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Abstract We study the set of integers with a given sum of digits with respect to
a linear recurrent digit system. An asymptotic formula for the number of integers
≤N with given sum of digits is determined, and the distribution in residue classes is
investigated, thus generalizing results due to Mauduit and Sárközy. It turns out that
numbers with fixed sum of digits are uniformly distributed in residue classes under
some very general conditions. Namely, the underlying linear recurring sequence must
have the property that there is no prime factor P of the modulus such that all but finitely
many members of the sequence leave the same residue modulo P . The key step in the
proof is an estimate for exponential sums using known theorems from Diophantine
approximation.
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1 Introduction and notation

Linear recurrent digit systems are a generalization of the usual radix representations;
they have been studied, for example, in [3, 12, 14, 15, 21]. We start with a definition
of these systems:

Let G = (Gn) (n = 0, 1, . . . ) be a linear recurring sequence of order d ≥ 1, i.e.

Gn+d = a1Gn+d−1 + a2Gn+d−2 + · · · + ad Gn (1)
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with integral coefficients and integral initial values. We assume that the coefficients
a1 ≥ a2 ≥ · · · ≥ ad > 0 are non-increasing (a1 > 1 if d = 1) and that G0 = 1 and

Gn > a1(G0 + · · · + Gn−1), n = 1, . . . , d − 1.

For an arbitrary positive integer N , we define L = L(N ) by GL ≤ N < GL+1 (and
set L(0) = 0). Furthermore, set NL = N ,

ε j =
⌊

N j

G j

⌋
, N j−1 = N j − G jε j (1 ≤ j ≤ L),

and finally ε0 = N0, yielding a unique representation of N of the form

N =
L(N )∑
j=0

ε j G j , (2)

the G-ary representation of N with digits ε j . If d = 1 and a1 = g, we obtain the
well-known base-g representation of N .

Now, the sum of digits is naturally defined as

sG(N ) =
L(N )∑
j=0

ε j .

The best-known instance of such a digit system is probably the Zeckendorf expansion
[22], belonging to the Fibonacci sequence G0 = 1, G1 = 2, Gn+2 = Gn+1 + Gn .

In [21], Pethő and Tichy generalized a well-known result of Delange [5] on the mean
value of the sum of digits to linear recurring sequences. For usual base-g expansions,
numbers with fixed sum of digits were studied by Mauduit and Sárközy in [19]. Their
first main result states that the number of integers with ≤ ν digits and sum of digits
k ≤ g−1

2
ν (for reasons of symmetry, this case is obviously sufficient) is, uniformly for

k → ∞,

r−k(1 + r + · · · r g−1)νπ1/2(Dν)−1/2(1 + O(Dν)−1/2), (3)

where the implied constant depends only on the base g; r is defined as the unique
positive zero of

Q(x) = −k(1 + x + · · · + xg−1) + νx(1 + 2x + · · · + (g − 1)xg−2),

and D = 2π2(B − A2), where

A =
(

g−1∑
j=1

jr j

)(
g−1∑
j=0

r j

)−1

= k

ν
and B =

(
g−1∑
j=1

j2r j

)(
g−1∑
j=0

r j

)−1

.

Springer



Numbers with fixed sum of digits in linear recurrent number systems 45

Secondly, they showed that the integers with fixed sum of digits are uniformly dis-
tributed in residue classes if the modulus is not too large and relatively prime to
(g − 1)g—this theorem was further generalized in a very recent paper of Mauduit,
Pomerance and Sárközy [17], relaxing the condition that the modulus is relatively
prime to (g − 1)g. Furthermore, they were able to prove an Erdős-Kac-type theorem
for integers with fixed sum of digits.

Similar results for other kinds of digitally restricted sets are due to Erdős, Mauduit
and Sárközy ([8, 9], integers with missing digits), Fouvry and Mauduit resp. Mauduit
and Sárközy ([10, 11, 18], integers with congruence conditions for the sum of digits).

In this paper, we are going to prove a generalization of formula (3) to linear recurrent
digit systems and study the distribution in residue classes. It turns out that we have
uniform distribution if there is no prime divisor P of the modulus such that (Gn) is
constant modulo P for all but finitely many values of n.

We will make use of the following notational conventions: we write e(α) =
exp(2π iα), we use c1(G), c2(G), . . . for constants which depend only on the ba-
sis G of our digital system, and we write f (N ) = OG(g(N )), if there is a constant
C(G) depending only on G such that, for sufficiently large N , f (N ) ≤ C(G)g(N )
holds.

