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Abstract. We give an affirmative answer to the following question by Jarden

and Narkiewicz: Is it true that every number field has a finite extension L
such that the ring of integers of L is generated by its units (as a ring)?

As a part of the proof, we generalise a theorem by Hinz on power-free values

of polynomials over number fields.

1. Introduction

The earliest result regarding the additive structure of units in rings of algebraic
integers dates back to 1964, when Jacobson [12] proved that every element of the

rings of integers of Q(
√

2) and Q(
√

5) can be written as a sum of distinct units.

Later, Śliwa [17] continued Jacobson’s work, proving that there are no other qua-
dratic number fields with that property, nor any pure cubic ones. Belcher [2], [3]
continued along these lines and investigated cubic and quartic number fields.

In a particularly interesting lemma [2, Lemma 1], Belcher characterised all qua-
dratic number fields whose ring of integers is generated by its units: These are
exactly the fields Q(

√
d), d ∈ Z squarefree, for which either

(1) d ∈ {−1,−3}, or
(2) d > 0, d 6≡ 1 mod 4, and d+ 1 or d− 1 is a perfect square, or
(3) d > 0, d ≡ 1 mod 4, and d+ 4 or d− 4 is a perfect square.

This result was independently proved again by Ashrafi and Vámos [1], who also
showed the following: Let O be the ring of integers of a quadratic or complex cubic
number field, or of a cyclotomic number field of the form Q(ζ2n). Then there is no
positive integer N such that every element of O is a sum of N units.

Jarden and Narkiewicz [13] proved a more general result which implies that the
ring of integers of every number field has this property: If R is a finitely generated
integral domain of zero characteristic then there is no integer N such that every
element of R is a sum of at most N units. This also follows from a result obtained
independently by Hajdu [10]. The author [7] proved an analogous version of this
and of Belcher’s result for rings of S-integers in function fields.

In [13], Jarden and Narkiewicz raised three open problems:

A. Give a criterion for an algebraic extensionK of the rationals to have the property
that the ring of integers of K is generated by its units.

B. Is it true that each number field has a finite extension L such that the ring of
integers of L is generated by its units?

C. Let K be an algebraic number field. Obtain an asymptotical formula for the
number Nk(x) of positive rational integers n ≤ x which are sums of at most k
units of the ring of integers of K.

The result by Belcher stated above solves Problem A for quadratic number fields.
Similar criteria have been found for certain types of cubic and quartic number fields
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[5], [18], [21]. All these results have in common that the unit group of the ring in
question is of rank 1.

Quantitative questions similar to Problem C were investigated in [5], [6], [9]. The
property asked for in Problem B is known to hold for number fields with an Abelian
Galois group, due to the Kronecker-Weber theorem. However, this is all that was
known until recently, when the author [8] affirmatively answered the question in
the function field case. In this paper, we use similar ideas to solve Problem B in its
original number field version:

Theorem 1. For every number field K there exists a number field L containing K
such that the ring of integers of L is generated by its units (as a ring).

It is crucial to our proof to establish the existence of integers of K with certain
properties (see Proposition 4). We achieve this by asymptotically counting such
elements. To this end, we need a generalised version of a theorem by Hinz [11, Satz
1.1], which is provided first. Let us start with some notation.

2. Notation and auxiliary results

All rings considered are commutative and with unity, and the ideal {0} is never
seen as a prime ideal. Two ideals a, b of a ring R are relatively prime if a+ b = R.
Two elements α, β ∈ R are relatively prime if the principal ideals (α), (β) are.

The letter K denotes a number field of degree n > 1, with discriminant dK and
ring of integers OK . Let there be r distinct real embeddings σ1, . . ., σr : K → R and
2s distinct non-real embeddings σr+1, . . ., σn : K → C, such that σr+j = σr+s+j ,
for all 1 ≤ j ≤ s. Then σ : K → Rn is the standard embedding given by

α 7→ (σ1(α), . . . , σr(α),<σr+1(α),=σr+1(α), . . . ,<σr+s(α),=σr+s(α)).

An element α ∈ OK is called totally positive, if σi(α) > 0 for all 1 ≤ i ≤ r.
A non-zero ideal of OK is called m-free, if it is not divisible by the m-th power

of any prime ideal of OK , and an element α ∈ OK \ {0} is called m-free, if the
principal ideal (α) is m-free. We denote the absolute norm of a non-zero ideal a of
OK by Na, that is Na = [OK : a]. For non-zero ideals a, b of OK , the ideal (a, b)
is their greatest common divisor. If β ∈ OK \ {0} then we also write (a, β) instead
of (a, (β)). By supp a, we denote the set of all prime divisors of the ideal a of OK .
The symbol µ stands for the Möbius function for ideals of OK .

For x = (x1, . . . , xn) ∈ Rn, with xi ≥ 1 for all 1 ≤ i ≤ n, and xr+s+i = xr+i, for
all 1 ≤ i ≤ s, we define

R(x) := {α ∈ OK | α totally positive, |σi(α)| ≤ xi for all 1 ≤ i ≤ n},

and

x := x1 · · ·xn.

Let f ∈ OK [X] be an irreducible polynomial of degree g ≥ 1. For any ideal a of
OK , let

L(a) := |{β + a ∈ OK/a | f(β) ≡ 0 mod a}| .

