
ON A FAMILY OF q-BINOMIAL DISTRIBUTIONS

MARTIN ZEINER

Abstract. We introduce a family of q-analogues of the binomial distribution,

which generalises the Stieltjes-Wigert-, Rogers-Szegö-, and Kemp-distribution.
Basic properties of this familiy are provided and several convergence results

involving the classical binomial, Poisson, discrete normal distribution, and a

family of q-analogues of the Poisson distribution are established. These results
generalise convergence properties of Kemp’s-distribution, and some of them are

q-analogues of classical convergence properties.

1. Introduction

In [7] Kemp studied many q-analogues of the classical binomial distribution, in
particular she investigated Kemp’s distribuion, the Rogers-Szegö and the Stieljes-
Wigert distribution, which all are of the form

P(X = x) = Cα ·
[
n

x

]
q

qαx
2

θx x = 0 . . . n, 0 < θ,

where [
n

k

]
q

=
(q, q)n

(q, q)k(q, q)n−k
and (z, q)n =

n−1∏
i=0

(1− zqi)

are the q-binomial coefficient and the q-shifted factorial, and where Cα is a normal-
ising constant. In this paper we are interested in the convergence properties of this
family of q-binomial distributions. We will see that the behaviour in the case α = 0
is very different from the case α > 0. For Kemp’s distribution (i.e. α = 1

2 ) the
limit distributions are the Heine distribution and the discrete normal distribution.
This was done by Gerhold and Zeiner [5]. We will show that these results can be
generalized to the case α > 0.

This paper is organised as follows: In Section 2 we give the definitions of the
q-binomial distributions mentioned above and sum up their basic convergence prop-
erties. Afterwards we introduce the family B of q-binomial distributions we are
interested in and a family of q-Poisson distributions. Afterwards we study basic
properties of the family B in Section 3. In Sections 4-5 we investigate sequences of
random variables Xn with Xn ∼ B(α, θn, n, q). In particular we show that there are
analogues to the convergence of the classical binomial distribution to the Poisson
distribution and the normal distribution, and that the limits q → 1 and n→∞ can
be exchanged. Section 4 deals with convergent parameter sequences, in particular
with the case of constant parameter and constant mean, and contains a detailed
analysis of the behaviour of the RS-distribution in the limit θn → 1. In Section 5
we examine the case of an increasing parameter sequence θn. We show that, if
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α > 0 and θn grows not too fast, the normalised Xn converge to a discrete normal
distribution.

2. Preliminaries

Throughout this paper we use the notation of [4]. Kemp’s distributionKB(n, θ, q)
was introduced in [7] and is defined as

P(XKB = x) =

[
n

x

]
q

θxqx(x−1)/2

(−θ, q)n
, 0 ≤ x ≤ n, 0 < θ.

For properties and applications of this distribution see [5, 6, 9, 11]. In the limit
q → 1 Kemp’s distribution converges to a binomial distribution:

KB(n, θ, q)→ B

(
n,

θ

1 + θ

)
.

If n goes to ∞, Kemp’s distribution tends to the Heine distribution H(θ), which
probabilities are given by

P(XH = x) =
qx(x−1)/2θx

(q, q)x
eq(−θ), x ≥ 0,

where

eq(z) =
1

(z, q)∞
, z ∈ C \ {q−i : i = 0, 1, 2, . . . },

is a q-analogue of the exponential function, since eq((1 − q)z) → ez. The Heine
distribution converges to the Poisson-distribution in the sense that H((1− q)θ)→
P (θ) for q → 1 and can therefore be seen as a q-analogue of the Poisson distribution.

Kemp [9] also introduced two other q-analogues of the binomial distribution,
namely the Rogers-Szegö- (RS) and the Stieltjes-Wigert-distribution (SW), which
probabilities are very similar to those of Kemp’s-distribution:

P(XRS = x) = CRS

[
n

x

]
q

θx, 0 ≤ x ≤ n, 0 < θ,

P(XSW = x) = CSW

[
n

x

]
q

qx(x−1)θx, 0 ≤ x ≤ n, 0 < θ,

where CRS and CSW are normalising constants. For q → 1 these distributions
tend to a binomial distribuion with parameter θ

1+θ . In the limit n → ∞ the RS-
distribution converges for θ < 1 to an Euler distribution with parameter θ, which
is given by

P(XE = x) =
θx

(q, q)x
Eq(−θ), x ≥ 0,

where
Eq(z) = (−z, q)∞, z ∈ C,

is an other q-analogue of the exponential function, since Eq((1− q)z)→ ez. More-
over, we have eq(z)Eq(−z) = 1. The Euler distribution is a q-analogue of the
Poisson distribution since E((1− q)θ)→ P (θ).

Because of the similarities of these distributions we introduce a family B of q-
analogues of binomial distributions which covers the distributions mentioned above
as special cases: We say a random variable X is B(α, θ, n, q)-distributed iff

P(X = x) =

[
n
x

]
q
qαx

2

θx∑n
y=0

[
n
y

]
q
qαy2θy

, x = 0, . . . , n, 0 < θ, 0 ≤ α.

For α = 0 this is the RS-distribution, α = 1
2 gives a KB(n, θq1/2, q)-distribution

and α = 1 a SW (n, θq, q)-distribution.
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Moreover, we define a family P of q-analogues of the Poisson distribution by

P(X = x) =
qαx

2

θx

(q, q)x

1

E2α
q (θ)

, 0 ≤ x,

where 0 < θ < 1 if α = 0, and 0 < θ if α > 0, and Eαq is a q-analogue of
the exponential function (which was introduced by [3] and studied by [1] and also
appears in [2]) defined by

(1) Eαq (z) =
∑
x≥0

q
α
2 x

2

(q, q)x
zx,

since Eαq ((1 − q)z) → ez. We then write X ∼ P(α, θ, q). For α = 0 we obtain the

Euler distribuion, and α = 1
2 gives a H(θq1/2)-distribution. The sum in (1) has a

different behaviour for α = 0 and α > 0: In the case α = 0 it is convergent only
for 0 ≤ |z| < 1, but for α > 0 it converges for all z ∈ C. This is why we restricted
the parameter θ in the definition of our q-Poisson familiy. Consequently there is
a big difference in the behaviour of the RS-distribution and the other members of
this q-binomial-family. So we will often distinguish between α = 0 and α > 0 in
the convergence results.

3. Properties of the Family B

As noted above we study basic properties of our family B. We show that it is in
fact a q-analogue of the binomial distribution and logconcave. These properties hold
for the family P too. Then we give a characterisation of a B(α, θ, n, q)-distribution
and a random walk model for B and then we turn to the study of the behaviour of
the mean of a B(α, θ, n, q)-distribution in dependence on n, θ and α. In the present
section we always allow α ≥ 0.

The following two theorems show that our families B and P tend to the classical
binomial and Poisson distribution. This generalises the results for the Kemp-, SW-,
RS-, Heine, and Euler distributions.

Theorem 3.1. For q → 1 we have

B(α, θ, n, q)→ B

(
n,

θ

1 + θ

)
.

Proof. By definition,

P(X = x) =

[
n
x

]
q
qαx

2

θx∑n
y=0

[
n
y

]
q
qαy2θy

→
(
n
x

)
θx∑n

y=0

(
n
y

)
θy

=

(
n
x

)
θx

(1 + θ)n

=

(
n

x

)(
θ

1 + θ

)x(
1

1 + θ

)n−x
. �

Theorem 3.2. In the limit q → 1 we have P(α, (1− q)θ, q)→ P (θ).

Proof. By definition,

P(X = x) =
qαx

2

(1− q)xθx

(q, q)x

1

E2α
q ((1− q)θ)

→ θx

x!
exp(−θ). �

Kemp showed in [9] that the RS-, SW-, and Kemp-distribution are logconcave,
i.e.,

∆(x) :=
P(X = x+ 1)

P(X = x)
− P(X = x+ 2)

P(X = x+ 1)
> 0
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for x = 0, . . . , n− 2. We can generalise this as follows:

Theorem 3.3. B(α, θ, n, q) is logconcave.