2 Asymptotic enumeration

We start with a characterization of admissible digital expansions given by Pethő and
Tichy in [21]:

Lemma 1. The (t + 1)-tuple (ε0, . . . , εt ) ∈ Nt+1
0 is the sequence of G-ary digits of

an integer if and only if

n∑
j=0

ε j G j < Gn+1 (4)

for all 0 ≤ n < d − 1 and

(εn, . . . , εn−d+1) < (a1, . . . , ad ) (5)

lexicographically (i.e. there is an i such that εn+1− j = a j for j < i and εn+1−i < ai )
for all d − 1 ≤ n ≤ t .

This lemma enables us to establish a generating function for the integers with fixed
sum of digits:

Proposition 2. Let F(k, ν) be the set of integers with ≤ ν base-G digits and sum of
digits k. Then we have

|F(k, ν)| = [xν yk]
p(x, y)

q(x, y)
,
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where p(x, y) and q(x, y) are polynomials and q(x, y) is given by

q(x, y) = 1 −
d∑

i=1

(
ai −1∑
j=0

y j

)(
i−1∏
l=1

yal

)
xi . (6)

Proof: By the preceding lemma, we have to consider sequences satisfying the two
conditions (4) and (5). We call such sequences good. Let a good sequence (ε0, . . . , εt )
be given. By (5), there is an i such that εt+1− j = a j for j < i and εt+1−i < ai . The re-
maining digits (ε0, . . . , εt−i ) obviously form a good sequence. Conversely, a sequence
(b, ai−1, . . . , a1) with b < ai may be appended to any good sequence of length ≥d
to form another good sequence. Thus, if

g(t) =
∑

ε

ys(ε),

where the sum is over all good sequences ε = (ε0, . . . , εt ) and s(ε) = ε0 + · · · + εt ,
we have

g(t) =
d∑

i=1

(
ai −1∑
j=0

y j

)(
i−1∏
l=1

yal

)
g(t − i)

if t is large enough. This shows that the generating function for our problem is given
by a rational function of the form p(x,y)

q(x,y)
, with q(x, y) as in (6). �

Lemma 3. Let q(x, y) be given by (6), and define λ = λ(y) for positive y as the unique
positive solution to q(λ, y) = 0. Furthermore, define

μ(y) = − yλ′(y)

λ(y)
= yqy(λ(y), y)

λ(y)qx (λ(y), y)
. (7)

Then μ(y) is a continuous, strictly increasing function with limy→0 μ(y) = 0 and
limy→∞ μ(y) = A = maxi

a1+···+ai −1
i . Furthermore, there exists a constant c1(G) > 0

depending on G such that μ′(y) ≥ c1(G) for all y ∈ [0, 1].

Proof: Obviously, q(x, y) is strictly decreasing in x and y, and q(0, y) = 1, whereas
q(x, y) → −∞ as x → ∞. Therefore, λ(y) is well-defined, and so is μ(y). Clearly,
λ(y) and μ(y) are continuous. As q(x, 0) = 1 − x , we know that λ(0) = 1. Further-
more, qx (x, 0) = −1, which means that μ(0) = 0.

Since λ(y) is an algebraic function with no branch points on [0, ∞) (note that the
derivative qx (λ(y), y) is strictly negative on this interval), λ(y) has a holomorphic
continuation and is thus infinitely often differentiable. Since λ(y) 	= 0 for all y, this
also holds for μ(y).

Springer
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r (x, y) = 1 − q(x, y) is a polynomial in x, y with positive coefficients and constant
coefficient 0. We write r (x, y) = ∑

k,l rkl xk yl . Implicit differentiation yields

μ(y) = yqy(λ(y), y)

λ(y)qx (λ(y), y)
= yry(λ(y), y)

λ(y)rx (λ(y), y)

and

μ′(y) = 1

x3 yrx (x, y)3
(y2ry(x, y)2(xrx (x, y) + x2rxx (x, y)) + x2rx (x, y)2(yry(x, y)

+ y2ryy(x, y)2) − 2x2 y2rx (x, y)ry(x, y)rxy(x, y))|x=λ(y).

