearly independent over Q}

is residual, and hence of second category, in Rd.

P r o o f. Note that

I = Rd \
⋃

a0,...,ad∈Q
(a0,...,ad)6=(0,...,0)

S(a1, . . . ad),

where

S(a1, . . . ad) = {α : a0 + a1α1 + · · ·+ adαd = 0} .

Since S(a1, . . . ad) is a subspace of dimension smaller than d, all these sets
S(a1, . . . ad) are nowhere dense. Therefore,

⋃

a0,...,ad∈Q
(a0,...,ad)6=(0,...,0)

S(a1, . . . ad)

is of first category. �

Consequently we haveTheorem 2.11. Given any r sequences (εj,k)j∈N, 1 ≤ k ≤ r, εj,k ≥ 0,
limj→∞ εj,k = 0 for all k, there is a sequence of r-dimensional vectors of non-
negative integers (nj)j∈N with

nj+1,k

nj,k
> 1 + εj,k, 1 ≤ k ≤ r

such that the set

{α : nα is u.d. mod 1}

is residual.
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In [7] Goldstern, Schmeling and Winkler also proved, that if the sequence
(nj)j∈N grows very fast (i.e., if limj→∞ nj+1/nj = ∞), then the set of α, for

which nα is maldistributed, is residual. A sequence x = (xn)n∈N is called mald-
istributed, iff the set M (x) is the whole set of Borel probability measures on
[0, 1]. It is as easy as the modification of the proof of [7, Theorem 2.4] to the
proof of Theorem 2.5 to obtain a generalization of [7, Theorem 2.6]:Theorem 2.12. Let (nj)j∈N be a sequence of r-dimensional vectors of nonneg-
ative integers and assume that there is an s ∈ {1, . . . , r} such that

lim
k→∞

ns,k+1/ns,k = ∞.

Then the set
{α ∈ (R/Z)r : nα is maldistributed}

is residual.

3. nα-sequences in Rd

In this section we investigate uniform distribution in Rd. For a sequence
(nj)j∈N of d-dimensional vectors of nonnegative integers and a d-dimensional
vector α = (α1, . . . , αd) of real numbers we are interested in the sequence

nα := (nj,1α1, . . . , nj,dαd)j∈N.

To obtain results for such sequences we use the connection between uniform
distribution modulo 1 in [0, 1]d and uniform distribution in [0, 1]. As in the
previous section our first theorem shows that the set of α such that nα is u.d.
is meager if at least one component of the nj grows exponentially.Theorem 3.1. Let (nj)j∈N be a sequence of d-dimensional vectors of nonnega-
tive integers and assume that there exists s ∈ {1, . . . , d} and a constant C with

∣

∣

{

j : 2r ≤ nj,s < 2r+1
}
∣

∣ ≤ C ∀r.

Then
A :=

{

α ∈ (R/Z)d : nα is u.d. mod 1 in Rd
}

is meager.

P r o o f. By [11, Theorem 6.3], uniform distribution of nθ implies that each
component niθi := (nj,iθi)j∈N, 1 ≤ i ≤ d is u.d. mod 1, especially nsθs is u.d.
mod 1. Therefore

A ⊆ R× · · · × R×As × R× · · · × R,

where
As := {θ : nsθ u.d. mod 1} .

By Remark 2.8, the set As is meager. Hence, by [15, Th. 15.3.], A is meager. �
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As before the grow condition in the theorem above cannot be weakened:Lemma 3.2. Given any d sequences (εj, k)j∈N, 1 ≤ k ≤ d, εj, k ≥ 0,
limj→∞ εj, k = 0 for all k, there is a sequence of d-dimensional vectors of non-
negative integers (nj)j∈N with

nj+1, k

nj, k
> 1 + εj, k, 1 ≤ k ≤ d

such that for all α with 1, α1, . . . , αd linearly independent over Q, the sequence
(nj,1α1, . . . , nj,dαd)j∈N is u.d. mod 1 in Rd.

P r o o f. Set εj := max{εj,k : 1 ≤ k ≤ d}. Then, by [2, Lemma 1], there exists
a sequence (nj)j∈N with nj+1/nj > 1 + εj such that njα is u.d. mod 1 for all
irrational α. Define nj := (nj , . . . , nj). By [11, Theorem 6.3] we have to show
that for all h ∈ Zd, h 6= 0 the sequence 〈h, njα〉 is u.d. mod 1 for all α with
1, α1, . . . , αd linearly independent over Q. This is true since

〈h, njα〉 =
d
∑

i=1

hinjαi = nj

d
∑

i=1

hiαi = njα
′

with α′ ∈ R \Q. �

Using Lemma 2.10 we get as an immediate consequenceTheorem 3.3. Given any d sequences (εj, k)j∈N, 1 ≤ k ≤ d, εj, k ≥ 0,
limj→∞ εj, k = 0 for all k, there is a sequence of d-dimensional vectors of non-
negative integers (nj)j∈N with

nj+1, k

nj, k
> 1 + εj, k, 1 ≤ k ≤ d

such that the set
{

α : (nj, 1α1, . . . , nj, dαd)j∈N is u.d. mod 1 in Rd
}

is residual.

Again using [15, Th. 15.3.] we obtain for fast growing sequences (nj):Theorem 3.4. Let (nj)j∈N be a sequence of d-dimensional vectors of nonneg-
ative integers and assume limk→∞ nt,k+1/nt,k = ∞ for all t ∈ {1, . . . , d}, then
the set

{α ∈ (R/Z)d : nα is maldistributed}
is residual.

We can combine the ideas of this and the previous section: Consider a sequence
of d× r-matrices of nonnegative integers

(Nj)j∈N with Nj =
(

nj
ik

)

, i = 1, . . . , d, k = 1, . . . , r.
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We are now interested in the distribution of the sequence Nα := (Njα)j∈N,
where Njα means the classical matrix-vector-product. Same argumentation as
in the proof of Theorem 3.1 yieldsTheorem 3.5. Let (Nj)j∈N be a sequence of d× r-matrices of nonnegative in-
tegers and assume that there exist s∈{1, . . . , d}, t∈{1, . . . , r} and a constant C
with

∣

∣

∣

{

j : 2r≤ nj
st< 2r+1

}∣

∣

∣
≤ C ∀r.