Proof. We have

∆(x) =
qα(x+1)2θx+1(q, q)x(q, q)n−x
(q, q)x+1(q, q)n−x−1qαx

2θx
− qα(x+2)2θx+2(q, q)x+1(q, q)n−x−1

(q, q)x+2(q, q)n−x−2qα(x+1)2θx+1

= θ

(
q2αx+α (1− qn−x)

1− qx+1
−
(
1− qn−x−1

)
q2αx+3α

1− qx+2

)

= θq2αx+α

(
1− qx+2 − qn−x + qn+2 −

(
1− qn−x−1 − qx+1 + qn

)
q2α

(1− qx+1) (1− qx+2)

)
.

For α = 0 we have ∆(x) > 0 by [9], and the numerator is increasing in α since

1− qn−x−1 − qx+1 + qn = qn−x−1
(
qx+1 − 1

)
−
(
qx+1 − 1

)
> 0

for x < n− 1. �

In the same way we obtain the same property of the family P.

Theorem 3.4. P(α, θ, q) is logconcave.

For the Heine- and the Euler-distribution this property was proven by Kemp [8].
In [10] Kemp characterised some q-analogues of the binomial distribution as the

conditional distribution of U |(U+V = m) where U and V are independent random
variables. We can characterise our family B in an analogous way and generalise
some of Kemp’s results.

Theorem 3.5. A B(α, θ/λ,m, q)-distribution is the distribution of U |(U+V = m),
where U and V are independent, iff U has a P(α, β, θ)-distribution and V has an
Euler-distribution with parameter λ.

Proof. The proof runs along the same lines as the proofs in [10]: If U and V have
the postulated distributions, then

P(U = u|U + V = n) = C
θuqαu

2

(q, q)u

λm−u

(q, q)m−u

= C
λm

(q, q)u(q, q)m−u

(
θ

λ

)u
qαu

2

.

To prove the other implication, we need the following theorem ([12]):
Let X and Y be independent discrete random variables and

c(x, x+ y) = P(X = x|X + Y = x+ y).

If
c(x+ y, x+ y)c(0, y)

c(x, x+ y)c(y, y)
=
h(x+ y)

h(x)h(y)
,

where h is a nonnegative function, then

f(x) = f(0)h(x)eax, g(y) = g(0)k(y)eay,

where a is an arbitrary parameter and

0 < f(x) = P(X = x), 0 < g(y) = P(Y = y), k(y) =
h(y)c(0, y)

c(y, y)
.

Here we have

c(u+ v, u+ v)c(0, v)

c(u, u+ v)c(u, v)
=

(
θ
λ

)u+v
qα(u+v)

2

(q,q)u+v
(q,q)v(q,q)u

(
θ
λ

)u
qαu2

(
θ
λ

)v
qαv2

=
h(u+ v)

h(u)h(v)
,
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where

h(u) =
qαu

2

(q, q)u
.

Thus k(v) = (θ/λ)v/(q, q)v and

P(U = u) = C1
qαu

2

eau

(q, q)u
,

P(V = v) = C2

(
θea

λ

)v
1

(q, q)v
,

yielding a P(α, ea, q)-distribution and an Euler distribution. �

We now give a random-walk-model for the family B (the models for the Kemp-,
RS-, and SW-distribution given in [9] are special cases of this model). Let ax and
bx denote the probabilities to move up and down and choose

ax = cγq2αx
(
1− qn−x

)
and bx = c(1− qx)

for x = 0, . . . , n. Then B(α, γq−α, n, q) is a stationary distribution. To see this,
note that for a stationary distribution we must have

P(X = x) = P(X = x)(1− ax − bx) + P(X = x+ 1)bx+1 + P(X = x− 1)ax−1.

So we have to show that

∆(x) := −P(X = x)(ax + bx) + P(X = x+ 1)bx+1 + P(X = x− 1)ax−1 = 0

if X ∼ B(α, γq−α, n, q). For 1 ≤ x ≤ n− 1 we have

∆(x) = C

(
−
[
n

x

]
q

qαx
2

γxq−αx
(
c(1− qx) + cγq2αx(1− qn−x)

)
+

[
n

x− 1

]
q

qα(x−1)
2

γx−1q−α(x−1)cγq2α(x−1)(1− qn−x+1)

+

[
n

x+ 1

]
q

qα(x+1)2γx+1q−α(x+1)c(1− qx+1)

)
.

Using the relation [
n

x− 1

]
q

(
1− qn−x+1

)
=

[
n

x

]
q

(1− qx)

we obtain that the terms with γx and γx+1 vanish. Similarly ∆(0) and ∆(n) can
be treated.

Now we study the means; for this purpose let us denote by µn(α, θ, q) the mean
of a random variable X ∼ B(α, θ, n, q). The following lemmas are devoted to the
behaviour of µn(α, θ, q) in dependence on n, α and θ. The first result shows that
the means are increasing in n.

Lemma 3.6. For all α ≥ 0 µn(α, θ, q) is increasing in n.

Proof. For 0 ≤ x < y ≤ n we have

q−x < q−y.

By elementary calculations, this can be written as

1

1− qn+1−x <
1

1− qn+1−y .
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This is equivalent to[
n+ 1

x

]
q

[
n

y

]
q

(y − x) <

[
n+ 1

y

]
q

[
n

x

]
q

(y − x)

and [
n+ 1

x

]
q

[
n

y

]
q

y +

[
n+ 1

y

]
q

[
n

x

]
q

x <

[
n+ 1

x

]
q

[
n

y

]
q

x+

[
n+ 1

y

]
q

[
n

x

]
q

y.

Multiplication with θx+yqα(x
2+y2) yields[

n+ 1

x

]
q

[
n

y

]
q

yθx+yqα(x
2+y2) +

[
n+ 1

y

]
q

[
n

x

]
q

xθx+yqα(x
2+y2)

<

[
n+ 1

x

]
q

[
n

y

]
q

xθx+yqα(x
2+y2) +

[
n+ 1

y

]
q

[
n

x

]
q

yθx+yqα(x
2+y2).

Now we sum over all pairs (x, y) with x < y:

n∑
x,y=0
x 6=y

[
n+ 1

x

]
q

θxqαx
2

[
n

y

]
q

yθyqαy
2

<

n∑
x,y=0
x 6=y

[
n+ 1

x

]
q

θxqαx
2

x

[
n

y

]
q

θyqαy
2

.

By adding the terms for x = y and an extra-sum we get

θn+1qα(n+1)2
n∑
y=0

y

[
n

y

]
q

θyqαy
2

+

n∑
x=0

n∑
y=0

[
n+ 1

x

]
q

θxqαx
2

[
n

y

]
q

yθyqαy
2

< (n+ 1)θn+1qα(n+1)2
n∑
y=0

[
n

y

]
q

θyqαy
2

+

n∑
x=0

n∑
y=0

[
n+ 1

x

]
q

θxqαx
2

x

[
n

y

]
q

θyqαy
2

.

This can be written as

n+1∑
x=0

[
n+ 1

x

]
q

θxqαx
2

n∑
y=0

y

[
n

y

]
q

θyqαy
2

<

n+1∑
x=0

x

[
n+ 1

x

]
q

θxqαx
2

n∑
y=0

[
n

y

]
q

θyqαy
2

,

and so we have ∑n
y=0 y

[
n
y

]
q
θyqαy

2∑n
y=0

[
n
y

]
q
θyqαy2

<

∑n+1
x=0 x

[
n+1
x

]
q
θxqαx

2∑n+1
x=0

[
n+1
x

]
q
θxqαx2

. �

The means are increasing in the parameter θ too:

Lemma 3.7. The means µn(α, θ, q) are increasing in θ for all α ≥ 0.