The denominator is positive for y > 0. The numerator can be written as

( ∑
k,l

lrkl x
k yl

)2( ∑
k,l

k2rkl x
k yl

)
+

( ∑
k,l

krkl x
k yl

)2( ∑
k,l

l2rkl x
k yl

)

−2

( ∑
k,l

krkl x
k yl

)( ∑
k,l

lrkl x
k yl

)( ∑
k,l

klrkl x
k yl

)
.

We set ukl =
√

rkl xk yl , vkl = k
√

rkl xk yl and wkl = l
√

rkl xk yl . Then this equals

( ∑
k,l

uklwkl

)2( ∑
k,l

v2
kl

)
+

( ∑
k,l

uklvkl

)2( ∑
k,l

w2
kl

)
− 2

( ∑
k,l

uklvkl

)
( ∑

k,l

uklwkl

)( ∑
k,l

vklwkl

)
=〈u, w〉2〈v, v〉+〈u, v〉2〈w, w〉−2〈u, v〉〈u, w〉〈v, w〉,

where 〈., .〉 denotes the scalar product. Combining the inequality between the arith-
metic and geometric mean and the Cauchy-Schwarz inequality yields

〈u, w〉2〈v, v〉 + 〈u, v〉2〈w, w〉 − 2〈u, v〉〈u, w〉〈v, w〉
≥ 2

√
〈u, w〉2〈v, v〉〈u, v〉2〈w, w〉 − 2〈u, v〉〈u, w〉〈v, w〉

≥ 2
√

〈u, w〉2〈u, v〉2〈v, w〉2 − 2〈u, v〉〈u, w〉〈v, w〉
= 0

with equality if and only if v, w are linearly dependent. In our case, this can only be if
rkl 	= 0 happens only for one value of k

l . By our conditions on the ai , this is impossible.
Therefore, μ′(y) > 0 for all y ∈ (0, ∞), which implies that μ(y) is strictly increasing.
Direct calculation shows that μ′(0) = 1. So μ′(y) is continuous and positive on the
compact interval [0, 1] and has thus a minimum c1(G) > 0.
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Finally, we note that r (x, y) behaves like∑
i

y
∑i

l=1 al−1xi

for y → ∞. Now it is easy to see that

qy(λ(y), y) ∼
∑

i

i A

y
and qx (λ(y), y) ∼

∑
i

i

λ(y)
,

where the sum is over all i (there might be more than one) for which a1+···+ai −1
i = A.

It follows immediately that limy→∞ μ(y) = A. �

Remark 1. It is easily proved that A = a1 − 1
M ≥ 1

2
, where M is the largest index such

that a1 = aM .

Lemma 4. Let λ1(y) be the solution of smallest modulus of q(x, y) = 0 for arbitrary
complex y, and let λ2(y) be one of the solutions of second-smallest modulus. Then
there exist constants φ(G), c2(G), c3(G), κ1(G) depending only on the sequence G
such that c2(G) < 1, κ1(G) > 0 and∣∣∣∣∣λ1(y)

λ2(y)

∣∣∣∣∣ ≤ min
(
c2(G), c3(G)|y|κ1(G)

)
(8)

for all y ∈ B = {z ∈ C : |z| ≤ 1, | arg z| ≤ φ(G)} and λ1 coincides with the branch λ

on B.

Proof: λ1(y) coincides with λ(y) on the compact interval [0, 1], since we already
know that λ(y) is the unique solution of minimal modulus on this interval. Note that
all branches of the equation q(x, y) = 0 except λ tend to ∞ with some negative power
of y as y → 0. Therefore, there exists some δ > 0 such that λ1(y) = λ(y) and∣∣∣∣∣λ1(y)

λ2(y)

∣∣∣∣∣ ≤ c4(G)|y|κ1(G) (9)

for all y with |y| ≤ δ, where c4(G), κ1(G) are constants depending on G.
The absolute distance to the second-smallest solution is a continuous function on

(0, 1], and it tends to ∞ as y → 0, so it has a minimum on [0, 1].
Furthermore, if we choose ε1 small enough to avoid all the (finitely many) branch

points of the equation q(x, y) = 0 – there are none on [δ/2, 1] –, all branches are
holomorphic on [δ/2, 1] × [−ε1, ε1], so they satisfy a Lipschitz condition. This means
that we can find ε2 > 0 such that λ is the unique branch of smallest modulus on
[δ/2, 1] × [−ε2, ε2].

