ON RINGS OF INTEGERS GENERATED BY THEIR UNITS

CHRISTOPHER FREI

ABSTRACT. We give an affirmative answer to the following question by Jarden
and Narkiewicz: Is it true that every number field has a finite extension L
such that the ring of integers of L is generated by its units (as a ring)?

As a part of the proof, we generalise a theorem by Hinz on power-free values
of polynomials over number fields.

1. INTRODUCTION

The earliest result regarding the additive structure of units in rings of algebraic
integers dates back to 1964, when Jacobson [12] proved that every element of the
rings of integers of Q(v/2) and Q(+/5) can be written as a sum of distinct units.
Later, Sliwa [17] continued Jacobson’s work, proving that there are no other qua-
dratic number fields with that property, nor any pure cubic ones. Belcher [2], [3]
continued along these lines and investigated cubic and quartic number fields.

In a particularly interesting lemma [2, Lemma 1], Belcher characterised all qua-
dratic number fields whose ring of integers is generated by its units: These are
exactly the fields Q(\/g), d € Z squarefree, for which either

(1) d e {-1,-3}, or
(2) d>0,d#1 mod4, and d+ 1 or d — 1 is a perfect square, or
(3) d>0,d=1 mod 4, and d+4 or d — 4 is a perfect square.

This result was independently proved again by Ashrafi and Vémos [1], who also

showed the following: Let O be the ring of integers of a quadratic or complex cubic

number field, or of a cyclotomic number field of the form Q((a). Then there is no
positive integer N such that every element of O is a sum of N units.

Jarden and Narkiewicz [13] proved a more general result which implies that the
ring of integers of every number field has this property: If R is a finitely generated
integral domain of zero characteristic then there is no integer N such that every
element of R is a sum of at most N units. This also follows from a result obtained
independently by Hajdu [10]. The author [7] proved an analogous version of this
and of Belcher’s result for rings of S-integers in function fields.

In [13], Jarden and Narkiewicz raised three open problems:

A. Give a criterion for an algebraic extension K of the rationals to have the property
that the ring of integers of K is generated by its units.

B. Is it true that each number field has a finite extension L such that the ring of
integers of L is generated by its units?

C. Let K be an algebraic number field. Obtain an asymptotical formula for the
number Ni(z) of positive rational integers n < x which are sums of at most k
units of the ring of integers of K.

The result by Belcher stated above solves Problem A for quadratic number fields.
Similar criteria have been found for certain types of cubic and quartic number fields
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[5], [18], [21]. All these results have in common that the unit group of the ring in
question is of rank 1.

Quantitative questions similar to Problem C were investigated in [5], [6], [9]. The
property asked for in Problem B is known to hold for number fields with an Abelian
Galois group, due to the Kronecker-Weber theorem. However, this is all that was
known until recently, when the author [8] affirmatively answered the question in
the function field case. In this paper, we use similar ideas to solve Problem B in its
original number field version:

Theorem 1. For every number field K there exists a number field L containing K
such that the ring of integers of L is generated by its units (as a ring).

It is crucial to our proof to establish the existence of integers of K with certain
properties (see Proposition 4). We achieve this by asymptotically counting such
elements. To this end, we need a generalised version of a theorem by Hinz [11, Satz
1.1], which is provided first. Let us start with some notation.

2. NOTATION AND AUXILIARY RESULTS

All rings considered are commutative and with unity, and the ideal {0} is never
seen as a prime ideal. Two ideals a, b of a ring R are relatively prime if a+ b = R.
Two elements «, § € R are relatively prime if the principal ideals («), (8) are.

The letter K denotes a number field of degree n > 1, with discriminant dx and
ring of integers Ok . Let there be r distinct real embeddings o1, ..., 0, : K — Rand
2s distinct non-real embeddings 0,41, ..., on : K = C, such that o, = orysyj,
forall 1 < j <s. Then o : K — R" is the standard embedding given by

o= (Ul(a)a cey Ur(a)v §R0r+1(a)v %O—r—l-l(a)v ceey %UT—O—S(O‘)v Sorys (a))

An element a € Ok is called totally positive, if o;(a) > 0 for all 1 <i <.

A non-zero ideal of Ok is called m-free, if it is not divisible by the m-th power
of any prime ideal of Ok, and an element o € Ok \ {0} is called m-free, if the
principal ideal (o) is m-free. We denote the absolute norm of a non-zero ideal a of
Ok by Na, that is Na = [Ok : a]. For non-zero ideals a, b of Ok, the ideal (a, b)
is their greatest common divisor. If 5 € Ok \ {0} then we also write (a, 3) instead
of (a,(8)). By suppa, we denote the set of all prime divisors of the ideal a of O.
The symbol p stands for the Mobius function for ideals of O.