Proof. We show that ∂
∂θµn(α, θ, q) > 0. Differentiating gives

∂

∂θ

(∑n
x=0 x

[
n
x

]
q
θxqαx

2∑n
x=0

[
n
x

]
q
θxqαx2

)
=

=

∑n
x=0

[
n
x

]
q
θxqαx

2 ∑n
y=0 y

2
[
n
y

]
q
θy−1qαy

2 −
∑n
x=0 x

[
n
x

]
q
θxqαx

2 ∑n
y=0 y

[
n
y

]
q
θy−1qαy

2(∑n
x=0

[
n
x

]
q
θxqαx2

)2 .

Thus it suffices to show that(
n∑
x=1

x

[
n

x

]
q

qαx
2

θx−1

)2

<

n∑
x=0

[
n

x

]
q

θx−1qαx
2

n∑
y=0

y2
[
n

y

]
q

θy−1qαy
2

.
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The left-hand side can be written as
n∑
x=1

x2
[
n

x

]2
q

q2αx
2

θ2(x−1) +

n∑
x,y=0
x 6=y

xy

[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+y−2 =: A1 +B1

and the right-hand side as

n∑
x=1

x2
[
n

x

]2
q

q2αx
2

θ2(x−1) +

n∑
x,y=0
x6=y

x2
[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+y−2 =: A2 +B2.

Since A1 = A2, it suffices to show that B1 < B2. For this purpose we consider the
pairs (x, y) and (y, x) with x < y: In B1 we have the term

(2) 2xy

[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+y−2

and in B2

(3)

[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+y−2(x2 + y2).

Since 2xy < x2 + y2 for x 6= y, we have (2) < (3) and so B1 < B2. �

For α the situation is a little bit different:

Lemma 3.8. µn(α, θ, q) is decreasing in α if α ∈ (0, 1] and increasing in α if
α ≥ 1.

Proof. Assume α > 1 (in the same way we can treat the case 0 < α < 1). We show
that ∂

∂αµn(α, θ, q) > 0. This is equivalent to

n∑
x=0

[
n

x

]
q

θxqαx
2

n∑
y=0

y3
[
n

y

]
q

θyqαy
2

logα >

n∑
x=0

x

[
n

x

]
q

θxqαx
2

n∑
y=0

y2
[
n

y

]
q

θyqαy
2

logα.

So it is sufficient to show that
n∑

x,y=0
x 6=y

[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+yy3 logα >

n∑
x,y=0
x6=y

[
n

x

]
q

[
n

y

]
q

qα(x
2+y2)θx+yxy2 logα.

Considering the pairs (x, y) and (y, x), it is sufficient that x3+y3 > xy2+yx2. This
is true because this can be written as (y2 − x2)(y − x) = (y + x)(y − x)2 > 0. �

Finally, a straightforward calculation shows that our family B is closed under
reversing, i.e., n−X has the same form as X.

Theorem 3.9. If X ∼ B(α, θ, n, q) then n−X ∼ B(α, θ−1q−2αn, n, q).

4. Convergent Parameter

In this section we consider sequences Xn ∼ B(α, θn, n, q) where the parameter
sequence θn tends to a finite limit as n → ∞. This will lead to the family P as
limit law. In particular we prove that the convergence of the classical binomial
distribution with constant mean has a q-analogue. But in the case α = 0 and
θn → 1 these results fail. In this case we obtain - depending on the limit of θn - a
uniform distribution or exponential-like distributions. In the following we need the
two auxiliary results below.
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Lemma 4.1. For α > 0 we have for all z ∈ C
n∑
x=0

[
n

x

]
q

qαx
2

zx → E2α
q (z), as n→∞.

For α = 0 this holds for |z| < 1.

Proof. We estimate the difference∣∣∣∣∣
∞∑
x=0

qαx
2

(q, q)x
zx −

n∑
x=0

[
n

x

]
q

qαx
2

zx

∣∣∣∣∣ ≤
∞∑

x=n+1

qαx
2

(q, q)x
|z|x +

n∑
x=1

qαx
2

|z|x
∣∣∣∣∣
[
n

x

]
q

− 1

(q, q)x

∣∣∣∣∣ .
Estimating in the first sum the q-shifted factorial by the q-exponential function
yields

≤ eq(q)
∞∑

x=n+1

(qαn|z|)x +

n∑
x=1

qαx
2

(q, q)x
|z|x

(
1−

x∏
i=1

(1− qn−i+1)

)
;

the same estimate we use for the second sum, split it and compute the first sum to
obtain

≤ eq(q)

 (qαn|z|)n+1

1− qαn|z|
+

bn2 c∑
x=1

qαx
2

|z|x
(

1−
x∏
i=1

(1− qn−i+1)

)

+

n∑
x=bn2 c

qαx
2

|z|x
(

1−
x∏
i=1

(1− qn−i+1)

) .

The first term is obviously o(1). Estimating the products gives

≤ eq(q)

o(1) +

1−
bn2 c∏
i=1

(1− qn−i)

 ∞∑
x=1

qαx
2

|z|x +

∞∑
x=bn2 c

qαx
2

|z|x


and further

≤ eq(q)

o(1) +

(
1−

(
1− qbn2 c

)bn2 c) ∞∑
x=1

qαx
2

|z|x +

∞∑
x=bn2 c

(
qαb

n
2 c|z|

)x ;

the latter sum is o(1) as before, thus

= o(1) + O(n2qn)

∞∑
x=1

qαx
2

|z|x = o(1). �

Lemma 4.2. Assume α > 0 and let (θn) be a sequence of real numbers with limit
θ ≥ 0. Then

lim
n→∞

n∑
x=0

[
n

x

]
q

qαx
2

θxn = E2α
q (θ).

If θ < 1, this holds for α = 0 as well.

Proof. For small ε > 0 and n large enough we have

n∑
x=0

[
n

x

]
q

qαx
2

(θ − ε)x ≤
n∑
x=0

[
n

x

]
q

qαx
2

θxn ≤
n∑
x=0

[
n

x

]
q

qαx
2

(θ + ε)x,
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hence, with use of Lemma 4.1,

E2α
q (θ − ε) = lim

n→∞

n∑
x=0

[
n

x

]
q

qαx
2

(θ − ε)x ≤ lim inf
n→∞

n∑
x=0

[
n

x

]
q

qαx
2

θxn

≤ lim sup
n→∞

n∑
x=0

[
n

x

]
q

qαx
2

θxn ≤ lim
n→∞

n∑
x=0

[
n

x

]
q

qαx
2

(θ + ε)x

= E2α
q (θ + ε).

By continuity of E2α
q , the lemma follows. �

The first result is a generalisation of the fact that Kemp’s distribution converges
to the Heine distribution (see [11]).

Proposition 4.3. If Xn ∼ B(α, θn, n, q), α > 0, then for n→∞
Xn → P(α, θ, q),

if θn → θ. This still remains true in the case α = 0 and θ < 1.

Proof. This follows immediately from the fact that[
n

x

]
q

→ 1

(q, q)x

for n→∞ and from Lemma 4.2. �

In the case α = 0 and θ > 1 the situation is slightly different:

Proposition 4.4. If Xn ∼ B(0, θn, n, q), then for n→∞, if θn → θ > 1,

n−Xn → P
(
0, 1θ , q

)
,

which is an Euler distribution.

Proof. Define Yn = n−Xn. Then

P(Yn = x) =

[
n
x

]
q
θn−xn∑n

y=0

[
n
y

]
q
θn−yn

=

[
n
x

]
q
θ−xn∑n

y=0

[
n
y

]
q
θ−yn

→ θ−x

(q, q)x

1∑n
y=0

1
(q,q)y

θ−y

by Lemma 4.2. �

In particular we are interested in sequences Xn such that the limits q → 1 and
n→∞ can be exchanged. The propositions above immediately yield

Corollary 4.5. For each α > 0 let Xn ∼ B(α, θn(q), n, q) with θn(q) → θ(q).
Additionally assume that θn(q) → λ/n and θ(q)/(1 − q) → λ as q → 1. Then we
have the following commutative diagram:

B(α, θn(q), n, q)
n→∞−−−−→ P(α, (1− q)θ(q), q)

q→1

y yq→1

B
(
n, λn

)
−−−−→
n→∞

P (λ)

One very natural way to choose the parameter sequence is to set θn(q) = λ
[n−λ]q ,

λ > 0.