Choose φ(G) small enough such that B is contained in

{y ∈ C : |y| ≤ δ} ∪ [δ/2, 1] × [−ε2, ε2].
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B is a compact set, and the function f (y) = | λ1(y)
λ2(y)

| is continuous on this set, if we
take f (0) = 0. Thus it has a maximum, which must be < 1. Take this as the constant
c2(G). Then, (8) holds for some constant c3(G). �
Corollary 5.

f (x, y) = p(x, y)

q(x, y)
− p(λ1(y), y)

qx (λ1(y), y)(x − λ1(y))

is a holomorphic function on {x ∈ C : |x | < |λ2(y)|} for all y ∈ B, and there exist
constants c5(G), κ2(G) depending only on G such that

| f (x, y)| ≤ c5(G)y−κ2(G) (10)

holds on {x ∈ C : |x | ≤ √|λ1(y)||λ2(y)|}. As a consequence,

[xν]
p(x, y)

q(x, y)
= − p(λ1(y), y)

qx (λ1(y), y)
λ1(y)−ν−1

(
1 + OG

(
η−ν

G

))
, (11)

where ηG > 1 depends only on G.

Proof: Note that p(λ1(y),y)
qx (λ1(y),y)(x−λ1(y))

is the principal part of p(x,y)
q(x,y)

at x = λ1(y), so f (x, y)

is indeed holomorphic, since p(x,y)
q(x,y)

has a single pole at λ1(y) and no other singularity
for |x | < |λ2(y)|.

Now, we write

q(x, y) = r (y)(x − λ1(y))(x − λ2(y)) . . . (x − λd (y))

for y ∈ B \ {0} and note that

qx (λ1(y), y) = r (y)(λ1(y) − λ2(y)) . . . (λ1(y) − λd (y)),

yielding [
f (x, y) = 1

r (y)(x − λ1(y))

(
p(x, y)

(x − λ2(y)) . . . (x − λd (y))

− p(λ1(y), y)

(λ1(y) − λ2(y)) . . . (λ1(y) − λd (y))

)]
.

y is bounded on B, and |x | < |λ2(y)| can be bounded by a power of y. Fur-

thermore, the factors (x − λi (y)) are bounded below by |λ2(y)||1 −
√

| λ1(y)
λ2(y)

|| for

x ≤ √|λ1(y)||λ2(y)|, and the factors (λ1(y) − λi (y)) by |λ2(y)||1 − | λ1(y)
λ2(y)

||.
Altogether, we see that (10) holds for some constant c5(G) if y ∈ B\{0} and |x | ≤√|λ1(y)||λ2(y)|. For y = 0, however, the claim is essentially trivial.
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Now, we have

[xν]
p(x, y)

q(x, y)
= [xν]

p(λ1(y), y)

qx (λ1(y), y)(x − λ1(y))
+ [xν] f (x, y)

and

[xν] f (x, y) =
∮
C

x−ν−1 f (x, y) dx ≤ 2πc5(G)y−κ2(G)
√

|λ1(y)||λ2(y)|−ν
,

where C is the circle of radius
√|λ1(y)||λ2(y)| around 0. Finally,

[xν]
p(λ1(y), y)

qx (λ1(y), y)(x − λ1(y))
= − p(λ1(y), y)

qx (λ1(y), y)
λ1(y)−ν−1

The claim now follows from the preceding lemma. �

Next, we need a lemma from [19]:

Lemma 6 (Mauduit/Sárközy [19]). For g > 1, 0 < r ≤ 1 and all α ∈ R we have

∣∣∣∣1 + re(α) + r2e(2α) + · · · + r g−1e((g − 1)α)

1 + r + r2 + · · · + r g−1

∣∣∣∣ ≤ 1 − 2r

g
‖α‖2. (12)

Lemma 7. There exist constants c6(G), c7(G) depending only on G such that

∣∣∣∣[x−ν]
p(x, re(α))

q(x, re(α))

∣∣∣∣ ≤ c6(G) exp(−c7(G)rν‖α‖2)[xν]
p(x, r )

q(x, r )
(13)

for all 0 < r ≤ 1 and all α ∈ R.

Proof: Note that zν(y) := [xν] p(x,y)
q(x,y)

is a polynomial with positive coefficients in y.
So, obviously, zν(re(α)) ≤ zν(r ) for all ν. Furthermore, zν(y) satisfies a recurrence
relation of the form

zν(y) =
d∑

i=1

(
ai −1∑
j=0

y j

)(
i−1∏
l=1

yal

)
zν−i (y).