For x = (z1,...,2,) € R?, with z; > 1 for all 1 <4 <n, and &,14; = T4, fOr
all 1 <i < s, we define

R(z) := {a € Ok | « totally positive, |o;(a)] < x; for all 1 <i < n},

and
Ti=T1 " Tp.

Let f € Ok[X] be an irreducible polynomial of degree g > 1. For any ideal a of
Ok, let

L(a):=|{B+a€Ok/a| f(B) =0 mod a}|.

By the Chinese remainder theorem, we have L(ay - - - ax) = L(ay) - - - L(a), for ideals
ay, ..., a; of Ok that are mutually relatively prime.

We say that the ideal a of Ok is a fized divisor of f if a contains all f(«), for
a € Ok.

Hinz established the following result, asymptotically counting the set of all a €
R(z) such that f(a) is m-free:
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Theorem 2 (([11, Satz 1.1])). If m > max{2,/2¢%> +1— (g +1)/2}, such that no
m-th power of a prime ideal of Ok is a fived divisor of f, then

R (2m)° .x.H<1_Lg(§:))+O(xl_u)’

aER(z) |dK| B
f(a@) m-free

as x tends to infinity. Here, w = u(n,g) is an effective positive constant depending
only on n and g, the infinite product over all prime ideals P of Ok is convergent
and positive, and the implicit O-constant depends on K, m and f.

A subring O of Ok is called an order of K if O is a free Z-module of rank
[K : Q], or, equivalently, QO = K. Orders of K are one-dimensional Noetherian
domains. For any order O of K, the conductor f of O is the largest ideal of Ok
that is contained in O, that is

f:{anK\aOKgO}.

In particular, f 2 {0}, since Ok is finitely generated as an O-module. For more
information about orders, see for example [16, Section 1.12].
Assume now that f € O[X]. Then we define, for any ideal a of Ok,

Lo(a) = [{a+(©na) € 0/(ONa)| f(a) =0 mod (ONa)}|.

The natural monomorphism O/(O Na) — Ok /a yields Lp(a) < L(a), and if a4,
.., ai are ideals of Ok such that all a; N O are mutually relatively prime then

L@(al s ak) = L@(al) s Lo(ak).
In our generalised version of Theorem 2, we do not count all & € R(z) such that

f(a) is m-free, but all @ € R(z) N O, such that f(«) is m-free and f(a) ¢ P, for
finitely many given prime ideals B of Ok

Theorem 3. Let O be an order of K of conductor §, and f € O[X] an irreducible
(over Ok ) polynomial of degree g > 1. Let P be a finite set of prime ideals of Ok
that contains the set Pj := suppf. Let

(1) mZmax{2,\/292+l—(g+l)/2}

be an integer such that mo m-th power of a prime ideal of Ok is a fized divisor of
f, and denote by N(z) the number of all « € O NR(z), such that

(1) for all B € P, f(a) ¢ P
(2) f(a) is m-free.
Then
N(z) = Dz + 0(z'"),
as x tends to infinity. Here, uw = u(n, g) is an explicitly computable positive constant
that depends only on n and g. The implicit O-constant depends on K, P, f and
m. Moreover,

_ (27T)S ‘u(a)Lo(a) . @ ) L(ipm)
D= VIdk|[Ok : O] %; [O:an O] q3e17:[\7:,- (1 oy )ml;lp (1 SN ) '

The sum runs over all ideals of Ok dividing f, and the infinite product over all
prime ideals P ¢ P of Ok is convergent and positive.

For our application, the proof of Theorem 1, we only need the special case
where m = g = 2, and we do not need any information about the remainder term.
However, the additional effort is small enough to justify a full generalisation of
Theorem 2, instead of just proving the special case. The following proposition
contains all that we need of Theorem 3 to prove Theorem 1.
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Proposition 4. Assume that for every prime ideal of Ok dividing 2 or 3, the
relative degree is greater than 1, and that O # Ok is an order of K. Let P be a
finite set of prime ideals of Ok, and let n € O ~ K?. Then there is an element
w € Ok with the following properties:

(1) wé¢ O,

(2) for allP € P, w? —4n ¢ B, and

(3) w? — 4n is squarefree.

The basic idea to prove Theorem 1 is as follows: Let O be the ring generated by
the units of Og. With Proposition 4, we find certain elements wq, ..., w, of Ok,
such that Olws,...,w,] = Ok. Due to the special properties from Proposition 4,
we can construct an extension field L of K, such that wq, ..., w, are sums of units
of Op, and Of is generated by units as a ring extension of Ok . This is enough to
prove that Op is generated by its units as a ring.