The convergence B(α, θn(q), n, q)→ P(α, (1−q)θ(q), q) still remains true for α =
0 if we require (1−q)θ(q) < 1. Moreover, the commutative diagram remains correct
for given λ > 0, if we restrict q to values greater than or equal to max(0, 1− 1

λ ).
The next result is a q-analogue of the convergence of the classical binomial dis-

tribution with constant mean to the Poisson distribution.
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Theorem 4.6. Fix µ > 0 and α > 0. Consider a sequence of random variables
Xn ∼ B(α, θn, n, q) with parameter sequence θn = θn(q, µ) chosen such that the
means µn of Xn are equal to µ. Then we have

(i) The sequence Xn converges to the limit law P(α, θ, q), where θ is the limit
of the sequence θn.

(ii) As q → 1, Xn tends to a binomial distribution with parameters n and µ/n.
(iii) In the limit q → 1, P(α, θ(q, µ), q) converges to a Poisson distribution with

parameter µ.

Thus the following diagram is commutative:

B(α, θn(q, µ), n, q)
n→∞−−−−→ P(α, θ(q, µ), q)

q→1

y yq→1

B
(
n, µn

)
−−−−→
n→∞

P (µ)

Proof. First we check, that for given µ, q and large n there is a unique θn(q),
such that µn(θn(q), q) = µ. The function µn(θ, q) is continuous and increasing
in θ (see Lemma 3.7). Moreover limθ→0 µn(θ, q) = 0. From Corollary 5.1 we
see that for sufficiently large n and suitable θn, µn(θn, q) ≥ n

2 . Consequently
there exists a unique solution θn(q) of µn(θ, q) = µ. By [14, Lemma 3.3], θn(q)
converges to a limit θ(q), where θ(q) is the unique solution of µ∞(θ, q) = µ. Hence
B(α, θn(q), n, q)→ P(α, θ(q), q) by Lemma 4.2.

Again by [14, Lemma 3.3] we get that θn(q)→ µ
n−µ for q → 1 and so θn(q)

1+θn(q)
→

µ
n . Consequently B(α, θn(q), n, q)→ B

(
n, µn

)
.

It remains to check that θ(q)/(1−q) converges to µ for q → 1 (then P(α, θ(q), q)→
P (µ)). The value θ(q)/(1− q) is the unique solution of µ∞((1− q)θ, q) = µ. More-
over, µ∞((1 − q)θ, q) converges pointwise to θ for q → 1, so we can apply [14,
Lemma 3.3]. �

In the case α = 0 an analogous result holds for Xn or n−Xn depending on the
values of the parameters, i.e., if θ(q, µ) < 1 then the theorem holds for the sequence
Xn, and if θ(q, µ) > 1 then this is true for n−Xn.

Now we turn our attention to the case α = 0. To finish the analysis of the
RS-distribution we consider θn → 1. It is worthwhile to point out that the limit
distributions only depend on the growth rate of the parameter sequences and are
independent of q. This is why we will distinguish three cases in dependence on the
speed of the convergence of the parameters θn to the limit 1. First we will provide
a result of fast growing θn. In order to do so we start with an auxiliary result.

Lemma 4.7. If f(n) ≤ n, θn ≤ 1 and f(n)→∞ and θ
f(n)
n → 1 for n→∞, then

for k ∈ N ∑
0≤i≤f(n)

[
n

i

]
q

ikθin ∼ eq(q)
f(n)k+1

k + 1
, n→∞.

Proof. Write

∑
0≤i≤f(n)

[
n

i

]
q

ikθin =

b
√
f(n)c∑
i=0

[
n

i

]
q

ikθin +

f(n)−b
√
f(n)c−1∑

i=b
√
f(n)c+1

[
n

i

]
q

ikθin

+
∑

n−b
√
nc≤i≤f(n)

[
n

i

]
q

ikθin.
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The first and the third term on the right-hand side can be estimated by

(
√
f(n) + 1)f(n)k

(q, q)n
(q, q)bn/2c(q, q)n−bn/2c

and are therefore negligible. The middle term can be bounded by

(q, q)n
(q, q)b

√
f(n)c+1

(q, q)
n−b
√
f(n)c−1

θf(n)
f(n)−b

√
f(n)c−1∑

b
√
f(n)c+1

ik ≤
f(n)−b

√
f(n)c−1∑

b
√
f(n)c+1

[
n

i

]
q

ik

≤ (q, q)n
(q, q)bn/2c(q, q)n−bn/2c

f(n)−b
√
f(n)c−1∑

b
√
f(n)c+1

ik

and has the asserted asymptotic. �

This lemma implies that under the assumption θnn → 1 the limit law is uniform

on the interval [−
√

3,
√

3].

Theorem 4.8. If Xn ∼ RS(n, θn, q) with θn ≤ 1 and θnn → 1, then (Xn − µn)/σn
converges for n→∞ to the uniform distribution on the interval [−

√
3,
√

3].

Proof. We start with an asymptotic of the means and the variances. By Lemma 4.7
we have

µn =

∑n
i=0

[
n
i

]
q
iθin∑n

i=0

[
n
i

]
q
θin
∼
eq(q)

n2

2

eq(q)n
=
n

2

and

σ2
n =

∑n
i=0

[
n
i

]
q
i2θin∑n

i=0

[
n
i

]
q
θin
− µ2

n ∼
n2

3
− n2

4
=
n2

12
.

From these two fact one can easily see that the support of the limiting distribution
is

lim
n→∞

[−µn/σn, (n− µn)/σn] = [−
√

3,
√

3].

Now we compute

P(X ≤ x) = lim
n→∞

∑
−µnσn≤

k−µn
σn
≤x

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1∑n
i=0

[
n
i

]
q
θin

∑
0≤k≤σnx+µn

[
n

k

]
q

θkn

= lim
n→∞

1

eq(q)n
eq(q)(σnx+ µn) = lim

n→∞

1

n

(
n

2
√

3
x+

n

2

)
=

1

2
√

3
x+

1

2
,

which is the distribution function of the uniform distribution on [−
√

3,
√

3]. �

Using the fact that a RS(n, θ, q)-distribution corresponds to a (n−RS(n, 1/θ, q))-
distribution or following the above proofs we immediately get the following corol-
lary:

Corollary 4.9. If Xn ∼ RS(n, θn, q) with θn ≥ 1 and θnn → 1, then (µn −Xn)/σn
and (Xn − µn)/σn converge for n→∞ to the uniform distribution on the interval

[−
√

3,
√

3].

Now we turn to the case that θnn → c with 0 < c < 1. For this purpose we
start with the following lemma, which supplements [14, Lemmas 4.4 and 4.5] and
is crucial for the analysis of the variances.
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Lemma 4.10. For θn ≤ 1 and θn → 1, θnn → c with 0 < c < 1 and f(n)/n ∼ β > 0
we have

n∑
i=0

i2θin ∼ −2
1− c+ c log c− 1

2c log2 c

log3 c
n3

as n→∞.
n∑
i=0

[
n

i

]
q

i2θin ∼ −2eq(q)
1− c+ c log c− 1

2c log2 c

log3 c
n3

as n→∞.

Proof. Using

n∑
i=0

i2ti =
t(−1− t+ tn + 2ntn(1− t) + n2tn(1− t)2 + tn+1)

(t− 1)3

we obtain for the first sum
n∑
i=0

i2θin ∼ (−2 + 2c− 2c log c+ c log2 c)
n3

log3 c
.

The second sum follows immediately as in [14, Lemma 4.4]. �

Now we are able to establish the convergence result in this case.