By the Chinese remainder theorem, we have L(a1 · · · ak) = L(a1) · · ·L(ak), for ideals
a1, . . ., ak of OK that are mutually relatively prime.

We say that the ideal a of OK is a fixed divisor of f if a contains all f(α), for
α ∈ OK .

Hinz established the following result, asymptotically counting the set of all α ∈
R(x) such that f(α) is m-free:
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Theorem 2 (([11, Satz 1.1])). If m ≥ max{2,
√

2g2 + 1− (g+ 1)/2}, such that no
m-th power of a prime ideal of OK is a fixed divisor of f , then∑

α∈R(x)
f(α) m-free

1 =
(2π)s√
|dK |

· x ·
∏
P

(
1− L(Pm)

NPm

)
+O(x1−u),

as x tends to infinity. Here, u = u(n, g) is an effective positive constant depending
only on n and g, the infinite product over all prime ideals P of OK is convergent
and positive, and the implicit O-constant depends on K, m and f .

A subring O of OK is called an order of K if O is a free Z-module of rank
[K : Q], or, equivalently, QO = K. Orders of K are one-dimensional Noetherian
domains. For any order O of K, the conductor f of O is the largest ideal of OK
that is contained in O, that is

f = {α ∈ OK | αOK ⊆ O}.

In particular, f % {0}, since OK is finitely generated as an O-module. For more
information about orders, see for example [16, Section I.12].

Assume now that f ∈ O[X]. Then we define, for any ideal a of OK ,

LO(a) := |{α+ (O ∩ a) ∈ O/(O ∩ a) | f(α) ≡ 0 mod (O ∩ a)}| .

The natural monomorphism O/(O ∩ a) → OK/a yields LO(a) ≤ L(a), and if a1,
. . ., ak are ideals of OK such that all ai ∩ O are mutually relatively prime then
LO(a1 · · · ak) = LO(a1) · · ·LO(ak).

In our generalised version of Theorem 2, we do not count all α ∈ R(x) such that
f(α) is m-free, but all α ∈ R(x) ∩ O, such that f(α) is m-free and f(α) /∈ P, for
finitely many given prime ideals P of OK .

Theorem 3. Let O be an order of K of conductor f, and f ∈ O[X] an irreducible
(over OK) polynomial of degree g ≥ 1. Let P be a finite set of prime ideals of OK
that contains the set Pf := supp f. Let

(1) m ≥ max
{

2,
√

2g2 + 1− (g + 1)/2
}

be an integer such that no m-th power of a prime ideal of OK is a fixed divisor of
f , and denote by N(x) the number of all α ∈ O ∩R(x), such that

(1) for all P ∈ P, f(α) /∈ P
(2) f(α) is m-free.

Then

N(x) = Dx+O(x1−u),

as x tends to infinity. Here, u = u(n, g) is an explicitly computable positive constant
that depends only on n and g. The implicit O-constant depends on K, P, f and
m. Moreover,

D =
(2π)s√

|dK |[OK : O]

∑
a|f

µ(a)LO(a)

[O : a ∩ O]

∏
P∈P\Pf

(
1− L(P)

NP

) ∏
P/∈P

(
1− L(Pm)

NPm

)
.

The sum runs over all ideals of OK dividing f, and the infinite product over all
prime ideals P /∈ P of OK is convergent and positive.

For our application, the proof of Theorem 1, we only need the special case
where m = g = 2, and we do not need any information about the remainder term.
However, the additional effort is small enough to justify a full generalisation of
Theorem 2, instead of just proving the special case. The following proposition
contains all that we need of Theorem 3 to prove Theorem 1.
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Proposition 4. Assume that for every prime ideal of OK dividing 2 or 3, the
relative degree is greater than 1, and that O 6= OK is an order of K. Let P be a
finite set of prime ideals of OK , and let η ∈ O r K2. Then there is an element
ω ∈ OK with the following properties:

(1) ω /∈ O,
(2) for all P ∈ P, ω2 − 4η /∈ P, and
(3) ω2 − 4η is squarefree.

The basic idea to prove Theorem 1 is as follows: Let O be the ring generated by
the units of OK . With Proposition 4, we find certain elements ω1, . . ., ωr of OK ,
such that O[ω1, . . . , ωr] = OK . Due to the special properties from Proposition 4,
we can construct an extension field L of K, such that ω1, . . ., ωr are sums of units
of OL, and OL is generated by units as a ring extension of OK . This is enough to
prove that OL is generated by its units as a ring.

3. Proof of Theorem 3

We follow the same strategy as Hinz [11] in his proof of Theorem 2, with mod-
ifications where necessary. For any vector v ∈ Rn, we denote its Euclidean length
by |v|. We use a theorem by Widmer to count lattice points:

Theorem 5 (([19, Theorem 5.4])). Let Λ be a lattice in Rn with successive minima
(with respect to the unit ball) λ1, . . ., λn. Let B be a bounded set in Rn with
boundary ∂B. Assume that there are M maps Φ : [0, 1]n−1 → Rn satisfying a
Lipschitz condition

|Φ(v)− Φ(w)| ≤ L |v − w| ,
such that ∂B is covered by the union of the images of the maps Φ. Then B is
measurable, and moreover∣∣∣∣|B ∩ Λ| − VolB

det Λ

∣∣∣∣ ≤ c0(n)M max
0≤i<n

Li

λ1 · · ·λi
.