Then the set

A :=
{

α = (α1, . . . , αr) : Nα is u.d. mod 1 in Rd
}

is meager.

4. Uniform distribution of nets

In this section we define uniform distribution of nets of elements of a locally
compact Hausdorff space and give a list of some elementary properties which
generalize the results for classical sequences given in Bauer [3], Helmberg [8],
Kuipers and Niederreiter [11] and Winkler [18]. The proofs are analogous to the
ones of the case of one-dimensional sequences, so we omit them and just state
the theorems. As explained in the following such nets induce nets of certain
discrete probability measures. Uniform distribution properties of nets of general
probability measures on locally compact groups were studied in Gerl [5] and
Maxones and Rindler [13, 14]. A special kind of nets are sequences indexed by
d-dimensional vectors in Nd. Such sequences of random variables also appear in
probability theory, see e.g., Jacod and Shiryaev [9]. For an introduction to nets
we refer to Willard [17].

Throughout this and the following section let X 6= ∅ be a locally compact
Hausdorff space with countable topology base. Moreover, let M(X) be the com-
pact sets of nonnegative finite Borel measures with µ(X) = 1 if X is compact
and µ(X) ≤ 1 if X is not compact, equipped with the topology of weak conver-
gence. On M(X) we use the metric given in [18]. Furthermore let Λ (equipped
with two relations (≤1,≤2)) be a countable directed set (w.r.t. both relations)
with the additional property that for all λ ∈ Λ the sets Vi(λ) := {ν : ν ≤i λ}
(i = 1, 2) is finite. Moreover, assume

|{λ : |V1(λ)|}| = o(nα) as n → ∞ and α ∈ R.

For a net x = (xλ)λ∈Λ of elements in X and a function f ∈ K(X), the space
of all continuous real-valued functions on X whose support is compact, we define
the net µf = (µλ,f )λ∈Λ by
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µλ,f =
1

|V1(λ)|

∑

ℓ≤1λ

f(xℓ). (4)

If the nets µf converges (w.r.t. the relation ≤2) to the integral
∫

X

fdµ

for all f ∈ K(X) then we say x is µ-uniformly distributed (µ-u.d.) in X.

Now we give some basic properties:

(i) If V is a class of functions from K(X) such that sp(V ) is dense in K(X),
then V is convergence-determining with respect to any µ in X.

(ii) If sp(V ) is a subalgebra of K(X) that separates points and vanishes
nowhere, then V is a convergence-determining class with respect to any
µ in X.

(iii) The net x = (xλ)λ∈Λ is µ-u.d. in X iff the nets yM = (yMλ )λ∈Λ defined by

yMλ =
A(M ;λ)

|V1(λ)|

converge (w.r.t. ≤2) to µ(M ) for all compact µ-continuity sets M ⊆ X.
Here A(M ;λ) =

∑

ℓ≤1λ
1M (xℓ).

(iv) In a locally compact Hausdorff space X with countable space, there ex-
ists a countable convergence-determining class of real-valued continuous
functions with compact support with respect to any µ ∈ M(X).

(v) Let S be the set of all µ-u.d. sequences in X, viewed as a subset of XΛ :=
∏

λ∈Λ. Then µ∞(S) = 1.

(vi) If X contains more than one element, then the set S from the above the-
orem is a set of first category in XΛ.

(vii) The set S is everywhere dense in XΛ.

Generalizing the concept of uniform distribution we introduce the set M (x),
the set of limit measures of the net x, as the set of cluster points of the net
(w.r.t. ≤2) µ = (µλ)λ∈Λ of induced measures defined by

µλ =
1

|V1(λ)|

∑

ℓ≤1λ

δxℓ
. (5)

If M (x) = {µ} (µ ∈ M(X)), then this net is µ-u.d. in X. If M (x) = M(X) we
say x is maldistributed in X.

24



BAIRE RESULTS OF MULTISEQUENCES

As in the classical case (see [18]) only very few (in a topological sense) nets
are µ-u.d. Moreover, almost all nets are maldistributed. We have:

The typical situation in the sense of Baire is M (x) = M(X), i.e., the set

Y = {x ∈ XΛ| M (x) = M(X)} ⊆ XΛ

is residual.

At the end of this section we define two notions of uniform distribution on
Λ = Nd, which we will use in the following. First let Nd be equipped with the
relations (≤1,≤2) = (≤,≤) defined by x ≤ y iff xi ≤ yi (1 ≤ i ≤ d). The
second concept is to introduce the relation ≤s defined by x ≤s y iff |x| ≤ |y|,
where |x| :=

∏d
i=1 xi and to consider (Nd,≤,≤s). A µ-u.d. net w.r.t. to this

relation on Nd we will call strongly uniformly distributed (s.u.d.). The set of

limit measure we denote by Ms(x). The first concept is in accord with Kuipers
and Niederreiter [11], the second concept is motivated by Aistleitner [1], who
studied the discrepancy of sequences with multidimensional indices.

5. Characterization of M(x) and distribution of subnets

for a special kind of nets on Nd

This section is devoted to the generalization of the characterization of the
sets of limit measures given in Winkler [18, Theorem 3.1] to nets defined on
Λ = (Nd,≤,≤) (see Section 4).

To simplify notation we introduce some operations on multidimensional in-
dices. For an index i = (i1, . . . , id) we define

i+ c = (i1 + c, . . . , id + c),

imod c = (i1 mod c, . . . , id mod c).

Furthermore, we define the index-sets

I[i, j] := {k : k ≥ i and ∃ℓ : kℓ ≤ jℓ},

I[i, j) := {k : k ≥ i and ∃ℓ : kℓ < jℓ} = I[i, j− 1],

I(i, j] := {k : k > i and ∃ℓ : kℓ ≤ jℓ} = I[i+ 1, j].

A sequence of the form x = (xi)i∈I[1,N] we call an angle-sequence, and by the
periodic continuation of an angle-sequence by a finite sequence y = (yi)1≤i≤N1

we mean the sequence x′ = (x′
i)i∈Nd defined by

x′
i =

{

xi if i ∈ I[1,N],

yki−N mod N1
if i > N.

25



ROBERT TICHY — MARTIN ZEINER

Here we assumeN = (N, . . . , N) andN1 = (N1, . . . , N1). In fact, we could define
the above construction for arbitrary indices N and N1, but in the following we
will just need this definition.Example 5.1. In two dimensions the periodic continuation of x with period y

looks like the following: ...
...