Theorem 4.11. If Xn ∼ RS(n, θn, q) with θn ≤ 1, θn → 1 and θnn → c with
0 < c < 1, then (Xn − µn)/σn converges to a limit distribution X with

P(X ≤ x) =
cα(c,x) − 1

c− 1
,

where

α(c, x) =

√
(c− 1)2 − c log2 c

(c− 1) log c
x+

1− c+ c log c

(c− 1) log c

and x ∈ [−γ1, γ2] with

γ1 =
1− c+ c log c√

(c− 1)2 − c log2 c
and γ2 =

c− 1− log c√
(c− 1)2 − c log2 c

.

Proof. Using [14, Lemmas 4.4 and 4.5] and Lemma 4.10 we get for the means µn

µn =

∑n
i=0 iθ

i
[
n
i

]
q∑n

i=0 θ
i
[
n
i

]
q

∼ (1− c+ c log c)n2

log2 c

log c

(c− 1)n
=

1− c+ c log c

(c− 1) log c
n

and for the variances σ2
n

σ2
n =

∑n
i=0 i

2θi
[
n
i

]
q∑n

i=0 θ
i
[
n
i

]
q

− µ2
n

∼
−2(1− c+ c log c− 1

2c log3 c)n3

log3 c

log c

(c− 1)n
− (1− c+ c log c)2

(c− 1)2 log2 c
n2

=
c2 + 1− 2c− c log2 c

(c− 1)2 log2 c
n2.

As an immediate consequence we get that the support of the limit distribution

[−γ1, γ2] = lim
n→∞

[−µn/σn, (n− µn)/σn]
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is as stated in the theorem. Now we compute the distribution function of X:

P(X ≤ x) = lim
n→∞

∑
k−µn
σn

≤x

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1

eq(q)
c−1
log cn

∑
k≤σnx+µn

[
n

k

]
q

θkn.

Since σnx+ µn ∼ nα(c, x) we have further

P(X ≤ x) = lim
n→∞

1

eq(q)
c−1
log cn

∑
k≤nα(c,x)

[
n

k

]
q

θqn

= lim
n→∞

cα(c,x)−1
log c neq(q)

eq(q)
c−1
log cn

=
cα(c,x) − 1

c− 1
,

what completes the proof of this theorem. �

Again we get the following immediate consequence:

Corollary 4.12. If Xn ∼ RS(n, θn, q) with θn ≥ 1, θn → 1 and θn → c̃ with
1 < c̃ < ∞, then (µn − Xn)/σn and (Xn − µn)/σn converge to a limit X, whose
distribution is given in Theorem 4.11 with c = 1/c̃ resp. c̃.

Finally we study the case that θ
f(n)
n → c with 0 < c < 1 and f(n) = o(n). The

analysis of this case is very similar to that of the previous case. So we start again
with a lemma which is useful to find the asymptotic behaviour of the means and
variances.

Lemma 4.13. Let f(n) → ∞ for n → ∞, f(n)
n → 0, θ

f(n)
n → c with 0 < c < 1

and. Then

n∑
i=0

i2θin ∼
f(n)3

log3 c

and

n∑
i=0

[
n

i

]
q

i2θin ∼ eq(q)
f(n)3

log3 c
.

Proof. Similar to [14, Lemma 4.8]. �

The following theorem shows that in this case the limiting distribution is an
exponential distribution.

Theorem 4.14. If Xn ∼ RS(n, θn, q) with θn ≤ 1, θn → 1, θ
f(n)
n → c with f(n) =

o(n) and 0 < c < 1, then (Xn − µn)/σn converges to a normalised exponential
distribution with parameter λ = 1, i.e.,

P(X ≤ x) = 1− e−x−1, x ≥ −1.

Proof. From [14, Lemmas 4.4 and 4.8] and Lemma 4.13 we get

µn ∼
−f(n)

log c
and σ2

n ∼
2f(n)2

log2 c
− f(n)2

log2 c
=
f(n)2

log2 c
.
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Computing the distribution function of the limit distribution yields

P(X ≤ x) = lim
n→∞

∑
k≤σnx+µn

[
n
k

]
q
θkn∑n

i=0

[
n
i

]
q
θin

= lim
n→∞

1
−eq(q)
log c n

∑
k≤−f(n)

log c x+
−f(n)
log c

[
n

k

]
q

θkn

= lim
n→∞

1− c
1+x
− log c

log c
f(n)eq(q)

log c

eq(q)f(n)

= 1− c
1+x
− log c = 1− e−x−1. �

Corollary 4.15. If Xn ∼ RS(n, θn, q) with θn ≥ 1, θn → 1, θ
f(n)
n → c with f(n) =

o(n) and 1 < c < ∞, then (µn − Xn)/σn converges to a normalised exponential
distribution with parameter λ = 1.

5. Unbounded Parameter

Now we turn our attention to sequences of random variables Xn with Xn ∼
B(α, θn, n, q), where the parameter sequence θn = θn(q) tends to infinity. We
start with fast growing parameters θn, i.e., θn = q−2αn−g(n) with g(n) convergent
or g(n) → ∞. Due to the reversing property 3.9 we conclude immediately from
Lemma 4.2:

Corollary 5.1. Let Xn ∼ B(α, θn, n, q) with θn = q−2αn−g(n).

(i) If g(n)→ γ then for α > 0 we have n−Xn → P(α, q−γ , q) .
(ii) If g(n)→∞ then for all α ≥ 0 we have n−Xn → δ0.

Now we consider parameter sequences θn(q) = q−f(n) with f(n)→∞ and 2αn−
f(n) → ∞ for n → ∞ and α > 0. These assumptions will be on force throughout
the section. We will prove in Theorem 5.7 that a suitable chosen subsequence of
the normalised sequence of random variables Xn converges to a discrete normal
distribution. Theorem 5.2 and Lemmas 5.3 and 5.4 are devoted to the asymptotic
behaviour of the sequence (µn) of means. Afterwards we study the sequence (σn)
of variances in Lemmas 5.5 and 5.6 and then we establish the convergence result.

To simplify notation, we define

Σ1(z) :=

b f(n)
2α c∑
x=0

z

[
n

b f(n)2α c − x

]
q

qα(a+x)
2

, Σ1 := Σ1(1),

Σ2(z) :=

n−b f(n)
2α c−1∑
x=0

z

[
n

x+ b f(n)2α c+ 1

]
q

qα(a−(x+1))2 , Σ2 := Σ2(1),

Σ∞1 (z) :=

∞∑
x=0

zqα(a+x)
2

, Σ∞1 := Σ∞1 (1),

Σ∞2 (z) :=

∞∑
x=0

zqα(a−(x+1))2 , Σ∞2 := Σ∞2 (1),

where a =
{
f(n)
2α

}
.

Now we turn to the study of the sequence of means.

Lemma 5.2. For n→∞ we have

µn =

⌊
f(n)

2α

⌋
+ c(a, α, q) + o(1),
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where

c(a, α, q) =

∑∞
x=1 x

(
qα(a−x)

2 − qα(a+x)2
)

∑∞
x=0

(
qα(a+x)2 + qα(a−(x+1))2

) .
Proof. We have to study the behaviour of∑n

x=0 x
[
n
x

]
q
qαx

2

q−f(n)x∑n
x=0

[
n
x

]
q
qαx2q−f(n)x

.

For this purpose we expand the fraction by q
f(n)2

4α and analyse the denominator D
and the numerator N separately.

D =

n∑
x=0

[
n

x

]
q

qαx
2−f(n)x+ f(n)2

4α =

n∑
x=0

[
n

x

]
q

q
(−2αx+f(n))2

4α ;

splitting the sum into two parts gives

=

b f(n)
2α c∑
x=0

[
n

x

]
q

q
(−2αx+f(n))2

4α +

n∑
x=b f(n)

2α c+1

[
n

x

]
q

q
(−2αx+f(n))2

4α .