For i = 0, the expression in the maximum is to be understood as 1. Furthermore,

one can choose c0(n) = n3n2/2.

We need some basic facts about contracted ideals in orders. The statements of
the following lemma can hardly be new, but since the author did not find a reference
we shall prove them for the sake of completeness.

Lemma 6. Let O ⊆ OK be an order of K with conductor f. Then, for any ideals
a, b of OK , the following holds:

(1) if a + f = OK and b | f then (a ∩ O) + (b ∩ O) = O.
(2) if a + f = OK , b + f = OK , and a + b = OK then (a ∩ O) + (b ∩ O) = O.
(3) if a + f = OK then [O : a ∩ O] = Na.

Proof. For any ideal a of OK with a + f = OK , we have

(a ∩ O) + f = (a + f) ∩ O = OK ∩ O = O.

The first equality holds because for every α ∈ a, β ∈ f ⊆ O with α + β ∈ O it
follows that α ∈ O.

Moreover, if c is an ideal of O with c + f = O then

cOK + f ⊇ (c + f)OK = OOK = OK .

Therefore,
ϕ : a 7→ a ∩ O and ψ : c 7→ cOK

are maps between the sets of ideals

{a ⊆ OK | a + f = OK} and {c ⊆ O | c + f = O}.
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Let us prove that ϕ and ψ are inverse to each other. Clearly, (ϕ ◦ ψ)(c) ⊇ c and
(ψ ◦ ϕ)(a) ⊆ a. Also,

(ϕ ◦ ψ)(c) = (cOK ∩ O)O = (cOK ∩ O)(c + f) ⊆ c + f(cOK ∩ O) ⊆ c + cfOK ⊆ c,

and

a = aO = a((a ∩ O) + f) ⊆ (a ∩ O)OK + fa ⊆ (a ∩ O)OK + (a ∩ O) = (ψ ◦ ϕ)(a).

Clearly, ϕ and ψ are multiplicative, so the monoid of ideals of O relatively prime
to f is isomorphic with the monoid of ideals of OK relatively prime to f. (In the
special case where O is an order in an imaginary quadratic field this is proved in
[4, Proposition 7.20].)

If a, b are as in (1) then f ⊆ b∩O, and thus O = (a∩O) + f ⊆ (a∩O) + (b∩O).
Suppose now that a, b are as in (2), and ϕ(a) + ϕ(b) =: c ⊆ O. Then c + f ⊇

ϕ(a) + f = O, whence c = ϕ(d), for some ideal d of OK relatively prime to f. Now
a ⊆ d and b ⊆ d, so d = OK , and thus c = O.

To prove (3), we show that the natural monomorphism Φ : O/(a ∩ O)→ OK/a
is surjective. This holds true, since

OK = a + f ⊆ a +O.

�

For now, let us prove Theorem 3 with the additional assumption that f(α) 6= 0
for all totally positive α ∈ OK . This holds of course if deg f ≥ 2, since f is
irreducible over OK . At the end of the proof, we specify the changes necessary to
drop this assumption. Let

Π :=
∏
P∈P

P.

It is well known that ∑
a|b

µ(a) =

{
1, if b = OK
0, otherwise,

for any nonzero ideal b of OK . Assume that f(α) 6= 0. Then∑
a|(Π,f(α))

µ(a) =

{
1, if for all P ∈ P, f(α) /∈ P

0, otherwise.

Write (f(α)) = c1c
m
2 , where c1 is m-free. Then bm | f(α) if and only if b | c2,

whence ∑
bm|f(α)

µ(b) =

{
1, if f(α) is m-free

0, otherwise.

Therefore,

(2) N(x) =
∑

α∈R(x)∩O

∑
a|(Π,f(α))

µ(a)
∑

bm|f(α)

µ(b).

Put

(3) N1(x, y) :=
∑

α∈R(x)∩O

∑
a|(Π,f(α))

µ(a)
∑

(b,Π)=1
bm|f(α)
Nb≤y

µ(b),

and

(4) N2(x, y) :=
∑

α∈R(x)∩O

∑
a|(Π,f(α))

µ(a)
∑

bm|f(α)
Nb>y

µ(b).
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It will turn out that, with a suitable choice of y, the main component of N(x) is
N1(x, y). In fact, since ∑

a|(Π,f(α))

µ(a)
∑

(b,Π)6=1
bm|f(α)
Nb≤y

µ(b) = 0,

for all α ∈ OK with f(α) 6= 0, we have

(5) N(x) = N1(x, y) +N2(x, y).

3.1. Estimation of N2(x, y). We can reduce the estimation of N2(x, y) to a similar
computation to that which has already been performed by Hinz [11]. Indeed, for
any nonzero ideal q of OK , we have

|N2(x, y)| ≤
∑

α∈R(x)∩O

∣∣ ∑
a|(Π,f(α))

µ(a)
∣∣ · ∣∣ ∑

bm|f(α)
Nb>y

µ(b)
∣∣

≤
(∑

a|Π

µ(a)2
) ∑
α∈R(x)

∣∣∑
c|q

∑
bm|f(α)
Nb>y

(b,q)=c

µ(b)
∣∣

≤ NΠNq
∑

α∈R(x)

∑
bm|f(α)

Nb>y/Nq
(b,q)=1

µ(b)2.