3. PROOF OF THEOREM 3

We follow the same strategy as Hinz [11] in his proof of Theorem 2, with mod-
ifications where necessary. For any vector v € R™, we denote its Euclidean length
by |v|. We use a theorem by Widmer to count lattice points:

Theorem 5 (([19, Theorem 5.4])). Let A be a lattice in R™ with successive minima
(with respect to the unit ball) A1, ..., A,. Let B be a bounded set in R™ with
boundary OB. Assume that there are M maps ® : [0,1]"~1 — R"™ satisfying a
Lipschitz condition
|®(v) = ®(w)| < L v —wl,

such that OB is covered by the union of the images of the maps ®. Then B is
measurable, and moreover

Vol B
det A

For i = 0, the expression in the mazximum is to be understood as 1. Furthermore,
2
one can choose co(n) = n" /2,

Lt
< co(n)M max

BNA| - _
‘ n ‘ 0<i<n )\1 )\1

We need some basic facts about contracted ideals in orders. The statements of
the following lemma can hardly be new, but since the author did not find a reference
we shall prove them for the sake of completeness.

Lemma 6. Let O C Ok be an order of K with conductor §. Then, for any ideals
a, b of Ok, the following holds:

(1) ifa+§f=0k and b | § then (aNO)+ (bNO) = 0.
(2) ifa+§f=0k,b+f=0k, anda+b =0k then (anNO)+ (6NO)=0.
(3) if a+§= 0Ok then [O:an O] =Na.
Proof. For any ideal a of Ok with a 4§ = Ok, we have
(aNO)+f=(@+§ )NO=0gNO =0.

The first equality holds because for every a € a, 8 € § C O with a+ 8 € O it
follows that a € O.

Moreover, if ¢ is an ideal of O with ¢+ § = O then

Ok +f2 (C-i—f)OK =00k = Ok.
Therefore,
p:a—~anOand ¥ :c— Ok

are maps between the sets of ideals

{aCOk|a+f=0g}and {c CO|c+§=0O}.
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Let us prove that ¢ and ¢ are inverse to each other. Clearly, (¢ o )(c) 2 ¢ and
(Y op)(a) C a. Also,

(pov)(c) = (cOk NO)O = (cOx NO)(c+§) C ¢+ f(cOxk NO) C ¢+ fOk Crc,
and
a=a0=a((aNO)+f) C(aNO)Ok +fa C (aNO)Ok + (aNO) = (Y o p)(a).

Clearly, ¢ and v are multiplicative, so the monoid of ideals of O relatively prime
to f is isomorphic with the monoid of ideals of Ok relatively prime to f. (In the
special case where O is an order in an imaginary quadratic field this is proved in
[4, Proposition 7.20].)

If a, b are as in (1) then § C bN O, and thus O = (aNO)+§C (aNO)+ (bNO).

Suppose now that a, b are as in (2), and ¢(a) + ¢(b) =: ¢ C O. Then ¢ +§ 2
p(a) + f = O, whence ¢ = ¢(), for some ideal d of O relatively prime to f. Now
aCoand b C0?,s00=0k, and thus ¢ = O.

To prove (8), we show that the natural monomorphism ® : O/(aNO) — Ok /a
is surjective. This holds true, since

Ox=a+fCa+0.
O

For now, let us prove Theorem 3 with the additional assumption that f(«a) # 0
for all totally positive @ € Ok. This holds of course if deg f > 2, since f is
irreducible over Ok . At the end of the proof, we specify the changes necessary to
drop this assumption. Let

II:= H xB.

PeP

> u(a) = {(1) b =Ox

otherwise,
alb

for any nonzero ideal b of Ok . Assume that f(a) # 0. Then
1, ifforall’BeP, fla
5 M(a):{ TeP, fla)gP
)

It is well known that

0, otherwise.

a|(TL, f (e
Write (f(a)) = c1¢5*, where ¢; is m-free. Then b™ | f(«) if and only if b | ¢,
whence
1, if f(«) is m-free
Z o) = {O othe(rviise.
b7 | f(a) ’
Therefore,
(2) N(z) = pla) > pu(b).
a€R(z)NO a|(I1, f(a)) b | f(a)
Put
(3) Ni(z,y) = p(a) > p(b),
a€R(z)NO a|(IL, f(a)) (b,IT)=1
6™ | f ()
MNb<y
and
(4) No(z,y) = pla) Y p(b).
a€R(z)NO a|(I1, f(a)) 6™ | f(a)

Nb>y
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It will turn out that, with a suitable choice of y, the main component of N(z) is
Ni(z,y). In fact, since

al(IL, f (@) (b,I1)#£1

6| f ()