...
... . .

.

... y y y · · ·

... y y y · · ·

... y y y · · ·
x · · · · · · · · · · · ·

The following lemma generalizes [18, Section 2] and gives some properties of
the set M (x).Lemma 5.2. For all sequences x ∈ Xω×···×ω the set M (x) has the following
properties: M (x) is

(i) nonempty,

(ii) contained in M (X),

(iii) closed (hence compact),

(iv) connected.

P r o o f. (i): M (x) 6= ∅ since every net in a compact space has a convergent
subnet and all λN ∈ M(X).

(ii): The proof is completely analogous to the proof in [18], you just have to
take the multidimensional limit.

(iii): M (x) is the set of cluster points of the net y = (yN)N∈Nk , and the set
of cluster points of any net in any topological space is closed.

(iv): Assume that M = M (x) is not connected. Therefore there are nonempty
disjoint closed subsets M1, M2 ⊆ M with M = M1 ∪M2. Since compact Haus-
dorff spaces are normal, we can find open sets Oi and Vi, i = 1, 2, in M (X)
satisfying

Mi ⊆ Oi ⊆ Oi ⊆ Vi, i = 1, 2, and V1 ∩ V2 = ∅.

Thus the closures of the Oi are compact and disjoint. This yields that they have
positive distance

d(O1, O2) = inf
µi∈Oi

d(µ1, µ2) = ε > 0.

Now consider the compact set L = M(X) \ O1 \ O2. Since both M1 and M2

contain cluster points of Λ, the net has to be infinitely many times inO1 as well as
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in O2 for all tails (λN)N≥n with n ∈ Nd. Observe that d(λN, λN+1) ≤ c/(N+1),
whereN = (N, . . . , N). Thus the distance of subsequent members in the diagonal
of Λ gets arbitrarily small, say less than ε. This means that Λ has to intersect
L infinitely many times for all tails (λN)N≥n with n ∈ Nd. Since L is compact,
there must be a cluster point of Λ in L, but we also have

L ∩M = L ∩ (M1 ∪M2) ⊆ (L ∩ O1) ∪ (L ∩O2) = ∅,

which is a contradiction. �

The parts (i), (ii), and (iii) of the lemma above are valid for arbitrary nets as
considered in Section 4, whereas part (iv) fails in general. We give the following
example: Let x = (xn,m)(n,m)∈N2 be the net defined by

x(n,m) =

{

0 if m = 0,
1 if m > 0

and consider the pair of relations (≤,≤s). Then the set of limit measures is the set

M (x) = {λ : λ(0) = 1
n , λ(1) = 1− 1

n} ∪ {δ1}.

Now we turn to the main result of this section. The proof uses two lemmas
which we will present afterwards. With the definitions given in Section 4 we haveTheorem 5.3. Let X be a locally compact Hausdorff space with countable topo-
logical base and x = (xn)n∈Nd a net. Then:

(1) Every M (x) is a nonempty, closed (hence compact) and connected subset
of M(X).

(2) Let M ⊆ M(X) be nonempty, compact and connected. Then there is a net
x ∈ Xω×···×ω with M (x) = M .

P r o o f. (1) see Lemma 5.2

(2) By Lemma 5.4 there exists a net (µk)k∈Nd in M whose set of cluster
points equals M and with the additional property that limk→∞ εk = 0 with a
monotonically nonincreasing sequence of εk > dk, where dk is the maximum
of the distances of µk to its successors (see Lemma 5.4). Now we construct a
sequence x = (xn)n∈Nd such that the induced sequence of the λN approximates
the µk in the following sense: There are indices N1 < N2 < · · · such that
d(µ, λN(x)) < 2εk for all N ∈ I[Nk,Nk+1), where Nj = (Nj, . . . , Nj). Then the
relation M = M (x) is an immediate consequence.

To construct such a sequence we take a finite sequence x0 = (x0
i )1≤i≤N0

such that d(λN0
(x0), µ1) < ε1 (the existence of x0 is guaranteed by Section 4).

Consider the sequence x1 = (x1
i )i∈Nd with x1

i = ximod N0
such that there is
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a number N1 with d(λN(x1), µ1) < ε1 for all N ≥ N1. Now we proceed by
induction:

For arbitrary k ≥ 1 assume that there is an angle-sequence xk = (xk
i )i∈I[1,Nk]

with the following properties:

(1) d(λNk
(xk), µk) < εk.

(2) There is a finite sequence yk = (yki )1≤i≤(K,...,K) such that for the periodic
continuation xc

k of xk with period yk we have d(λN(xc
k), µk) < εk for all

N ≥ Nk.

By Lemma 5.6 there is an angle-sequence x′ = (x′
i)i∈I(Nk,Nk+1] such that for the

angle-sequence xk+1 = (xk+1
i )i∈I[1,Nk+1] defined by

xk+1
i =

{

xk
i if i ∈ I[1,Nk],

x′
i if i ∈ I(Nk,Nk+1]

the following conditions hold:

(i) If N ∈ I[Nk,Nk+1), then there is a point µ on the linear connection
between µk and µk+1 with d(λN(xk+1), µ) < Cεk, where C is a constant
depending only on the dimension d.

(ii) There is a finite sequence yk+1 = (yk+1
i )1≤i≤(K′,...,K′) such that for the

periodic continuation of xk+1 with yk+1, which we denote by x, we have
d(λN(x), µk+1) < εk+1 for all N ≥ Nk+1.

Then the limit sequence limk→∞ xk+1, generated by the above induction, has
the desired properties. �Lemma 5.4. Let M be a nonempty closed and connected subset of M(X).
Then there is a net (µk)k∈Nd in M , whose set of cluster points equals M and
with the additional properties limk→∞ dk = 0, where dk is the maximum of
the distances of µk to its successors, i.e., dk = maxk′∈Ik d(µk, µk′), where
Ik = {(K1, . . . , Kd) : Ki ∈ {ki, ki + 1}, i = 1, . . . , d} if k = (k1, . . . kd), and
µk′ = µ(k,k,...,k), where k′ runs over all indices which coincide with (k, . . . , k) in
at least one coordinate.Example 5.5. In two dimensions such a net has the following form:

...
...

...
...

... . .
.