The last expression differs only by a multiplicative constant from the right-hand
side of [11, (2.6)], so we can use Hinz’s estimates [11, pp. 139-145] without any
change. With a suitable choice of q ([11, (2.8)]), we get (see Lemma 2.2 and the
proof of Theorem 2.1 from [11])

(6) N2(x, y) = O(xg/(2l+1)y(l−m)/(2l+1)(xy(l−m)/g + 1)),

for any integer 1 ≤ l ≤ m − 1, as x, y → ∞. The implicit O-constant depends on
K, f , m, and P.

3.2. Computation of N1(x, y). Now let us compute N1(x, y). We have

(7) N1(x, y) =
∑
a|Π

µ(a)
∑

(b,Π)=1
Nb≤y

µ(b) |Ma,b(x)| ,

where Ma,b(x) is the set of all α ∈ R(x) ∩ O such that f(α) ∈ a and f(α) ∈ bm.
Since all occurring ideals a, b are relatively prime, we have

Ma,b(x) = {α ∈ R(x) ∩ O | f(α) ≡ 0 mod abm}

=
⋃

β+abm∈OK/ab
m

f(β)≡0 mod abm

((β + abm) ∩R(x) ∩ O) ,

where the union over all roots of f modulo abm is disjoint. We asymptotically
count each of the sets (β + abm) ∩ R(x) ∩ O by counting lattice points. Consider
the natural monomorphism ϕ : O/(abm ∩O)→ OK/abm, mapping α+ (abm ∩O)
to α+ abm.

Lemma 7. The set (β + abm) ∩ O is not empty if and only if β + abm is in the
image of ϕ.

In that case, let ε ∈ [0, 1/n], and c ≥ 1/m such that Nb ≤ xc. Then∣∣∣∣|(β + abm) ∩R(x) ∩ O| − c1(K)
x

[OK : abm ∩ O]

∣∣∣∣ ≤ c2(K)
x1−ε

Nb(1−ε)/c .
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Here, c1(K) = (2π)s/
√
|dK |, and c2(K) is an explicitly computable constant which

depends only on K.

Proof. If α ∈ (β+abm)∩O then β+abm = α+abm = ϕ(α+(abm∩O)). If, on the
other hand, β+abm = ϕ(α+(abm∩O)), for some α ∈ O, then α+abm = β+abm,
and thus α ∈ (β + abm) ∩ O.

Assume now that (β+ abm)∩O is not empty. Then, for any α ∈ (β+ abm)∩O,
we have

|(β + abm) ∩R(x) ∩ O| = |(abm ∩ O) ∩ (R(x)− α)| .
Let σ : K → Rn be the standard embedding defined in Section 2, and let T : Rn →
Rn be the linear automorphism given by

T (ei) = x1/n/xi · ei, for 1 ≤ i ≤ r, and

T (er+i) = x1/n/xr+di/2e · er+i, for 1 ≤ i ≤ 2s,

where e1, . . ., en is the standard basis of Rn. Then

(8) detT = x/(x1 · · ·xrx2
r+1 · · ·x2

r+s) = x/(x1 · · ·xn) = 1.

Therefore, T (σ(abm ∩ O)) is a lattice in Rn with determinant

(9) detT (σ(abm ∩ O)) = 2−s
√
|dK |[OK : abm ∩ O].

Moreover, T (σ(R(x)−α)) = T (σ(OK))∩B, where B is a product of r line segments
of length x1/n and s disks of radius x1/n. Clearly,

(10) Vol(B) = πsx.

We construct maps Φ : [0, 1]n−1 → Rn as in Theorem 5. Write B = l1 × · · · × lr ×
dr+1 × · · · × dr+s, with line segments li of length x1/n and disks di of radius x1/n.
Put

Bi := l1 × · · · × li−1 × (∂li)× li+1 × · · · × lr × dr+1 × · · · × dr+s,
for 1 ≤ i ≤ r, and

Bi := l1 × · · · × lr × dr+1 × · · · × di−1 × (∂di)× di+1 × · · · × dr+s,
for r + 1 ≤ i ≤ r + s. Then

∂B =
r+s⋃
i=1

Bi.

For 1 ≤ i ≤ r, ∂li consists of two points, and the remaining factor of Bi is contained
in an (n − 1)-dimensional cube of edge-length 2x1/n. For r + 1 ≤ i ≤ r + s,
∂di is a circle of radius x1/n, and the remaining factor of Bi is contained in an
(n − 2)-dimensional cube of edge-length 2x1/n. Therefore, we find 2r + s maps
Φ : [0, 1]n−1 → Rn with

(11) |Φ(v)− Φ(w)| ≤ 2πx1/n |v − w| ,
such that ∂B is covered by the union of the images of the maps Φ.

Since

|(β + abm) ∩R(x) ∩ O| = |T (σ(abm ∩ O)) ∩ T (σ(R(x)− α))|
= |T (σ(abm ∩ O)) ∩B| ,

Theorem 5 and (9), (10), (11) yield

(12)

∣∣∣∣∣|(β + abm) ∩R(x) ∩ O| − (2π)s√
|dK |

x

[OK : abm ∩ O]

∣∣∣∣∣ ≤ c3(K)
xi/n

λ1 · · ·λi
.