MNb<y
for all & € Ok with f(«a) # 0, we have
3.1. Estimation of Na(z,y). We can reduce the estimation of Na(z, y) to a similar
computation to that which has already been performed by Hinz [11]. Indeed, for

any nonzero ideal q of Ok, we have

INo(zy)l < > | D w@]] D ub)

a€R(z)NO  a|(IT,f(a)) 6™ | f ()
Nb>y
< (n@?) > (X > w
alIT a€ER(z) «¢|q bm|f a)
(b q)

<NNg > > p

a€R(z) b™|f(a)

Nb>y/Ng

(b,9)=1
The last expression differs only by a multiplicative constant from the right-hand
side of [11, (2.6)], so we can use Hinz’s estimates [l 1, pp. 139-145] without any

change. With a suitable choice of g ([11, (2.8)]), we get (see Lemma 2.2 and the
proof of Theorem 2.1 from [11])

(6) No(z, y) = O (29 1Dy (t=m)/(2141) (g (=m)/g | 1)),

for any integer 1 <! <m — 1, as z, y — oo. The implicit O-constant depends on
K, f, m, and P.

3.2. Computation of Ni(z,y). Now let us compute Ny(z,y). We have

(7) Ni(z,y) ZM Z (b) [Mq ()],

alll (b,II)=1
Nb<y

where M, p(x) is the set of all @ € R(z) N O such that f(o) € a and f(a) € b™.
Since all occurring ideals a, b are relatively prime, we have

Map(z) ={a€eR(z)NO| f(a) =0 mod ab™}
= U ((B+ab™) NR(z) NO),

B+ab™ €Ok /ab™
f(B)=0 mod ab™

where the union over all roots of f modulo ab™ is disjoint. We asymptotically
count each of the sets (8 + ab™) NR(z) N O by counting lattice points. Consider
the natural monomorphism ¢ : O/(ab™ N O) — Ok /ab™, mapping a + (ab™ N O)
to ac + ab™.

Lemma 7. The set (§+ ab™) N O is not empty if and only if B + ab™ is in the
image of .

In that case, let € € [0,1/n], and ¢ > 1/m such that Mb < x¢. Then
$1_E

Mp(l—e)/c’

T

(8 +ab™) NR(z) N O]~ er(K) 5 — ey

< c(K)
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Here, ¢1(K) = (2m)%/+/|dk|, and c2(K) is an explicitly computable constant which
depends only on K.

Proof. If a € (B+ab™)NO then B+ ab™ = a+ab™ = p(a+ (ab™NQO)). If, on the
other hand, 8+ ab™ = ¢(a+ (ab™NQO)), for some o € O, then o+ ab™ = f+ab™,
and thus o € (8 +ab™)NO.

Assume now that (8 + ab™)N O is not empty. Then, for any o € (84 ab™)N O,
we have

|(8+ab™) NR(z) N O] = [(ab™ N O) N (R(z) — a)l.

Let 0 : K — R"™ be the standard embedding defined in Section 2, and let T : R™ —
R™ be the linear automorphism given by

T(e;) = wl/"/xi e, for 1 <4 <r, and

T(erti) = l‘l/n/l‘r+"i/21 “epyi, for 1 < i < 2s,

where ey, ..., e, is the standard basis of R™. Then

(8) det T =z/(x1 - wpaly--al,,) =a/(x1 - 2,) =1

Therefore, T'(o(ab™ N O)) is a lattice in R™ with determinant

(9) det T(o(ab™ N O)) = 27%/|dx|[Ok : ab™ N O].

Moreover, T(o(R(z)—«)) = T(c(Ok))NB, where B is a product of r line segments
of length /™ and s disks of radius z'/™. Clearly,

(10) Vol(B) = 7°z.

We construct maps @ : [0,1]"! — R” as in Theorem 5. Write B =1 X + -+ X [,. X
dri1 X -+ X dpys, with line segments [; of length z'/™ and disks d; of radius x!/™.
Put

Bi:i=11 X - Xl x (Ol;) x lig1 X -+« X lp X dpgq1 X -+ X dypys,
for 1 <i<r,and

Bi:=11 X Xlp Xdpyq X - Xdimy X (0d;) X dig1 X -+ X dpys,

forr+1<i¢<r+s. Then
r+s

OB = U B;.
=1

For 1 < i < r, Jl; consists of two points, and the remaining factor of B; is contained

in an (n — 1)-dimensional cube of edge-length 201" For r+1 < i < r+ s,

dd; is a circle of radius #'/", and the remaining factor of B; is contained in an

(n — 2)-dimensional cube of edge-length 2z'/™. Therefore, we find 2r + s maps

®:[0,1]""! —» R™ with

(11) |®(v) — ®(w)| < 2mzt/™ v — w],

such that 0B is covered by the union of the images of the maps ®.