µ1 µ2 µ3 µ4 µ5 · · ·
µ1 µ2 µ3 µ4 µ4 · · ·
µ1 µ2 µ3 µ3 µ3 · · ·
µ1 µ2 µ2 µ2 µ2 · · ·
µ1 µ1 µ1 µ1 µ1 · · ·
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P r o o f. By [18, Lemma 3.3], there exists a sequence (µk)k∈N in M whose set
of accumulation points equals M and with limk→∞ d(µk, µk+1) = 0. The net
determined by µ(k,...,k) = µk has the desired properties. �Lemma 5.6. Let µk, µk+1 ∈ M(X) and εk > εk+1 > 0 be given. Assume
that xk = (xk

i )i∈I[1,Nk] with Nk = (Nk, . . . , Nk) is an angle-sequence with the
following properties:

(1) d(λNk
(xk), µk) < εk

(2) There exists a finite sequence yk = (yki )1≤i≤(K,...,K) such that for the pe-
riodic continuation xc

k of xk with period yk the following property holds:
d(λn(x

c
k), µk) < εk for all n ≥ Nk.

Then there is an angle-sequence x′ = (x′
i)i∈I(Nk,Nk+1] such that for the angle-

sequence xk+1 = (xk+1
i )i∈I[1,Nk+1] defined by

xk+1
i =

{

xk
i if i ∈ I[1,Nk],

x′
i if i ∈ I(Nk,Nk+1]

the following conditions hold:

(i) If n ∈ I[Nk,Nk+1) then there is a point µ on the linear connection between
µk and µk+1 with d(λn(xk+1), µ) < Cεk, where the constant C depends
only on the dimension d.

(ii) There is a finite sequence yk+1 = (yk+1
i )1≤i≤(K′,...,K′) such that for the

sequence x, which denotes the periodic continuation of xk+1 with period
yk+1, we have d(λn(x), µk+1) < εk+1 for all n ≥ Nk+1.

P r o o f. By Section 4 there is a sequence y with limit distribution µk+1. Take

the initial part yk+1 = (yk+1
i )1≤i≤(K′,...,K′) in such a way that the induced

measure λ = λ(K′,...,K′)(yk+1) satisfies

d(λ, µk+1) < εk+1 < εk

and K|K′. Consider the angle-sequence xk+1 = (xk+1
i )i∈I[1,Nk+1] constructed in

the following way:

xk+1
i =











xk
i if i ∈ I[1,Nk],

yki−Nk mod K if i ∈ I(Nk,Nk +mkK],

yi−(Nk+mkK)mod K′ if i ∈ I(Nk +mkK,Nk+1],

whereNk+1 = (Nk+1, . . . , Nk+1) and Nk+1 = Nk+mkK+mk+1K
′ with suitable

chosen mk and mk+1; this is done below. Let x denote the sequence obtained
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from xk+1 by periodic continuation with period yk+1. We first prove the second
statement of the lemma. Given mk, we can choose mk+1 large enough that

d(λn(x), µk+1) < εk+1 for all n ≥ Nk+1

since for n = (n1, . . . , nd) with ni = Nk + mkK + mk+1K
′ + siK

′ + ci with
0 ≤ ci < K′ and si ≥ 0 we have

d(λN(x), µk+1) = d

(

1

|n|

(

K′d
d
∏

i=1

(mk+1 + si)λ+
∑

)

, µk+1

)

≤
1

|n|
K′d

d
∏

i=1

(mk+1 + si)d(λ, µk+1)

+
|n| −K′d

∏d
i=1(mk+1 + si)

|n|

= 1− (1− d(λ, µk+1))
1

|n|
K′d

d
∏

i=1

(mk+1 + si),

where
∑

is a sum over |n|−K′d
∏d

i=1(mk+1+ si) indicator functions. For mk+1

so large that

1

|n|
K′d

d
∏

i=1

(mk+1 + si) >
1− εk+1

1− d(λ, µk+1)
,

the statement is true.

Now we turn to the first assertion. Firstly we give a detailed proof of the
two-dimensional case, afterwards we prove the general case. Indeed, the general
case uses the same idea as the two-dimensional case, but it is not necessary (and
in higher dimension also very awful to write things down) to be so accurate as
we are in the two-dimensional case, but this accuracy will be very helpful to
understand what’s going on.

So we have to show that for all n ∈ I[Nk,Nk+1) we have

d(λn(xk+1), µ) < Cεk

for some µ on the linear connection between µk and µk+1. For

n ∈ I[N,Nk +mkK]

this is true by assumption. Now consider a point

N = (N1, N2) = (Nk +mkK + sK′ + d,Nk +mkK + tK′ + e)

with
0 ≤ s, t ≤ mk+1 and 0 ≤ d, e < K′.
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We can write λN as

NλN = N2
k+1

st

m2
k+1

λNk+1

− (Nk +mkK) (Nk +mkK +mk+1K
′)

st

m2
k+1

λ(Nk+mkK,Nk+1)

− (Nk +mkK) (Nk +mkK +mk+1K
′)

st

m2
k+1

λ(Nk+1,Nk+mkK)

+ (Nk +mkK) (Nk +mkK + tK′ + e)λ(Nk+mkK,N2)

+ (Nk +mkK) (Nk +mkK + sK′ + d)λ(N1,Nk+mkK)

+

(

st

m2
k+1

− 1

)

(Nk +mkK)2 λ(Nk+mkK,Nk+mkK)

+
∑

=: a1λ1 +

6
∑

i=2

aiλi +
∑

,

where
∑

is a sum over de + esK′ + dtK′ indicator functions. The first term is
needed to count the indicator functions induced by the complete yk+1-blocks.
In λNk+1

we have m2
k+1 such blocks and we need st blocks, so we multiply

with st
m2

k+1
. But with this measure we count too many indicator functions,

namely those in the areas

A = I((1, N2), (Nk +mkK,Nk+1)] and B = I((N1, 1), (Nk+1, Nk +mkK)]

(see Figure 3). This error is corrected by subtracting the terms with the measures
λ(Nk+mkK,Nk+1) and λ(Nk+1,Nk+mkK). But now we have eliminated all contribu-
tions from the areas

I((1, Nk +mkK), (Nk +mkK,N2)] and I((Nk +mkK, 1), (N1, Nk +mkK)]

too, so we add the terms with λ(Nk+mkK,N2) and λ(N1,Nk+mkK). Last we correct
the contribution of I[1, (Nk +mkK,Nk +mkK)]. The measure

∑

contains all
the indicator functions from the incomplete yk+1-blocks.