By reversing the order of summation in the first sum and shifting the summation
index in the second sum we obtain

=

b f(n)
2α c∑
x=0

[
n

b f(n)2α c − x

]
q

q
(−2αb f(n)

2α c+f(n)+2αx)
2

4α

+

n−b f(n)
2α c−1∑
x=0

[
n

x+ b f(n)2α c+ 1

]
q

q
(−2αb f(n)

2α c−2α−2αx+f(n))
2

4α ;

simplifying the exponents of q leads to

=

b f(n)
2α c∑
x=0

[
n

b f(n)2α c − x

]
q

qα(a+x)
2

+

n−b f(n)
2α c−1∑
x=0

[
n

x+ b f(n)2α c+ 1

]
q

qα(a−(x+1))2 .

This tends to

eq(q)

( ∞∑
x=0

qα(a+x)
2

+

∞∑
x=0

qα(a−(x+1))2

)
=: γ(4)

since we can bound the first sum as follows:

eq(q)

∞∑
x=0

qα(a+x)
2

≥
b f(n)

2α c∑
x=0

[
n

b f(n)2α c − x

]
q

qα(a+x)
2

≥

1
2b f(n)

2α c∑
x=0

[
n

b f(n)2α c − x

]
q

qα(a+x)
2

,
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estimating the q-binomial coefficient yields

≥

(
1− qn−b

f(n)
2α c+1

)b f(n)
2α c+1

(q, q) 1
2b f(n)

2α c

1
2b f(n)

2α c∑
x=0

qα(a+x)
2

→ eq(q)

∞∑
x=0

qα(a+x)
2

.

Here we used that(
1− qn−b

f(n)
2α c+1

)b f(n)
2α c+1

= 1 +O
((⌊

f(n)

2α

⌋
+ 1

)
nqn−b

f(n)
2α c+1

)
.

Similar arguments hold for the second sum. Now we turn to the numerator N .

N =

n∑
x=0

x

[
n

x

]
q

qαx
2−f(n)x+ f(n)2

4α ,

we split the sum again, reverse the order of summation resp. shift the summation
index and get

=

b f(n)
2α c∑
x=0

(⌊
f(n)

2α

⌋
− x
)[

n

b f(n)2α c − x

]
q

qα(a+x)
2

+

+

n−b f(n)
2α c−1∑
x=0

(
x+

⌊
f(n)

2α

⌋
+ 1

)[
n

x+ b f(n)2α c+ 1

]
q

qα(a−(x+1))2 .

Using the same arguments as above yields

=

⌊
f(n)

2α

⌋
γ − eq(q) (Σ∞1 (x)− Σ∞2 (x)) + eq(q)Σ

∞
2 + o(1).(5)

Combining (4) and (5) we obtain

µn =

⌊
f(n)

2α

⌋
+

∑∞
x=0 q

α(a−(x+1))2 −
∑∞
x=0 x

(
qα(a+x)

2 − qα(a−(x+1))2
)

∑∞
x=0

(
qα(a+x)2 + qα(a−(x+1))2

) + o(1).

Simplifying the fraction yields the theorem. �

Now we provide an estimate for the O(1)-term in the preceding theorem.

Lemma 5.3. Let c(a, α, q) be defined as in Theorem 5.2. Then

(i) 0 ≤ c(a, α, q) < 1,
(ii) c(a, α, q) = 0⇔ a = 0 ,
(iii) c(a, α, q) + c(1− a, α, q) = 1.

Proof. Since for all x ≥ 0

(6) qα(−a+x)
2

≥ qα(a+x)
2

,

0 ≤ c(a, α, q). Moreover, c(a, α, q) = 0 iff in (6) equality holds for all x ≥ 1. But
this is the case iff (x− a)2 = (x+ a)2 for all x. So c(a, α, q) = 0 iff a = 0. For (i) it
remains to show that

∞∑
x=1

x
(
qα(−a+x)

2

− qα(a+x)
2
)
<

∞∑
x=1

(
qα(−a+x)

2

+ qα(a+x)
2
)

+ qαa
2

.
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We can rewrite this as
∞∑
x=1

(x− 1)qα(x−a)
2

−
∞∑
x=0

(x+ 1)qα(x+a)
2

< 0.

The left-hand side is increasing in a, and for a = 1 we have
∞∑
x=1

(x− 1)qα(x−1)
2

−
∞∑
x=0

(x+ 1)qα(x+1)2 = 0.

Since 0 ≤ a < 1, (ii) follows.
To see (iii), note that the denominators of c(a, α, q) and c(1−a, α, q) are invariant

under the substitution a 7→ 1− a. Then add the numerators:
∞∑
x=1

x
(
qα(1−a−x)

2

− qα(1−a+x)
2
)

+

∞∑
x=1

x
(
qα(a−x)

2

− qα(a+x)
2
)
,

by splitting the first sum and shifting the summation index we obtain

=

∞∑
x=0

(x+ 1)qα(a+x)
2

−
∞∑
x=2

(x− 1)qα(a−x)
2

+

∞∑
x=1

x
(
qα(a−x)

2

− qα(a+x)
2
)

= qαa
2

+

∞∑
x=1

qα(a+x)
2

+ qα(a−1)
2

+

∞∑
x=2

qα(a−x)
2

=

∞∑
x=0

(
qα(a+x)

2

+ qα(a−(x+1))2
)
,

which is exactly the denominator of c(a, α, q). �

Lemma 5.4. Let c(a, α, q) be defined as in Theorem 5.2.

(i) If a > 0, then
⌊
f(n)
2α

⌋
+ c(a, α, q) 6∈ Z.

(ii) If a = 0, then

µn

{
≥ f(n)

2α if n ≥ f(n)
α

< f(n)
2α if n < f(n)

α

.

Proof. Lemma 5.3 implies (i). To see (ii) we use

µn =
f(n)

2α
+

∑n− f(n)
2α

x=1 x
[ n
x+

f(n)
2α

]
q
qαx

2 −
∑ f(n)

2α
x=1 x

[ n
f(n)
2α −x

]
q
qαx

2

∑ f(n)
2α
x=0

[ n
f(n)
2α −x

]
q
qαx2 +

∑n− f(n)
2α

x=1

[ n
x+

f(n)
2α

]
q
qαx2

.

Now consider the case n ≥ f(n)
α : We have to prove that

n− f(n)
2α∑

x=1

x

[
n

x+ f(n)
2α

]
q

qαx
2

≥

f(n)
2α∑
x=1

x

[
n

f(n)
2α − x

]
q

qαx
2

.

We will see that for all 1 ≤ x ≤ f(n)
2α , the term on the right-hand side is less than

or equal to the corresponding term on the left-hand side (there are enough terms
on the left-hand side by our assumption), i.e.,[

n

x+ f(n)
2α

]
q

≥
[

n
f(n)
2α − x

]
q

:

Our assumption implies

n− x− f(n)

2α
+ 1 + i ≥ f(n)

2α
− x+ 1 + i for 0 ≤ i ≤ 2x− 1.
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Taking the product over all i on both sides yields(
1− qn−x−

f(n)
2α +1

)
· · ·
(

1− qn−
f(n)
2α +x

)
≥
(

1− q
f(n)
2α −x+1

)
· · ·
(

1− qx+
f(n)
2α

)
and therefore

1

(q, q)
x+

f(n)
2α

(q, q)
n−x−

f(n)
2α

≥ 1

(q, q) f(n)
2α −x

(q, q)
n−

f(n)
2α +x

,

and this leads to the assertion in this case immediately.

The case n < f(n)
4α can be treated similarly. �

In [5] Gerhold and Zeiner studied the behaviour of the means of Kemp’s q-
binomial distribution in the limit q → 0 and c(a, α, q) in the limit q → 1. We will
do the same analysis here. First we will show that for q → 0

µn →
⌊
f(n)

2α

⌋
+


0 if 0 ≤ a < 1

2
1
2 if a = 1

2

1 if 1
2 < a < 1

.