Since
[(B+ab™)NR(z) NO| = |T(o(ab™ NO)) NT(a(R(z) — a))|
=|T(c(ab™NO))NB|,

Theorem 5 and (9), (10), (11) yield

(2m)® x zi/m
<cs(K .

1/|dK| [OK : abmﬂ(’)] - 3( ))\1)\Z

Here, c5(K) = (2r+5)(2m)"n®"/2 i € {0,...,n—1}, and A, ..., A; are the first
i successive minima of the lattice T'(o(ab™ N O)) with respect to the unit ball.

(12) (6 4+ ab™) NR(z) N O] -
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Let us further estimate the right-hand side of (12). First, we need a lower
bound for \; in terms of 91b. For each 4, there is some o € (ab™ N O) \ {0} with
Ai = |T(o(a))]. Since a € b™, the inequality of weighted arithmetic and geometric

means and (8) yield (cf. [15, Lemma 5], [19, Lemma 9.7])
TS| 1/n ;
M™ < |N(a \—Hlog =115
j=11 "7
7+s 9 n/2

2 n/2 .
Zd g(n) AT

Here,dj =1for 1 < j<r,andd; =2 for r+1<j <r+4s. Recall that n > 2.
With the assumptions on € and ¢ in mind, we get
xl/n ) /2 xl/n pl—e pl—e
< < < .
PYREED Vi ( ) Memi/n — Mpmi/nt(l—e—i/n)/c = np(l—e)/c

n
O

Since f € O[X], we can conclude from S + ab™ = @(a + (ab™ N O)) that
f(B) € ab™ if and only if f(a) € ab™ N O. Therefore,

Mg p(z) = U (a+ab™NONR(z)),
a+(ab™NOYEO/ (ab™NO)
f(a)=0 mod (ab™NO)
and thus

1.175

Mpd—e)/c’

T

[Map(z)| — Cl(K)Lo(abm)m <

co(K)L(a)L(6™)

whenever b < z¢ for some ¢ > 1/m, and € € [0,1/n]. Notice that Lo (ab™) <
L(ab™) = L(a)L(b™), since a, b are relatively prime. Therefore,
L@(abm)
S ) Ma@)] — (B S (o) 2l
(6.1 (b =1 [OK sab™ N O]
No<a°
Lo(abm)
< M, —a(K)re—m——
S| 2 w0 (1Maalo)] - a0y LAY,
(b,I1)=1
No<a°

Lo(ab™
+|01(K)1' Z /l(b)[oi{?c(li,n%o]|
(6,IT)=1

Nb>z*

< ea(K)e L) 3 (o)

(b,I1)=1

falK)Lae Y )
(b,I1)=1
Nb>z*

L(b6™)
Mp(l—e)/c

L(bm,)
[Ok :ab™ N O]’

Let s > 1 be a real number. As in [11, top of p. 138], we get
> n(®)’L(6™) = O(y),
Nb<y

whence

L m
Z M(b)Q s:)(/tbbs) — O(J,‘C(lis)),
(b,IT)=1

Nb>z*
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by partial summation. Therefore, the sum
L(6™)
27
Z ’u(b) Mp(l—e)/c
(b,I)=1

converges whenever ¢ < 1 —e. Since [O : ab™ N O] > 9b™, we have

S e S e < o),

(b,I)=1 Ok : ab™ N O (b,I1)=1
Nb>z* Nb>z*
Putting everything together, we get
_ L@(abm)
> nl) Mas(a)l =ar(K)r 3 (o) 2
(13) (b,II)=1 (b,II)=1

Nb<z*

+ 0(371_5 + xl—&-c(l—m)),
whenever 1/m <c¢<1—¢and 0 <e < 1/n, as x — co. The implicit O-constant
depends on K, a, P, f, m, c and €.
3.3. End of the proof. By (5), (6), (7) and (13), we get

N(z) = Ni(z,z°) + No(z, 2°)
Lo(abm)
=)o) 3 e i+ R

aml (b =1 Ok :abm N O]
=: Dz + R,
where
R = O(xl—s + xl—c(m—l) + xg/(2l+1)—c(m—l)/(2l+1)(xl—c(rn—l)/g + 1))
holds for every 0 < e <1/n,1/m<c<1l—¢g,andl € {l,...,m — 1}, as © — oc.