Here, c3(K) = (2r+s)(2π)n−1n3n2/2, i ∈ {0, . . . , n−1}, and λ1, . . ., λi are the first
i successive minima of the lattice T (σ(abm ∩ O)) with respect to the unit ball.
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Let us further estimate the right-hand side of (12). First, we need a lower
bound for λi in terms of Nb. For each i, there is some α ∈ (abm ∩ O) r {0} with
λi = |T (σ(α))|. Since α ∈ bm, the inequality of weighted arithmetic and geometric
means and (8) yield (cf. [15, Lemma 5], [19, Lemma 9.7])

Nbm ≤ |N(α)| =
n∏
j=1

|σj(α)| =
r+s∏
j=1

∣∣∣∣x1/n

xj
σj(α)

∣∣∣∣dj

≤

 1

n

r+s∑
j=1

dj

∣∣∣∣x1/n

xj
σj(α)

∣∣∣∣2
n/2

≤
(

2

n

)n/2
λni .

Here, dj = 1 for 1 ≤ j ≤ r, and dj = 2 for r + 1 ≤ j ≤ r + s. Recall that n ≥ 2.
With the assumptions on ε and c in mind, we get

xi/n

λ1 · · ·λi
≤
(

2

n

)i/2
xi/n

Nbmi/n
≤ x1−ε

Nbmi/n+(1−ε−i/n)/c
≤ x1−ε

Nb(1−ε)/c .

�

Since f ∈ O[X], we can conclude from β + abm = ϕ(α + (abm ∩ O)) that
f(β) ∈ abm if and only if f(α) ∈ abm ∩ O. Therefore,

Ma,b(x) =
⋃

α+(abm∩O)∈O/(abm∩O)
f(α)≡0 mod (abm∩O)

((α+ abm) ∩ O ∩R(x)) ,

and thus∣∣∣∣|Ma,b(x)| − c1(K)LO(abm)
x

[OK : abm ∩ O]

∣∣∣∣ ≤ c2(K)L(a)L(bm)
x1−ε

Nb(1−ε)/c ,

whenever Nb ≤ xc, for some c ≥ 1/m, and ε ∈ [0, 1/n]. Notice that LO(abm) ≤
L(abm) = L(a)L(bm), since a, b are relatively prime. Therefore,∣∣ ∑

(b,Π)=1
Nb≤xc

µ(b) |Ma,b(x)| − c1(K)x
∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]

∣∣
≤
∣∣ ∑

(b,Π)=1
Nb≤xc

µ(b)

(
|Ma,b(x)| − c1(K)x

LO(abm)

[OK : abm ∩ O]

) ∣∣
+
∣∣c1(K)x

∑
(b,Π)=1
Nb>xc

µ(b)
LO(abm)

[OK : abm ∩ O]

∣∣
≤ c2(K)x1−εL(a)

∑
(b,Π)=1

µ(b)2 L(bm)

Nb(1−ε)/c

+ c1(K)L(a)x
∑

(b,Π)=1
Nb>xc

µ(b)2 L(bm)

[OK : abm ∩ O]
.

Let s > 1 be a real number. As in [11, top of p. 138], we get∑
Nb≤y

µ(b)2L(bm) = O(y),

whence ∑
(b,Π)=1
Nb>xc

µ(b)2L(bm)

Nbs
= O(xc(1−s)),



ON RINGS OF INTEGERS GENERATED BY THEIR UNITS 9

by partial summation. Therefore, the sum∑
(b,Π)=1

µ(b)2 L(bm)

Nb(1−ε)/c

converges whenever c < 1− ε. Since [OK : abm ∩ O] ≥ Nbm, we have∑
(b,Π)=1
Nb>xc

µ(b)2 L(bm)

[OK : abm ∩ O]
≤

∑
(b,Π)=1
Nb>xc

µ(b)2L(bm)

Nbm
= O(xc(1−m)).

Putting everything together, we get∑
(b,Π)=1
Nb≤xc

µ(b) |Ma,b(x)| = c1(K)x
∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]

+O(x1−ε + x1+c(1−m)),

(13)

whenever 1/m ≤ c < 1 − ε and 0 ≤ ε ≤ 1/n, as x → ∞. The implicit O-constant
depends on K, a, P, f , m, c and ε.

3.3. End of the proof. By (5), (6), (7) and (13), we get

N(x) = N1(x, xc) +N2(x, xc)

= c1(K)x
∑
a|Π

µ(a)
∑

(b,Π)=1

µ(b)
LO(abm)

[OK : abm ∩ O]
+R

=: Dx+R,

where

R = O(x1−ε + x1−c(m−1) + xg/(2l+1)−c(m−l)/(2l+1)(x1−c(m−l)/g + 1))

holds for every 0 ≤ ε ≤ 1/n, 1/m ≤ c < 1 − ε, and l ∈ {1, . . . ,m − 1}, as x → ∞.
The implicit O-constant depends on K, P, f , m, c, and ε.

Assume first that m > g + 1. Then we put

l := m− g, c := 1− 5/(g + 10), ε := min{1/n, 4/(g + 10)},
to get

R = O(x1−1/n + x1−4/(g+10) + x1−g(g+5)/(g+10) + x(g+5)/(g+10)) = O(x1−u(n,g)),

with u(n, g) as in the theorem.
Now suppose that 2 ≤ m ≤ g + 1. Then

R = O(x1−ε + x1−c(m−1) + x1+g/(2l+1)−c(m−l)(g+2l+1)/(g(2l+1))).