For this purpose we estimate c(a, α, q):

c(a, α, q) =
qα(1−a)

2

+ 2qα(2−a)
2

+
∑∞
x=3 xq

α(a−x)2 −
∑∞
x=1 xq

α(a+x)2

qαa2 + qα(a−1)2 +
∑∞
x=1 q

α(a+x)2 +
∑
x=2 q

α(a−x)2

≤
qα(1−a)

2

+ 2qα(2−a)
2

+
∑∞
x=3 xq

α(1−x)2 −
∑∞
x=1 xq

α(1+x)2

qαa2 + qα(a−1)2 +
∑∞
x=1 q

α(1+x)2 +
∑∞
x=2 q

αx2

=
qα(1−a)

2

+ 2qα(2−a)
2

+ 2
∑∞
x=2 q

αx2

qαa2 + qα(a−1)2 + 2
∑∞
x=2 q

αx2

=
1 + 2qα(3−2a) + 2q−α(1−a)

2 ∑∞
x=2 q

αx2

qα(−1+2a) + 1 + 2q−α(1−a)2
∑∞
x=2 q

αx2 .

For a ∈ [0, 12 ) we have 2a − 1 < 0 and therefore the denominator tends to infinity
while the numerator goes to 1. Consequently c(a, α, q)→ 0. Lemma 5.3 (iii) implies
that c(a, α, q) → 1 if a ∈ ( 1

2 , 1) and c( 1
2 , α, q) = 1

2 . Moreover, from the estimates
in the proof of Theorem 5.2 we get easily that the o(1)-term vanishes in the limit
q → 0.

In the limit q → 1 we have c(a, α, q)→ a. To see this, apply the Euler-Maclaurin
formula to

f+(x) = qAx
2+Bx and g+(x) = xqAx

2+Bx

first, which yields ∑
`≥0

f+(`) = I+f +
f+(0)

2
+R+

f

with

I+f =

∞∫
0

f+(x)dx and R+
f =

∞∫
0

(
x− bxc − 1

2

)
f+
′
(x)dx.

Computing I+f gives

I+f =

√
πq−

B2

4A

(
1 + erf

(
B log q

2
√
−A log q

))
2
√
−A log q

,
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where erf(z) denotes the error-function. Similarly, we get for g+(x)∑
`≥0

g+(`) = I+g +
g+(0)

2
+R+

g

with

I+g =

∞∫
0

g+(x)dx and R+
g =

∞∫
0

(
x− bxc − 1

2

)
g+
′
(x)dx.

Computing I+g gives

I+g =
−B
√
πq−

B2

4A

(
1 + erf

(
B log q

2
√
−A log q

))
4A
√
−A log q

− 1

2

1

A log q
.

In an analogous way we treat the functions

f−(x) = qAx
2−Bx and g−(x) = xqAx

2−Bx.

Note that f−(0) = f+(0) = 1
2 and g−(0) = g+(0) = 0. Putting things together we

obtain with A = α and B = 2αa

c(a, α, q) =
I−g +R−g − I+g −R+

g

I+f + I−f +R+
f +R−f + q−a2

=

B
√
πq−

B2

4A

2A
√
−A log q

+R−g −R+
g

√
πq−

B2
4A√

−A log q
+R−f +R+

f + q−a2

=
a+ q

B2

4A

√
−A log q√

π

(
R−g −R+

g

)
1 + q

B2

4A

√
−A log q√

π

(
R−f +R+

f + q−a2
) .

Thus it remains to show that
√
− log q(R−g − R+

g ) and
√
− log q(R−f + R+

f ) both
tend to 0. We have

R+
f =

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bx log q(2Ax+B)dx.

The integral

J1 := B

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxdx

is bounded uniformly for all q ∈ [0, 1), since qAx
2+Bx is decreasing in x:

−1

4
= −1

4
+

∞∑
i=0

0

≤

1
2∫

0

(
x− bxc − 1

2

)
qAx

2+Bxdx+

∞∑
i=0

1
2+i+1∫
1
2+i

(
x− bxc − 1

2

)
qAx

2+Bxdx

= J1

=

1∫
0

(
x− bxc − 1

2

)
qAx

2+Bxdx+

∞∑
i=1

i+1∫
i

(
x− bxc − 1

2

)
qAx

2+Bxdx

≤ 0 +

∞∑
i=1

0 = 0.
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Thus (− log q)3/2J1 → 0. With the same idea we want to estimate

J2 := 2A

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxxdx.

Unfortunately h(x) := qAx
2+Bxx must not be decreasing in x for x ≥ 0. Differen-

tiating gives

h′(x) = qAx
2+Bx

(
1 + (2Ax2 +Bx) log q

)
.

Obvious h′(0) > 0 and limx→−∞ h′(x) = limx→∞ h′(x) = −∞ since log q < 0.
Consequently there exists a single positive root r of h′(x). For q near at 1 we have
r ≤ 1/

√
−A log q since

h′
(

1√
−A log q

)
= 1 + log q

(
− 2A

A log q
+

B√
−A log q

)
= 1− 2 +

B
√
− log q√
A

< 0.

Thus h(x) is decreasing for x ≥ r. Split J2 into integrals over [0, dre] and [dre,∞).
The second integral is bounded by same arguments as above. The first integral can
be estimated trivially by

2A

∣∣∣∣∣∣∣
dre∫
0

(
x− bxc − 1

2

)
qAx

2+Bxxdx

∣∣∣∣∣∣∣ ≤ A
dre∫
0

x ≤ Adre2.

Therefore
√
− log qR+

f → 0 for q → 1. Analogously we get
√
− log qR−f → 0. In

order to show that the term with

R+
g =

∞∫
0

(
x− bxc − 1

2

)(
qAx

2+Bx + xqAx
2+Bx log q(2Ax+B)

)
dx

vanishes, it remains to consider the integral

J3 :=

∞∫
0

(
x− bxc − 1

2

)
qAx

2+Bxqx2dx.

Again we compute where H(x) := x2qAx
2+Bx is decreasing. We have

H ′(x) = qAx
2+Bx

(
2x+ (2Ax3 +Bx2) log q

)
and therefore limx→−∞H ′(x) = +∞, limx→∞H ′(x) = −∞ and H ′(0) = 0. Since
H ′′(0) > 0, there exists a single positive root s of H ′(x). Moreover s ≤ 1/

√
−A log q

since

H ′
(

1√
−A log q

)
=

2√
−A log q

+ log q

(
2a

(−A log q)3/2
− B

A log q

)
=

2√
−A log q

− 2√
−A log q

− B

A
≤ 0.

Thus H(x) is decreasing for x ≥ s. Split the integral into integrals over [0, bsc],
[bsc, dse] and [dse,∞). The third integral is bounded as above. The second integral
is trivially bounded by 1

2dse
2. And the first integral - the increasing part - we
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estimate with the same ideas as for the decreasing part:

0 ≤
bsc−1∑
i=0

i+1∫
i

(
x− bxc − 1

2

)
qAx

2+Bxqx2dx

=

bsc∫
0

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

=

1
2∫

0

(
x− bxc − 1

2

)
qAx

2+Bxx2dx+

bsc−2∑
i=0

1
2+i+1∫
1
2+i

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

+

bsc∫
bsc− 1

2

(
x− bxc − 1

2

)
qAx

2+Bxx2dx

≤ 0 +

bsc−2∑
i=0

0 +
1

4
bsc2

Therefore
√
− log qR+

g → 0 for q → 1. In a similar way we find
√
− log qR−g → 0.

After this analysis of the means, we turn our attention to the sequence of vari-
ances.

Lemma 5.5. For n→∞ we have

σ2
n = φ(a, α, q)− c(a, α, q)2 + o(1),

where

φ(a, α, q) :=
eq(q)

γ

∞∑
x=1

x2
(
qα(a−x)

2

+ qα(a+x)
2
)
.