The implicit O-constant depends on K, P, f, m, ¢, and ¢.
Assume first that m > g + 1. Then we put

l:==m—g, c¢:=1-5/(¢g+10), e:=min{l/n, 4/(g+ 10)},
to get
R = O(a}~Y/m 4 g1=4/(9+10) o p1=9(945)/(9410) 4 4:(945)/(9+10)) — (g1 —u(m9)),
with u(n, g) as in the theorem.
Now suppose that 2 < m < g+ 1. Then
R— O(zkg 4 glmelm=1) | x1+g/(2l+1)fc(m71)(9+2l+1)/(g(2l+1)))'
We proceed as in [11, Section 3, Proof of Theorem 1.1]. For every m that satisfies

(1), we find some 1 <1 <m —1 < g, such that m — 1 > ¢?/(2l + g+ 1). Then we
can choose some ¢, depending only on g, I, with

2
1 9(2l +2) < g@2l+1) +g o<l
m = g2l+2)(m—I+1) — (m—-DQ2l+g+1)+g20+1) —

A straightforward computation shows that
1+g/2l+1) —c(m—1)(g+20+1)(g(2l+1)) <c
Forany 0 <e<1—c¢,e<1/n, we get
R=0(z""%+2'7° +2° = Oz} u(m9)),

for a suitable choice of u(n, g). Notice that there are only finitely many values of
m for every g.
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The only task left is to prove that D has the form claimed in the theorem. We
split up D in the following way: Let II; be the product of all prime ideals in P\ Pj.
Then

D=ci(K)Y p(a) > plb) > W

Ox abem M O]
alf b|II1 (¢, 1)=1
__a(K) m(a)Lo(a) x—~ p(b)Lo(b) () Lo(c™)
[0k : O] pr [O:an O] [%:1 [©:6N0O) (c%:_l [O:emnO]

This holds because for all combinations of a, b, ¢ as above, the O-ideals (a N O),
(6N O) and (¢ N O) are relatively prime to each other, by Lemma 6. Therefore,

[Ok :abc™ NO] =[O0k : O[O :anO][O:6NOJO: ™ NO],

and

Lo(abc™) = Lo(a)Lo(b)Lo(c™).
Finally, we notice that, by Lemma 6, [O : t N O] = 9r and thus Lo(t) = L(t), for
any ideal v of Ok relatively prime to f. A simple Euler product expansion yields
the desired form of D. All factors of the infinite product
I (1-220)
P¢P R
are positive, since no P is a fixed divisor of f. For all but the finitely many
prime ideals of Ok that divide the discriminant of f, we have L(P™) = L(P) < g.
Therefore, the infinite product is convergent and positive.

This concludes the proof of Theorem 3 under the assumption that f has no
totally positive root in K. If f has such a root then we let the first sum in (2), (3),
(4) run over all @ € R(z) N O such that f(a) # 0. The estimation of Na(z,y) in
Section 3.1 holds still true, since a possible a with f(«) = 0 is ignored in Hinz’s
estimates anyway. In (7), we get an error term O(y). This additional error term
becomes irrelevant in Section 3.3.

4. PROOF OF PROPOSITION 4
We need the following estimate for the index [Ok : O].
Lemma 8. Let pq, ..., pi be distinct prime ideals of O. For each 1 < i <k, let
piOx = P; i %fl’

be the factorisation of p; in Ok, with distinct prime ideals °B; ; of Ok, and e; j,
l; > 1. Then

i 1O pi] j=1
with equality if and only if § divides Hle H.ljizl ‘}3?]1
Proof. Put
koL
o= ]
i=15=1
Then we have
TSI (1111 T R s SR | 9 | (R
K = > =
©:1N0] ©O:Nap] IO P

since [0 : IINO] =[O : ﬂle pi] = Hle[(’) : p;], by the Chinese remainder theorem.
Moreover, we have Il = II'N O if and only if § divides II. O
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Without loss of generality, we may assume that P contains all prime ideals of Og
dividing the conductor f of O. Since n € O \. K2, the polynomial f := X? —4n €
O[X] is irreducible over Ok . Evaluating f at 0 and 1, we see that the only fixed
divisor of f is (1).

We put 1 =--- = x,, so

R(z) = {o € Ok | a totally positive, max joi ()] < 2!/}
<i<n

depends only on z. Let N(x) be the number of all & € R(x), such that

(1) for all P € P, a® — 4n ¢ P, and
(2) a? — 49 is squarefree,

and let No(z) be the number of all & € R(z) N O with the same two properties.
Theorem 3, with m = g = 2, invoked once with the maximal order Ok and once
with the order O, yields

N(z) = Dz + O(z'™*) and No(z) = Doz + O(z'™%).
To prove the proposition, it is enough to show that

lim Y@ _ oy, M@

T — 00 x T—r00 X

that is, Do < D.
By Theorem 3, the infinite product

(-5

BEP

is convergent and positive. Moreover, we notice that

(14) (1= L(B)/7P) > 1/2,

for every prime ideal P of Ok . This is obvious if 2 ¢ P, since then 9P > 5 by
the hypotheses of the proposition, but f is of degree 2, so L(B) < 2. If 2 € P then
we have f = X2 mod B, whence L(B) = 1. On the other hand, 9P > 4, so (14)
holds again. Therefore, the finite product