We proceed as in [11, Section 3, Proof of Theorem 1.1]. For every m that satisfies
(1), we find some 1 ≤ l ≤ m− 1 ≤ g, such that m− l > g2/(2l + g + 1). Then we
can choose some c, depending only on g, l, with

1

m
≤ g(2l + 2)

g(2l + 2)(m− l + 1)
≤ g(2l + 1) + g2

(m− l)(2l + g + 1) + g(2l + 1)
≤ c < 1.

A straightforward computation shows that

1 + g/(2l + 1)− c(m− l)(g + 2l + 1)(g(2l + 1)) ≤ c.
For any 0 < ε < 1− c, ε ≤ 1/n, we get

R = O(x1−ε + x1−c + xc) = O(x1−u(n,g)),

for a suitable choice of u(n, g). Notice that there are only finitely many values of
m for every g.
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The only task left is to prove that D has the form claimed in the theorem. We
split up D in the following way: Let Π1 be the product of all prime ideals in P \Pf.
Then

D = c1(K)
∑
a|f

µ(a)
∑
b|Π1

µ(b)
∑

(c,Π)=1

µ(c)LO(abcm)

[OK : abcm ∩ O]

=
c1(K)

[OK : O]

∑
a|f

µ(a)LO(a)

[O : a ∩ O]

∑
b|Π1

µ(b)LO(b)

[O : b ∩ O]

∑
(c,Π)=1

µ(c)LO(cm)

[O : cm ∩ O]
.

This holds because for all combinations of a, b, c as above, the O-ideals (a ∩ O),
(b ∩ O) and (cm ∩ O) are relatively prime to each other, by Lemma 6. Therefore,

[OK : abcm ∩ O] = [OK : O][O : a ∩ O][O : b ∩ O][O : cm ∩ O],

and
LO(abcm) = LO(a)LO(b)LO(cm).

Finally, we notice that, by Lemma 6, [O : r ∩ O] = Nr and thus LO(r) = L(r), for
any ideal r of OK relatively prime to f. A simple Euler product expansion yields
the desired form of D. All factors of the infinite product∏

P/∈P

(
1− L(Pm)

NPm

)
are positive, since no Pm is a fixed divisor of f . For all but the finitely many
prime ideals of OK that divide the discriminant of f , we have L(Pm) = L(P) ≤ g.
Therefore, the infinite product is convergent and positive.

This concludes the proof of Theorem 3 under the assumption that f has no
totally positive root in K. If f has such a root then we let the first sum in (2), (3),
(4) run over all α ∈ R(x) ∩ O such that f(α) 6= 0. The estimation of N2(x, y) in
Section 3.1 holds still true, since a possible α with f(α) = 0 is ignored in Hinz’s
estimates anyway. In (7), we get an error term O(y). This additional error term
becomes irrelevant in Section 3.3.

4. Proof of Proposition 4

We need the following estimate for the index [OK : O].

Lemma 8. Let p1, . . ., pk be distinct prime ideals of O. For each 1 ≤ i ≤ k, let

piOK = P
ei,1
i,1 · · ·P

ei,li
i,li

be the factorisation of pi in OK , with distinct prime ideals Pi,j of OK , and ei,j,
li ≥ 1. Then

[OK : O] ≥
k∏
i=1

1

[O : pi]

li∏
j=1

NP
ei,j
i,j ,

with equality if and only if f divides
∏k
i=1

∏li
j=1 P

ei,j
i,j .

Proof. Put

Π :=

k∏
i=1

li∏
j=1

P
ei,j
i,j .

Then we have

[OK : O] =
[OK : Π][Π : Π ∩ O]

[O : Π ∩ O]
≥ NΠ

[O :
⋂k
i=1 pi]

=

∏k
i=1

∏li
j=1 NP

ei,j
i,j∏k

i=1[O : pi]
,

since [O : Π∩O] = [O :
⋂k
i=1 pi] =

∏k
i=1[O : pi], by the Chinese remainder theorem.

Moreover, we have Π = Π ∩ O if and only if f divides Π. �
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Without loss of generality, we may assume that P contains all prime ideals of OK
dividing the conductor f of O. Since η ∈ O rK2, the polynomial f := X2 − 4η ∈
O[X] is irreducible over OK . Evaluating f at 0 and 1, we see that the only fixed
divisor of f is (1).

We put x1 = · · · = xn, so

R(x) = {α ∈ OK | α totally positive, max
1≤i≤n

|σi(α)| ≤ x1/n}

depends only on x. Let N(x) be the number of all α ∈ R(x), such that

(1) for all P ∈ P, α2 − 4η /∈ P, and
(2) α2 − 4η is squarefree,

and let NO(x) be the number of all α ∈ R(x) ∩ O with the same two properties.
Theorem 3, with m = g = 2, invoked once with the maximal order OK and once

with the order O, yields

N(x) = Dx+O(x1−u) and NO(x) = DOx+O(x1−u).