Proof. By definition we have

E
(
X2
n

)
=

∑n
x=0 x

2
[
n
x

]
q
qαx

2

q−f(n)x∑n
x=0

[
n
x

]
q
qαx2q−f(n)x

.

Now we proceed as in the proof of Theorem 5.2 and study the numerator Ñ after

expansion by q
f(n)2

4α .

Ñ =

n∑
x=0

x2
[
n

x

]
q

qαx
2−f(n)x+ f(n)2

4α ;

we split the sum and reverse the order of summation resp. shift the summation
index and get

=

b f(n)
2α c∑
x=0

(⌊
f(n)

2α

⌋
− x
)2 [

n

b f(n)2α c − x

]
q

qα(a+x)
2

+

+

n−b f(n)
2α c−1∑
x=0

(
x+

⌊
f(n)

2α

⌋
+ 1

)2 [
n

x+ b f(n)2α c+ 1

]
q

qα(a−(x+1))2 ,
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which can be written as

=

⌊
f(n)

2α

⌋2
Σ1 − 2

⌊
f(n)

2α

⌋
Σ1(x) + Σ1(x2) + Σ2(x2) +

⌊
f(n)

2α

⌋2
Σ2 + Σ2

+ 2

⌊
f(n)

2α

⌋
Σ2(x) + 2Σ2(x) + 2

⌊
f(n)

2α

⌋
Σ2.

Using similar arguments as above yields

=

⌊
f(n)

2α

⌋2
γ + eq(q)

(
2

⌊
f(n)

2α

⌋
Σ∞2 − 2

⌊
f(n)

2α

⌋
Σ∞1 (x) + 2

⌊
f(n)

2α

⌋
Σ∞2 (x)

+ Σ∞1 (x2) + Σ∞2 (x2) + Σ∞2 + 2Σ∞2 (x)

)
+ o(1).

Thus

E
(
X2
n

)
=

1

γ

(⌊
f(n)

2α

⌋2
γ + eq(q)

(
2

⌊
f(n)

2α

⌋
Σ∞2 − 2

⌊
f(n)

2α

⌋
Σ∞1 (x) + 2

⌊
f(n)

2α

⌋
Σ∞2 (x)

))
+ φ(a, α, q).

Since

µ2
n =

⌊
f(n)

2α

⌋2
−
eq(q)

(
2
⌊
f(n)
2α

⌋
Σ∞1 (x)− 2

⌊
f(n)
2α

⌋
Σ∞2 (x)− 2

⌊
f(n)
2α

⌋
Σ∞2

)
γ

+ c(a, α, q)2 + o(1),

we obtain

σ2
n = φ(a, α, q)− c(a, α, q)2 + o(1). �

Lemma 5.6.

φ(a, α, q) > c(a, α, q)2.

Proof. We have to show that∑∞
x=1 x

2
(
qα(a−x)

2

+ qα(a+x)
2
)

∑∞
x=0 q

α(a+x)2 +
∑∞
x=1 q

α(a−x)2 >

 ∑∞
x=1 x

(
qα(a−x)

2 − qα(a+x)2
)

∑∞
x=0 q

α(a+x)2 +
∑∞
x=1 q

α(a−x)2

2

.

A sufficient condition for this is∑∞
x=1 x

2
(
qα(a−x)

2

+ qα(a+x)
2
)

∑∞
x=0 q

α(a+x)2 +
∑∞
x=1 q

α(a−x)2 >

 ∑∞
x=1 x

(
qα(a−x)

2

+ qα(a+x)
2
)

∑∞
x=0 q

α(a+x)2 +
∑∞
x=1 q

α(a−x)2

2

.

We show that( ∞∑
x=1

x2
(
qα(a−x)

2

+ qα(a+x)
2
))( ∞∑

x=1

qα(a+x)
2

+

∞∑
x=1

qα(a−x)
2

)
≥

≥

( ∞∑
x=1

x
(
qα(a−x)

2

+ qα(a+x)
2
))2

.
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Expanding gives

∞∑
x,y=1

x2qα(x+a)
2

qα(y+a)
2

+

∞∑
x,y=1

x2qα(x+a)
2

qα(y−a)
2

+

∞∑
x,y=1

x2qα(x−a)
2

qα(y+a)
2

+

∞∑
x,y=1

x2qα(x−a)
2

qα(y−a)
2

≥
∞∑

x,y=1

xqα(x+a)
2

yqα(y+a)
2

+

∞∑
x,y=1

xqα(x−a)
2

yqα(y−a)
2

+ 2

∞∑
x,y=1

xqα(x+a)
2

yqα(y−a)
2

.

Now we consider the pairs (x, y) and (y, x) again and obtain

x2qα(x+a)
2

qα(y+a)
2

+ y2qα(x+a)
2

qα(y+a)
2

+ x2qα(x+a)
2

qα(y−a)
2

+ y2qα(x−a)
2

qα(y+a)
2

+ x2qα(x−a)
2

qα(y+a)
2

+ y2qα(x+a)
2

qα(y−a)
2

+ x2qα(x−a)
2

qα(y−a)
2

+ y2qα(x−a)
2

qα(y−a)
2

≥ 2xyqα(x+a)
2

qα(y+a)
2

+ 2xyqα(x−a)
2

qα(y−a)
2

+ 2xyqα(x+a)
2

qα(y−a)
2

+ 2xyqα(x−a)
2

qα(y+a)
2

.

This is true since x2 + y2 ≥ 2xy. �

Now we are able to establish the next convergence result. For this purpose recall

that c(a, α, q) and φ(a, α, q) depend on the fractional part of f(n)2α . Since convergent
variances and convergent fractional parts of means are required for convergence to

a discrete distribution, we will choose a subsequence (nk) of (n) such that { f(n)2α }
remains constant.

Theorem 5.7. Let (nk) be an increasing sequence of natural numbers and Xnk ∼
B(α, q−f(nk), nk, q) such that { f(n)2α } = a constant. Recall that we always assume
f(n) → ∞, 2αn − f(n) → ∞ and α > 0. Then (Xnk − µnk)/σnk converges for
k → ∞ to a normalised discrete normal distribution, i.e., they converge to a limit
X with

P
(
X =

1

σ
(x− c(a, α, q))

)
=

qα(x−a)
2∑∞

x=−∞ qα(x−a)2
,

where σ = limk→∞ σnk and c(a, α, q) is defined as in Theorem 5.2..

Proof. For simplicity we write in the following n instead of nk. First we note that
Lemmas 5.5 and 5.6 imply that the sequence of variances (σ2

n) converges since

{ f(n)2α } is constant by assumption. We define

H(µn) :=


bµnc if a > 0

bµnc if a = 0, n ≥ f(n)
4α

dµne if a = 0, n < f(n)
4α

.
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Since H(µn) = f(n)
2α − a, we have

P (Xn = H(µn) + x) =

[
n

f(n)
2α − a+ x

]
q

q(
f(n)
2α −a+x)

2
−f(n)( f(n)

2α −a+x)∑n
y=0

[
n
y

]
q
qαy2−f(n)y

=

[
n

f(n)
2α − a+ x

]
q

q−
f(n)2

4α +α(x−a)2∑n
y=0

[
n
y

]
q
qαy2−f(n)y

→ eq(q)
qα(x−a)

2

eq(q)
∑∞
x=0

(
qα(a+x)2 + qα(a−(x+1))2

)
=

qα(x−a)
2∑∞

x=−∞ qα(a+x)2

=
qα(x−a)

2∑∞
x=−∞ qα(x−a)2

.

By normalising we get the theorem. �

For α = 1
2 this theorem reduces to the convergence property of Kemp’s binomial

distribution established in [5]
Using Jacobi’s Triple Product we can rewrite the infinite sum as

∞∑
x=−∞

qα(x−a)
2

= qαa
2 (
q2α, q

)
∞

(
−qα−2αa, q

)
∞

(
−qα+2αa, q

)
∞ .

In the limit q → 1 these discrete normal distributions converge to the standard
normal distribution, see [13].
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