Figure 4 illustrates this procedure (except the error
∑

): We have the thick-
border area and want to construct the grey area, using only rectangles starting
in the origin. So we substract the vertical and horizontal dotted areas first, then
we have to add their intersection, the thick-bordered square again. Afterwards
we add the diagonally lined areas and correct the error we made by substracting
their intersections, again thick-bordered square.
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Figure 3.

Figure 4.

Now define µ := 1
|N|

(

a1µk+1 + µk

(

∑6
i=2 ai + de+ dtK′ + esK′

))

. Then µ

is on linear connection between µk and µk+1 and we have

32



BAIRE RESULTS OF MULTISEQUENCES

d(λN(xk+1), µ) ≤
a1d

N1N2
(λ1(xk+1), µk+1) +

1

N1N2

6
∑

i=2

|ai|d(λi(xk+1), µk)

+ 2
de + dtK′ + esK′

N1N2

< 6εk + 2
2K′2(s+ t+ 1)

N1N2

Now we reduce the fraction by max(s, t), hence

d(λN(xk+1), µ) < 6εk + 4K′2 3

K′(Nk +mkK)
< 7εk

if mk is chosen large enough.

In a similar way we can decompose λN with N = (N1, N2) = (Nk +mkK +
sK′ + d,Nk +mkK+ tK′ + e), s < mk+1, t > mk+1 and 0 ≤ d, e < K′ (the case
t < mk+1, s > mk+1 is symmetric) into

N1N2λN = Nk+1

(

Nk +mkK + (t + 1)K ′) st

mk+1(t + 1)
λ(Nk+1,Nk+mkK+(t+1)K′)

−
st

mk+1(t+ 1)
(Nk +mkK)

(

Nk +mkK + (t+ 1)K ′)
λ(Nk+mkK,Nk+mkK+(t+1)K′)

−
st

mk+1(t+ 1)
Nk+1 (Nk +mkK)λ(Nk+1,Nk+mkK)

+ (Nk +mkK)N2λ(Nk+mkK,N2)

+N1 (Nk +mkK)λ(N1,Nk+mkK)

+

(

st

mk+1(t + 1)
− 1

)

(Nk +mkK)2 λ(Nk+mkK,Nk+mkK)

+
∑

,

where
∑

is a sum over de + esK ′ + dtK ′ indicator functions and obtain that for
suitable chosen µ on the linear connection between µk and µk+1

d(λN(xk+1), µ) < 7εk.

Now we turn to the general case. Therefor consider a point N = (N1, . . . , Nd) with
Ni = Nk +mkK + siK

′ + di and si < mk+1 and 0 ≤ di < K ′ first. Then we can write

|N|λN = |Nk+1|

∏d

i=1 si

md
k+1

λNk+1 +
T
∑

i=1

aiλni
+
∑

,
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where ni is of the form ni = (n1, . . . nd) with all ni ∈ {Nk+1, Nk + mkK} or all
ni ∈ {Ni, Nk +mkK} but not all ni = Ni. The coefficients

ai = vi|ni|ci with vi ∈ {1,−1} and ci ∈

{

1,
∏d

i=1 si

md
k+1

}

.

The above formula is true, since after taking λNk+1 , we have to substract the error we
made. Therefore we substract the λni

with exactly one ni = Nk + mkK and for all
the other j 6= i with nj = Nk+1; there are p1 = d such measures. Each two of them

have an intersection, so we have the correct this, which leads to p2 =
(

d

2

)

summands
(each such index has exactly two entries Nk + mkK). Each of them have again an
intersection (now there are p3 =

(

p2
2

)

of them) and so on (pi+1 =
(

pi

2

)

). After d steps
this procedure must end. Afterwards we start adding the terms with those ni with
exactly one entry equals Nk + mkK and the other entries equal Ni. There are p1 of
them. Then we correct the intersections again and so on. Last we add the term due to
the non-complete yk blocks, this is denoted by

∑

and is a sum over

S := 1 +
d
∑

j=1

∑

A⊆{1,...,d}
|A|=j

K
′d−j

∏

p∈A

dp
∏

q∈{1,...,d}\A

sq

indicator functions.

Hence T ≤ 2
∑d

i=1 pi < F (d), where F (d) is a constant only depending on the
dimension d. Taking

µ =
1

N
|Nk+1|

∏d

i=1 si

md
k+1

µk+1 +
1

N

(

T
∑

i=1

ai + S

)

µk

we find that

d(λN(xk+1), µ) ≤ F (d)εk +
2S

|N|
.

By reducing the fraction on the right-hand side by the product of the (d− 1) greatest
si and estimating di ≤ K ′ we see

d(λN(xk+1), µ) ≤ F (d)εk + 2
2dK ′d

K ′d−1(Nk +mkK)
.

So we have to choose mk in such a way that the fraction becomes small. A similar
construction holds for the other points N ∈ I[Nk +mkK,Nk+1) . �

After this characterization of M (x) we will study the distribution of certain
subnets of a given net and generalize results due to Goldstern, Winkler and
Schmeling [6]. We study subnets as studied in Losert and Tichy [12]: Choose d
sequences a1, . . . , ad ∈ {0, 1}N and define a = (an)n∈Nd by

a(n1,...,nd) =

d
∏

i=1

ai,ni
.

Then the subnet ax of x is the net obtained by taking those elements xn for
which an = 1 and using the given relation ≤ .
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The next theorem is a consequence of Theorem 5.3 and generalizes [6, Theo-
rem 1.2]:Theorem 5.7. Let x ∈ XNd

and M ⊆ M(X). Then there exists a subsequence
ax with M (ax) = M iff M is closed and connected with ∅ 6= M ⊆ M(A(x)),
where A(x) is the set of cluster points of the net x.

P r o o f. This proof runs along the same lines as the one in [6]: First assume M =
M (ax). Using Lemma 5.2 we get that M is nonempty, closed and connected. It
remains to show that M ⊆ M(A(x)). For this purpose it suffices to show that
every x ∈ X\A(x) has a neighborhood U with limN→∞ µN,ax(U ) = 0. Therefore

take a neighborhood U with compact closure U and with U∩A(x) = ∅. If xn ∈ U
for an infinite increasing sequence of indices n1 < n2 < · · · , U would contain a
cluster point of x, which is a contradiction. Hence xn 6∈ U for all n ≥ N0. Thus

lim
N→∞

µN,ax(U ) ≤ lim
N→∞

|N0|

|N|
= 0.