(- 5)

is positive as well. The proposition is proved if we can show that

1 (@) Lo(a) _L(B)
(15) O+ 0] 2- [O:aﬂ@]<m1€_-7[3f( smp)'

Let p1, ..., px be the prime ideals of O that contain the conductor f, and, for
each 1 <i <k, let

€i, €i,l;
piOx =B 5" B

with distinct prime ideals 93; ; of Ok, and e; 4, [; > 1. Then the ; ; are exactly
the prime ideals of O dividing f, that is, the elements of P;.

Notice that, for every ideal a | ;1 ---Piy, of Ok, we have aNO = p; if a # Ok,
and anN O = O if a = Ok, since O is one-dimensional. As all p;, p;, i # j, are
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relatively prime, we get

k
p(a)Lo(a)
[(9 a ﬂ (9 H Z [O:anO]

1a‘q37 1 mzl
k
71—[ 1+L((99‘J3“) 3 1)1 H< LO‘BM))
pil JC{1,.. L } i=1 ]
T

Thus, (15) is equivalent to

k kol
LO(%zl)) ( mzj))
1- <O - :
(60 ) <lorallI (1 o
Clearly, T1 := []\_, ]_[J B divides the conductor f. Let us first assume that

IT is a proper divisor of f. Then Lemma 8 (with strict inequality, since f does not
divide II), (14), and the fact that 9UP > 4 for all prime ideals B of Ok imply

ow oI (1- 452) ~ [T (- 4 T

i=1j=1 i=1 j=2
NP, L)\ ot - T Lo(Pis)
>H[O:pi]<l_ ‘ml>2 >H<1_ Opl]>

For the last inequality, notice that either Ox /PB;1 ~ O/p;, and thus L(P; 1) =
Lo (3]31',1)7 or

NPia L(%Bi1) 1 _ Lo(Pin)
0 pi] (1— NP4 > >2--=12>1

2 N (O :pi]
We are left with the case where IT = §f. Then, for all 1 <i < k, we have
(16) l; >1or €;1 > 1or [OK/(B¢71 : O/pz] > 1

Indeed, suppose otherwise, that is p,Ox = P, 1 and Or /Pi1 ~ O/p;, for some 3.
We put O := (Ok)sp, ,, the integral closure of the localisation Oy, m := p;O,,, the
maximal ideal of Oy,, and M := ‘ﬁi,lé, the maximal ideal of @. Then

. (O m] (O Py ][ M im]
[O:0,,] = [0, :m] [O : pi] =

The second equality holds because Ok /i1 ~ O/M, and O/p; =~ O,,/m. The
third equality holds because 9t = ‘13171(’3 = f@, whence 901 is clearly contained
in the conductor of @,, in O. (Here we used the hypothesis IT = f.) Therefore
M=MNO,, =m.

Therefore, O,, is a discrete valuation ring. According to [16, Theorem 1.12.10],
this is the case if and only if p; does not contain f. Since p; contains f, we have
proved (16). (In [16, Section I1.13], it is stated that (16) holds even without the
requirement that IT = f, but no proof is given.)
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With Lemma 8, (14), and the fact that 9P > 4 for all prime ideals P of Ok,
we get

L L(B;,; k 1 L ‘ﬁ‘Bf,}’
ox - Ol]11 (1_ giﬁ;f) gl e

i=1

k e;1—1 k
NP, 1 NP, 5 L1 O e o 1y
> ’ J oli=1 > 9([Ok /PBi,1:0/pi]=1)+(ei 1 —1)+(Li-1) -1
B H [O:pi] 2 B H

=1

To conclude our proof, we notice that the last expression is at least 1, by (16).

5. PROOF OF THEOREM 1

We need to construct extensions of K where we have good control over the ring
of integers. This is achieved by the following two lemmata.

Lemma 9 (([14, Lemma 1])). Let r be a positive integer, and € Ok, such that
g = X" - € Ok[X] is irreducible. Let n be a root of g, L = K(n), and Dk
the relative discriminant of L|K. For every prime ideal B of Ok not dividing
ged(r, vy (8)), we have

vp(Dpik) = r-op(r) +r — ged(r, vp(B)).
Lemma 10. Let w, n € O, such that w? — 4n is squarefree and relatively prime
to 2. Assume that the polynomial h := X? — wX +n € Og|[X] is irreducible, and

let « be a root of h. Then the ring of integers of K(«) is Okla], and the relative
discriminant ® g o)k of K(a) over K is the principal ideal (w? — 4n).