To prove the proposition, it is enough to show that

lim
x→∞

NO(x)

x
< lim
x→∞

N(x)

x
,

that is, DO < D.
By Theorem 3, the infinite product∏

P/∈P

(
1− L(P2)

NP2

)

is convergent and positive. Moreover, we notice that

(14) (1− L(P)/NP) > 1/2,

for every prime ideal P of OK . This is obvious if 2 /∈ P, since then NP ≥ 5 by
the hypotheses of the proposition, but f is of degree 2, so L(P) ≤ 2. If 2 ∈ P then
we have f ≡ X2 mod P, whence L(P) = 1. On the other hand, NP ≥ 4, so (14)
holds again. Therefore, the finite product∏

P∈P\Pf

(
1− L(P)

NP

)

is positive as well. The proposition is proved if we can show that

(15)
1

[OK : O]

∑
a|f

µ(a)LO(a)

[O : a ∩ O]
<
∏

P∈Pf

(
1− L(P)

NP

)
.

Let p1, . . ., pk be the prime ideals of O that contain the conductor f, and, for
each 1 ≤ i ≤ k, let

piOK = P
ei,1
i,1 · · ·P

ei,li
i,li

,

with distinct prime ideals Pi,j of OK , and ei,j , li ≥ 1. Then the Pi,j are exactly
the prime ideals of OK dividing f, that is, the elements of Pf.

Notice that, for every ideal a | Pi,1 · · ·Pi,li of OK , we have a∩O = pi if a 6= OK ,
and a ∩ O = O if a = OK , since O is one-dimensional. As all pi, pj , i 6= j, are
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relatively prime, we get

∑
a|f

µ(a)LO(a)

[O : a ∩ O]
=

k∏
i=1

∑
a|Pi,1···Pi,li

µ(a)LO(a)

[O : a ∩ O]

=

k∏
i=1

1 +
LO(Pi,1)

[O : pi]

∑
J⊆{1,...,li}

J 6=∅

(−1)|J|

 =

k∏
i=1

(
1− LO(Pi,1)

[O : pi]

)
.

Thus, (15) is equivalent to

k∏
i=1

(
1− LO(Pi,1)

[O : pi]

)
< [OK : O]

k∏
i=1

li∏
j=1

(
1− L(Pi,j)

NPi,j

)
.

Clearly, Π :=
∏k
i=1

∏li
j=1 P

ei,j
i,j divides the conductor f. Let us first assume that

Π is a proper divisor of f. Then Lemma 8 (with strict inequality, since f does not
divide Π), (14), and the fact that NP ≥ 4 for all prime ideals P of OK imply

[OK : O]

k∏
i=1

li∏
j=1

(
1− L(Pi,j)

NPi,j

)
>

k∏
i=1

NP
ei,1
i,1

[O : pi]

(
1− L(Pi,1)

NPi,1

) li∏
j=2

NP
ei,j
i,j

2

≥
k∏
i=1

NPi,1

[O : pi]

(
1− L(Pi,1)

NPi,1

)
2li−1 ≥

k∏
i=1

(
1− LO(Pi,1)

[O : pi]

)
.

For the last inequality, notice that either OK/Pi,1 ' O/pi, and thus L(Pi,1) =
LO(Pi,1), or

NPi,1

[O : pi]

(
1− L(Pi,1)

NPi,1

)
> 2 · 1

2
= 1 ≥ 1− LO(Pi,1)

[O : pi]
.

We are left with the case where Π = f. Then, for all 1 ≤ i ≤ k, we have

(16) li > 1 or ei,1 > 1 or [OK/Pi,1 : O/pi] > 1.

Indeed, suppose otherwise, that is piOK = Pi,1 and OK/Pi,1 ' O/pi, for some i.

We put Õ := (OK)Pi,1
, the integral closure of the localisation Opi

, m := piOpi
, the

maximal ideal of Opi , and M := Pi,1Õ, the maximal ideal of Õ. Then

[Õ : Opi
] =

[Õ : M][M : m]

[Opi
: m]

=
[OK : Pi,1][M : m]

[O : pi]
= 1.

The second equality holds because OK/Pi,1 ' Õ/M, and O/pi ' Opi
/m. The

third equality holds because M = Pi,1Õ = fÕ, whence M is clearly contained

in the conductor of Opi in Õ. (Here we used the hypothesis Π = f.) Therefore
M = M ∩ Opi = m.

Therefore, Opi is a discrete valuation ring. According to [16, Theorem I.12.10],
this is the case if and only if pi does not contain f. Since pi contains f, we have
proved (16). (In [16, Section I.13], it is stated that (16) holds even without the
requirement that Π = f, but no proof is given.)
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With Lemma 8, (14), and the fact that NP ≥ 4 for all prime ideals P of OK ,
we get

[OK : O]

k∏
i=1

li∏
j=1

(
1− L(Pi,j)

NPi,j

)
>

k∏
i=1

1

[O : pi]

li∏
j=1

NP
ei,j
i,j

2

≥
k∏
i=1

NPi,1

[O : pi]

NP
ei,1−1
i,1

2
2li−1 ≥

k∏
i=1

2([OK/Pi,1:O/pi]−1)+(ei,1−1)+(li−1)−1.

To conclude our proof, we notice that the last expression is at least 1, by (16).

5. Proof of Theorem 1

We need to construct extensions of K where we have good control over the ring
of integers. This is achieved by the following two lemmata.

Lemma 9 (([14, Lemma 1])). Let r be a positive integer, and β ∈ OK , such that
g = Xr − β ∈ OK [X] is irreducible. Let η be a root of g, L = K(η), and DL|K
the relative discriminant of L|K. For every prime ideal P of OK not dividing
gcd(r, vP(β)), we have

vP(DL|K) = r · vP(r) + r − gcd(r, vP(β)).