The other direction is completely analogous to [6]. �

Similarly to [6, Theorem 1.3] we get that a typical subsequence of a given
sequence is maldistributed in A(x):Theorem 5.8. M (ax) = M(A(x)) holds for all a ∈ R from a residual set
R ⊆ [0, 1)d.

6. nα-nets over Nd

In this section we specialize on nα-nets over Nd, i.e., we consider X = [0, 1)
and µ the Lebesgue-measure. Besides the two notions of uniform distribution
mod 1 according to Section 4 we consider the (s1, . . . , sd)-u.d. (see Kirschenhofer
and Tichy [10]). After some elementary properties and examples of these three
concepts we turn to the generalization of results given in Goldstern, Schmeling
and Winkler [7] and Ajtai, Havas and Komlós [2].

In Section 4 we introduced two special notions of uniform distribution. In the
context of this section we call a net x uniformly distributed mod 1 iff for any a
and b with 0 ≤ a < b ≤ 1,

lim
N1,...,Nd→∞

A([a, b);N)

|N|
= b− a,

where A([a, b);N) is the number of xk, 1 ≤ k ≤ N with a ≤ {xk} < b.
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This definition is a direct extension of uniform distribution in the case d = 2
given by Kuipers and Niederreiter [11] and a special case of the concept studied
in Losert and Tichy [12]. Following [11] one gets immediately the theorems given
below.Theorem 6.1. The sequence (xk)k∈Nd is u.d. mod1 if and only if for every

Riemann-integrable function f on [0, 1]

lim
N1,...,Nd→∞

1

|N|

N
∑

k=1

f ({xk}) =

1
∫

0

f(x)dx,

where
∑N

k=1 =
∑

k:1≤k≤N.Theorem 6.2. The sequence (xk)k∈Nd is u.d. mod 1 if and only if

lim
N1,...,Nd→∞

1

|N|

N
∑

k=1

e2πihxk = 0

for all integers h 6= 0.

Moreover, a net x = (xk)k∈Nd is said to be strongly uniformly distributed
(s.u.d.) mod 1 iff for any a and b with 0 ≤ a < b ≤ 1,

lim
|N|→∞

A([a, b);N)

|N|
= b− a.

Here lim|N|→∞ f(N) = f means that ∀ε > 0 ∃N ∈ N : ∀N with |N| ≥ N :
|f(N)− f | < ε.

The following theorems hold:Theorem 6.3. The sequence (xk)k∈Nd is s.u.d. mod 1 iff for every Riemann-
-integrable function f on [0, 1]

lim
|N|→∞

1

|N|

N
∑

k=1

f ({xk}) =

1
∫

0

f(x)dx.Theorem 6.4. The sequence (xk)k∈Nd is s.u.d. mod 1 if and only if

lim
|N|→∞

1

|N|

N
∑

k=1

e2πihxk = 0

for all integers h 6= 0.

As in the one-dimensional case, a sequence with multidimensional sequences
is strongly uniformly distributed modulo 1 if and only if the multidimensional
discrepancy introduced by Aistleitner [1] tends to 0.
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Clearly, strong uniform distribution implies uniform distribution. The con-
verse is not true: Consider the double sequence x defined by xj,k = jθ with
θ irrational. Then this sequence is u.d. mod1 (this follows easily from Theo-
rem 6.2), but not s.u.d., since this sequence is constant for fixed k. Thus x is
not s.u.d. mod 1 by the following theorem:Theorem 6.5. Let xk be s.u.d. mod 1. Then all “one-dimensional sequences”,
i.e., sequences (x(k1,...,kj ,...,kd))kj∈N with fixed ks, s 6= j, are u.d. mod 1.

P r o o f. By the criterion of Weyl, we have to show that

lim
kj→∞

1

kj

kj
∑

n=1

e
2πihx(k1,...,kj−1,n,kj+1,...,kd) = 0 (6)

for all ks ∈ N, s 6= j and h ∈ Z \ {0}. We use induction. From Theorem 6.4
we get readily that (6) holds for ks = 1, s 6= j for all integers h 6= 0 and all j.
Assume that (6) holds for all

k′
j := (k′1, . . . , k

′
j−1, k

′
j+1, . . . , k

′
d) < (k1, . . . , kj−1, kj+1, . . . , kd) := kj .

Again by Theorem 6.4 we have

ε >

∣

∣

∣

∣

∣

∣

1

|k|

∑

k′
j≤kj

kj
∑

n=1

e
2πihx(k′

1
,...,k′

j−1
,n,k′

j+1
,...,k′

d
)

∣

∣

∣

∣

∣

∣

(7)

for kj big enough. Hence

ε >
1

|k|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

kj
∑

n=1

e
2πihx

(k1,...,kj−1,n,kj+1,...,kd)

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

kj
∑

n=1

∑

1≤k′
j<kj

e
2πihx

(k′

1
,...,k′

j−1
,n,k′

j+1
,...,k′

d)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The second term on the right hand side tends to 0 by (7). Thus

1

|k|

∣

∣

∣

∣

∣

∣

kj
∑

n=1

e
2πihx(k1,...,kj−1,n,kj+1,...,kd)

∣

∣

∣

∣

∣

∣

→ 0

for kj → ∞. Therefore (6) holds. �

We give an example of a sequence which is s.u.d. mod 1. This sequence can be
seen as a generalization of the one-dimensional sequence (nθ)n∈N. This sequence

is u.d. mod 1 for all irrational θ. Choose now nk =
∑d

i=1 ki − (d − 1). In two
dimensions this sequence is
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...
...

...
...

... . .
.

4 5 6 7 8 . . .
3 4 5 6 7 . . .
2 3 4 5 6 . . .
1 2 3 4 5 . . .