Proof. The discriminant of a over K is

(1 w2\,
d(oz)—det(1 (w_\/m)ﬂ) —w? -

Let, say, (w? —4n) = Py - - - P, with an integer s > 0 and distinct prime ideals B;
of Ok not containing 2. Then the relative discriminant ® g () x divides 1 - - - Bs.

Since K(a) = K(y/w? —4n), Lemma 9 implies that vy, (D (a)x) = 1, for
all 1 <4 < s, whence the relative discriminant ® g (o) is the principal ideal
(w? — 4n) = (d(a)). This is enough to prove that the ring of integers of K(«) is
Okla] (see, for example, [20, Chapter V, Theorem 30]). O

4n.

We may assume that K satisfies the hypotheses of Proposition 4, since it is
enough to prove the theorem for the number field K (v/5) 2 Q(v/5).

We may also assume that the field K is generated by a unit of Og. If not, say
K = Q(B), where 8 € Of. Let a be aroot of the polynomial X2—8X+1 € Ox[X].
Then Q(«) 2 K, whence it is enough to prove the theorem for Q(a), and « is a
unit of the ring of integers of Q(«).

Therefore, the ring generated by the units of O is an order. Let us call that
order OV. If OV = O then there is nothing to prove, so assume from now on that
OY + Ok.

Choose a unit n € O3 ~ K?. We use Proposition 4 to obtain elements wy, ...,
wy, € Ok with

(17) Ok = 0wy, ..., w.],

such that

(18) all w? — 4n are squarefree and relatively prime to 2 and each other.
Start with

P :=supp(2), O:=0Y,
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and choose an element w; as in Proposition 4. Then OY[w;] is an order larger than
OV, whence

[OK : OU] < [OK : OU]
[OV]wy] : OV] — 2 '
Assume now that wy, ..., w;_1 have been chosen. If OV[wy,...,w; 1] = Ok then
stop, otherwise put

Ok : OY[wi]] =

i—1
P :=supp(2) U U supp(w? —4n), O:=0%w,...,wi1].
j=1

Let w; be an element as in Proposition 4. Then
[OK : OU[wl,.. . ,wi]] S [OK : OU[wl, NN 7wi,1]]/2 S [OK : OU]/2Z

Therefore, the above process stops after r < log,([Of : OV]) steps, with elements
Wi,y veny wp € O N OY, such that O = OY[wy,...,w,]. Conditions (18) hold by
our construction.

For 1 <i <7, let a; be a root of the polynomial X2 — w; X +n € Og[X]. Then
@; is a unit in the ring of integers of K(«;). Moreover, a; ¢ K, since otherwise
a; € O, and w; = oy + na;l € OV, a contradiction. By Lemma 10, the ring of
integers of K(a;) is Ok o], and the relative discriminant ® g (q,)jx of K(a;) over
K is the principal ideal (w? — 47).

We use the following well-known fact (for a proof, see [16, Theorem 1.2.11]):

Lemma 11. Let L|K and L'|K be two Galois extensions of K such that
(1) LNL =K,
(2) L has a relative integral basis {f1,..., 5} over K,
(3) L' has a relative integral basis {81, ..., 5} over K, and
(4) the relative discriminants Dk and Dy i are relatively prime.

Then the compositum LL' has a relative integral basis over K consisting of all
products B; B}, and the relative discriminant of LL'|K is

LK L:K
Dk =0 D

Consider the extension fields L; := K(aq,...,qa;) of K. We claim that L; has
an integral basis over K consisting of (not necessarily all) products of the form

l—Iaj7 for J C{1,...,i},

jeJ
and that the relative discriminant Dy, is relatively prime to all relative discrim-
inants D g (q,) K, for i <j <r.

With (18), this claim clearly holds for L1 = K(aq). If the claim holds for L;_1,
and «; € L;_1, then it holds for L; = L;_y as well. If K(«;) € L;—1 then the
extensions L;_1|K and K(«;)|K satisfy all requirements of Lemma 11, whence the
claim holds as well for L; = L;_1 K (o).

Now put L := L,. Then the ring of integers of L is Op = Ok|ay,...,«,]. With
(17) and w; = a; +na; !, we get

Op =0Y%wr,...,wp,a1,...,00] = OYaq, a7t ap, oY,
and the latter ring is generated by units of Of.

Acknowledgements. I would like to thank Martin Widmer for many helpful com-
ments and discussions, in particular about Lemma 7 and the linear transformation
T that occurs there. The idea of using such transformations stems from an upcom-
ing paper by Widmer.
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