Lemma 10. Let ω, η ∈ OK , such that ω2 − 4η is squarefree and relatively prime
to 2. Assume that the polynomial h := X2 − ωX + η ∈ OK [X] is irreducible, and
let α be a root of h. Then the ring of integers of K(α) is OK [α], and the relative
discriminant DK(α)|K of K(α) over K is the principal ideal (ω2 − 4η).

Proof. The discriminant of α over K is

d(α) = det

(
1 (ω +

√
ω2 − 4η)/2

1 (ω −
√
ω2 − 4η)/2

)2

= ω2 − 4η.

Let, say, (ω2 − 4η) = P1 · · ·Ps, with an integer s ≥ 0 and distinct prime ideals Pi

of OK not containing 2. Then the relative discriminant DK(α)|K divides P1 · · ·Ps.

Since K(α) = K(
√
ω2 − 4η), Lemma 9 implies that vPi

(DK(α)|K) = 1, for
all 1 ≤ i ≤ s, whence the relative discriminant DK(α)|K is the principal ideal

(ω2 − 4η) = (d(α)). This is enough to prove that the ring of integers of K(α) is
OK [α] (see, for example, [20, Chapter V, Theorem 30]). �

We may assume that K satisfies the hypotheses of Proposition 4, since it is
enough to prove the theorem for the number field K(

√
5) ⊇ Q(

√
5).

We may also assume that the field K is generated by a unit of OK . If not, say
K = Q(β), where β ∈ OK . Let α be a root of the polynomial X2−βX+1 ∈ OK [X].
Then Q(α) ⊇ K, whence it is enough to prove the theorem for Q(α), and α is a
unit of the ring of integers of Q(α).

Therefore, the ring generated by the units of OK is an order. Let us call that
order OU . If OU = OK then there is nothing to prove, so assume from now on that
OU 6= OK .

Choose a unit η ∈ O∗K rK2. We use Proposition 4 to obtain elements ω1, . . .,
ωr ∈ OK with

(17) OK = OU [ω1, . . . , ωr],

such that

(18) all ω2
i − 4η are squarefree and relatively prime to 2 and each other.

Start with
P := supp(2), O := OU ,
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and choose an element ω1 as in Proposition 4. Then OU [ω1] is an order larger than
OU , whence

[OK : OU [ω1]] =
[OK : OU ]

[OU [ω1] : OU ]
≤ [OK : OU ]

2
.

Assume now that ω1, . . ., ωi−1 have been chosen. If OU [ω1, . . . , ωi−1] = OK then
stop, otherwise put

P := supp(2) ∪
i−1⋃
j=1

supp(ω2
j − 4η), O := OU [ω1, . . . , ωi−1].

Let ωi be an element as in Proposition 4. Then

[OK : OU [ω1, . . . , ωi]] ≤ [OK : OU [ω1, . . . , ωi−1]]/2 ≤ [OK : OU ]/2i.

Therefore, the above process stops after r ≤ log2([OK : OU ]) steps, with elements
ω1, . . ., ωr ∈ OK rOU , such that OK = OU [ω1, . . . , ωr]. Conditions (18) hold by
our construction.

For 1 ≤ i ≤ r, let αi be a root of the polynomial X2 − ωiX + η ∈ OK [X]. Then
αi is a unit in the ring of integers of K(αi). Moreover, αi /∈ K, since otherwise
αi ∈ O∗K , and ωi = αi + ηα−1

i ∈ OU , a contradiction. By Lemma 10, the ring of
integers of K(αi) is OK [αi], and the relative discriminant DK(αi)|K of K(αi) over

K is the principal ideal (ω2
i − 4η).

We use the following well-known fact (for a proof, see [16, Theorem I.2.11]):

Lemma 11. Let L|K and L′|K be two Galois extensions of K such that

(1) L ∩ L′ = K,
(2) L has a relative integral basis {β1, . . . , βl} over K,
(3) L′ has a relative integral basis {β′1, . . . , β′l′} over K, and
(4) the relative discriminants DL|K and DL′|K are relatively prime.

Then the compositum LL′ has a relative integral basis over K consisting of all
products βiβ

′
j, and the relative discriminant of LL′|K is

DLL′|K = D
[L′:K]
L|K D

[L:K]
L′|K .

Consider the extension fields Li := K(α1, . . . , αi) of K. We claim that Li has
an integral basis over K consisting of (not necessarily all) products of the form∏

j∈J
αj , for J ⊆ {1, . . . , i},

and that the relative discriminant DLi|K is relatively prime to all relative discrim-
inants DK(αj)|K , for i < j ≤ r.

With (18), this claim clearly holds for L1 = K(α1). If the claim holds for Li−1,
and αi ∈ Li−1, then it holds for Li = Li−1 as well. If K(αi) 6⊆ Li−1 then the
extensions Li−1|K and K(αi)|K satisfy all requirements of Lemma 11, whence the
claim holds as well for Li = Li−1K(αi).

Now put L := Lr. Then the ring of integers of L is OL = OK [α1, . . . , αr]. With
(17) and ωi = αi + ηα−1

i , we get

OL = OU [ω1, . . . , ωr, α1, . . . , αr] = OU [α1, α
−1
1 , . . . , αr, α

−1
r ],

and the latter ring is generated by units of OL.
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