We will prove now that this sequence is s.u.d. mod 1 for all irrational α. The
proof is similar to the proof of the one-dimensional case (see [11]).We have to
show that

lim
|n|→∞

1

|n|

n
∑

k=1

e2πihα
∑d

s=1 ks = 0

for all integers h 6= 0 and irrational α. Here we assume n1 ≥ n2 ≥ · · · ≥ nd.
Therefore n1 → ∞. With S(n) =

∑s
i=1 ni we have

1

|n|

∣

∣

∣

∣

∣

n
∑

k=1

e2πihα
∑

d
s=1 ks

∣

∣

∣

∣

∣

=
1

|n|

∣

∣

∣

∣

∣

∣

(n2,...nd)
∑

k=1

S(n)−S(k)
∑

j=S(k)

e2πihαj

∣

∣

∣

∣

∣

∣

=
1

|n|

∣

∣

∣

∣

∣

∣

(n2,...nd)
∑

k=1

e2πihα(S(n)−S(k)+1) − e2πihαS(k)

1− e2πihα

∣

∣

∣

∣

∣

∣

≤
1

|n|

2
∏d

s=2 ns

|1− e2πihα|

=
1

n1

1

|1− e2πihα|
→ 0.

We give another example: In the one-dimensional case the sequence ({k!e})k∈N

has 0 as the only limit point (see [11]). Consider now the sequence nk = (S(k)−
d+ 1)! =: k!. Then

k!e = A+
eα

S(k)− d+ 1
, 0 < α < 1, A ∈ N.

Thus {k!e} = eα/(S(k)− d + 1) → 0 in the first sense. Therefore it is not u.d.
mod 1 (and hence not s.u.d. mod 1).

The third concept is the (s1, . . . , sd)-uniform distribution introduced by
Kirschenhofer and Tichy [10]. According to the definitions above we gave an
equivalent definition to that one stated in [10].
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BAIRE RESULTS OF MULTISEQUENCESDefinition 6.6. A sequence (xk)k∈Nd is (s1, . . . , sd)-u.d. iff for all ai1...id and
bi1...id with 0 ≤ ai1...id < bi1...id ≤ 1 and 1 ≤ ij ≤ sj for 1 ≤ j ≤ d

lim
N1,...,Nd→∞

d
∏

i=1

(

Ni

si

)−1

A ([a11...1, b11...1), . . . , [as1...sd , bs1...sd);N1, . . . , Nd; s1, . . . sd)

=

d
∏

i=1

si
∏

ji=1

bj1...jd− aj1...jd ,

where A ([a11...1, b11...1), . . . , [as1...sd , bs1...sd);N1, . . . , Nd; s1, . . . sd) is the num-
ber of (s1 · · · sd)-tuples (xi11,...id1

, . . . xi1s1
,...idsd

) with 1 ≤ ij1 < · · · < ijsd ≤ Nj

for all 1 ≤ j ≤ d in [a11...1, b11...1)× · · · × [as1...sd , bs1...sd).

As in [11] we have that the set S of (s1, . . . , sd)-u.d. sequences is everywhere
dense in Xω×···×ω. By [10], (s1, . . . , sd)-uniform distribution implies uniform
distribution. Thus from Section 4 we conclude: If X contains more than one
element, then the set S of (s1, . . . , sd)−µ-u.d. sequences is a set of first category
in Xω×···×ω.

After these examples and elementary properties of uniform distribution of
sequences with multidimensional indices, we turn to the generalization of [7,
Theorem 2.4] for these cases. For the sake of completeness we mention that

in [16] Šalát proved that for a sequence (nk)k∈N with nk =
∏k

j=1 qj , where

(qj)j∈N is a sequence of integers greater than 1, then the set U := {α ∈ R :
(nkα) is u.d. mod 1} is meager. By modifying the proof slightly, we getTheorem 6.7. Let (qk)k∈Nd be a sequence of integers greater than 1. Put

an =

n
∏

k=1

qk, n ∈ Nd.

Then the set

U := {α ∈ R : (nkα) is u.d. mod 1}

is meager. Consequently the sets

U ′ := {α ∈ R : (nkα) is s.u.d. mod 1}
and

U ′′ := {α ∈ R : (nkα) is(s1, . . . , sd)-u.d.}

are meager.

Now we turn to the stronger result. We will generalize [7, Theorem 2.4]. For
this purpose we will follow [7] again. Recall the definitions of Section 4. Moreover,
let λ denote the Lebesgue measure on R/Z.

We start with an elementary property.
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ROBERT TICHY — MARTIN ZEINERTheorem 6.8. Given a sequence x = (xn)n∈Nd we have ∅ 6= M (x) ⊆ Ms(x).

Now we can establish the main result of this section.Theorem 6.9. Let n = (nk)k∈Nd be a sequence of nonnegative integers and
assume that there exists a constant Q such that

#
{

k : 2r ≤ nk < 2r+1
}

≤ Q, ∀r = 0, 1, 2, . . .

Then the set

U := {α ∈ R/Z : nα is uniformly distributed w.r.t. λ}

is meager. Moreover, there is a number P > 0 such that for all intervals I the set
{

α : µnα(I) >
P

− logλ(I)

}

is residual (here µnα is defined analogously to Definition 2.4).

Consequently, the sets

U ′ := {α ∈ R/Z : nα is s.u.d. mod 1}

and

U ′′ := {α ∈ R/Z : (nkα) is (s1, . . . , sd)-u.d.}

are meager.

Before proving the theorem we note the following lemma:Lemma 6.10. Assume that (nk)k∈Nd is a sequence of positive integers with the
property that whenever you choose T + 1 elements nk1

≤ · · · ≤ nkT+1
you know

that nkT+1
/nk1

> U . Then in a cuboid with X ≥ T +1 elements there are D :=

⌊X−1
T ⌋+1 elements nk′

1
, . . . , nk′

D
such that nk′

i+1
/nk′

i
> U for i = 1, . . . , D−1.

P r o o f. Let nk1
≤ nk2

≤ · · · ≤ nkX
be a sorting of the X elements in the

cuboid and choose the elements with indices k1,kT+1, . . . ,k⌊(X−1)/T⌋T+1. �

P r o o f o f t h e t h e o r e m. Choose P > 0 so small, that
(

1

2d+1PQ
− 1

)

− 1 > 1

and assume λ(I) =: ε < 1
2 . Then there exists an integer c in the interval
(

1− log ε,−
1

2d+1PQ
log ε

)

.
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Thus 1
2d+1Qc

> 2P
− log ε and 2c > 2/ε. Again we assume that the theorem is

false. Since the set {α : µnα(I) > P
− log ε} is a Borel set and not residual, its

complement is residual in I, for some open interval I:

I 


{

α : µnα(I) ≤
P

− log ε

}

.

As in Section 2 the set {α : µnα(I) ≤
P

− log ε} is contained in the set
{

α : ∃m ∀N ≥ m : µnα,N(I) ≤
2P

− log ε

}

.

Denote the set {j ≤ N : njα ∈ I} by ZN(α). So µnα,N(I) = #ZN(α)
|N| . Therefore

I 


⋃

m

⋂

N≥m

{

α :
#ZN(α)

|N|
≤

2P

− log ε

}

.

So, by Fact 2.7, we can find an open interval J ⊆ I and a k∗ such that

J 


⋂

N≥k∗

{

α :
#ZN(α)

|N|
≤

2P

− log ε

}

,

or equivalently, for all N ≥ k∗:

J 


{

α :
#ZN(α)

|N|
≤

2P

− log ε

}

, (8)

Let δ := λ(J). Without loss of generality we assume k∗ = (k, k, . . . , k) and
nk > ε/δ for all k ≥ (kc, . . . , kc). Now consider the cuboid starting at (kc, . . . , kc)
and ending at (kc(2Q + 1), . . . , kc(2Q + 1)) =: K. Then, by Lemma 6.10 with
U = 2/ε, T = 2Qc and X = (2Qkc+ 1)d, there are at least

⌊

(2Qkc+ 1)d − 1

2Qc

⌋

+ 1 ≥
2dQdkdcd

2Qc
=: D

elements nk1
, . . . , nkD

with nki+1
/nki

> 2/ε for i = 1, . . . , D − 1. Thus the
corresponding functions are ε-mixing in δ by Lemma [7, Lemma 2.13]. So there
is an open interval K ⊆ J such that for all α ∈ K

#ZK(α) = #{j ≤ K : niα ∈ I} ≥ D.

Thus for all α ∈ K

#ZK(α)

|K|
=

#ZK(α)

kdcd(2Q+ 1)d
≥

D

kdcd4dQd
=

1

2d+1Qc
. (9)
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Since 1
2d+1Qc

> 2P
− log ε and K ⊆ J , (8) with N := K implies

K 


{

α :
#ZK(α)

|K|
≤

1

2d+1Qc

}

. (10)

Now consider the set {α : #ZK(α)
|K| < 1

2d+1Qc
} ∩K. By (9), this set is empty, but

by (10) it is residual in K, which is a contradiction. �

To obtain the extension of [7, Theorem 2.6], the theorem about the fast grow-
ing sequences, we call - in analogy to the classical case - a sequence with multi-
dimensional indices maldistributed in [0, 1], if M (x) = P.Theorem 6.11. Let n = (nk)k∈Nd be a sequence of nonnegative integers and
assume that there are R,Q ∈ N, such that

Qr := {k : 2r ≤ nk < 2r+1} ≤ Q ∀ r = 0, 1, 2, . . . ,

and that Qr ≤ 1 for all r ≥ R. Moreover, let (rj)j∈N be the sequence of those
indices rj with Qrj > 0. Define a sequence (r̃j)j∈N by r̃j = rj − rj−1 (j ≥ 0) and
r̃0 = 0. Suppose r̃j → ∞. Then the set

{α ∈ R/Z : nα is maldistributed}

is residual. Consequently, the set

{α ∈ R/Z : nα is strongly maldistributed}

is residual.

P r o o f. We follow [7] and adapt the notation. With similar arguments it suffices
to show that for each list ~e and each η the set

{α : for all tails there is an index N such that µnα,N ∈ M~e,η} (11)

is residual. Now assume that this fails. Therefore we can find a nonempty
interval I, an index N0, a sequence ~e = (e0, . . . , eℓ−1) of natural numbers and
an η ∈ R with

I 
 {α : ∀N ≥ N0 : µnα,N 6∈ M~e,η}.

W.l.o.g. we assume N0 = (n0, . . . , n0) > ( dη , . . . ,
d
η ), that e :=

∑

ei divides |N0|,

nN0
> 1

λ(I) and that n
k′

nk

> 2ℓ if nk′ > nk.

Choose a sequence of intervals (Ij : 1 ≤ j ≤ N2
0) where N2

0 = (n2
0, . . . , n

2
0)

such that for all 0 ≤ i ≤ ℓ− 1 we have
∣

∣

∣

∣

{

j : 1 ≤ j ≤ N2
0, Ij =

[

i

ℓ
,
i+ 1

ℓ

)}
∣

∣

∣

∣

=
ei
e
|N0|

2.

42



BAIRE RESULTS OF MULTISEQUENCES

So each interval Ij has length 1
ℓ . Let fj(x) = njx for N0 ≤ j ≤ N2

0. Let (fj) be
a sorting of these functions such that nj+1/nj > 2ℓ. Then, by [7, Lemma 2.13],
the fj are 1

ℓ -mixing in λ(I), i.e., we can find an interval

J ⊆ I ∩
⋂

j

f−1
j (Ij).

We will show that µnα,N2
0
∈ M~e,η for all α ∈ J , which is a contradiction to (11).

Indeed, if α ∈ J , then for all j we have fj(α) ∈ Ij . Consequently (writing O(1)
for a quantity between −1 and 1) we obtain

µnα,N2
0

([

i

ℓ
,
i+ 1

ℓ

))

=
1

|N0|2

(ei
e
|N2

0|+O(1) · d · n
2(d−1)+1
0

)

=
ei
e
+

dO(1)

n0
,

so µnα,N2
0
∈ M~e,η, since

d
n0

< η. �

Replacing in [2] N by N and the one-dimensional limits by the multidimen-
sional limits, we get immediatelyTheorem 6.12. Given any sequence

(ε
i1,...,ij+1,...,id
i1,...,ij ,...,id

)i1,...,id∈N,j=1,...,d with ε
i1,...,ij+1,...,id
i1,...,ij ,...,id

→ 0

in the classical (strong) sense, there is a sequence nk of positive integers with

nk1,...,kj+1,...,kd

nk1,...,kj ,...,kd

> 1 + ε
k1,...,kj+1,...,kd

k1,...,kj ,...,kd

such that for any irrational α the sequence nα is (strongly) uniformly dis-
tributed mod 1.
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