It follows that

|zν(y)| ≤
d∑

i=1

∣∣∣∣∣ ai −1∑
j=0

y j
i−1∏
l=1

yal

∣∣∣∣∣|zν−i (y)|.
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First, we assume that a1 > 1. Then, by the previous lemma,∣∣∣∣∣ a1−1∑
j=0

(re(α)) j

∣∣∣∣∣ ≤
(

1 − 2r

a1

‖α‖2

)
a1−1∑
j=0

r j .

Trivially, ∣∣∣∣∣ ai −1∑
j=0

(re(α)) j

(
i−1∏
l=1

(re(α))al

)∣∣∣∣∣ ≤
ai −1∑
j=0

r j
i−1∏
l=1

ral

for all i > 1. Now, if we define Zν(r, α) by Zν(r, α) = zν(r ) for ν < d and

Zν(r, α) =
(

1 − 2r

a1

‖α‖2

) a1−1∑
j=0

r j Zν−1(r, α) +
d∑

i=2

ai −1∑
j=0

r j
i−1∏
l=1

ral Zν−i (r, α),

we know that Zν(r, α) ≥ |zν(re(α))| for all ν. Since

(
1 − 2r

a1

‖α‖2

) a1−1∑
j=0

r j ≥
(

1 − r

4

)
(1 + r ) = 1 + r (3 − r )

4
≥ 1,

Zν(r, α) is an increasing sequence. Furthermore,

a1−1∑
j=0

r j ≥
ai −1∑
j=0

r j
i−1∏
l=1

ral

for all i ≥ 2, since r ≤ 1 and the ai are decreasing. It follows that

Zν(r, α) ≤
(

1 − 2r

a1d
‖α‖2

) d∑
i=1

ai −1∑
j=0

r j
i−1∏
l=1

ral Zν−i (r, α)

≤ exp

(
− 2r

a1d
‖α‖2

) d∑
i=1

ai −1∑
j=0

r j
i−1∏
l=1

ral Zν−i (r, α)

≤
d∑

i=1

exp

(
− 2ri

a1d2
‖α‖2

) ai −1∑
j=0

r j
i−1∏
l=1

ral Zν−i (r, α)

and thus

Zν(r, α) ≤ c6(G) exp(−c7(G)rν‖α‖2)zν(r )

for constants c6(G), c7(G) = 2
a1d2 by simple induction on ν. This proves the claim in

the case of a1 > 1. If a1 = a2 = · · · = ad = 1, iterate the recurrence equation for zν

Springer
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once to obtain

zν(y) =
d∑

i=2

yi−2(1 + y)zν−i (y) + yd−1zν−d−1

and apply the same method to this equation (note that we have at least one term of the
form (1 + y), as d ≥ 2 in this case). �

Now, we are ready to prove our first main theorem following the same line of proof
as Mauduit and Sárközy:

Theorem 8. Let F(k, ν) be defined as in Proposition 2 and take A as in Lemma 3.
Then, uniformly for l = min(k, Aν − k) → ∞, we have

|F(k, ν)| = p(λ(r ), r )

−λ(r )qx (λ(r ), r )
π1/2(Dν)−1/2r−kλ(r )−ν(1 + OG((Dν)−1/2)), (14)

where r is defined by μ(r ) = k
ν

and D = 2π2rμ′(r ).

Proof: From Proposition 2, we know that

|F(k, ν)| = [xν yk]
p(x, y)

q(x, y)
.

First, let k
ν

≤ μ(1). Choose 0 < r ≤ 1 in such a way that μ(r ) = k
ν

– this is possible
by Lemma 3. Now, we have

|F(k, ν)| = r−k
∫ 1/2

−1/2

[xν]
p(x, re(α))

q(x, re(α))
e(−kα) dα.

We split the integral in two parts: define

J1 =
∫ δ

−δ

[xν]
p(x, re(α))

q(x, re(α))
e(−kα) dα

and

J2 =
∫

δ<|α|≤1/2

[xν]
p(x, re(α))

q(x, re(α))
e(−kα) dα,

where δ = k−1/2 log k. We will deal with J1 first. If k is large enough, we have δ <

φ(G), so we may apply Corollary 5. This means that

J1 =
( ∫ δ

−δ

p(λ1(re(α)), re(α))

−qx (λ1(re(α)), re(α))
λ1(re(α))−ν−1e(−kα) dα

)(
1 + OG

(
η−ν

G

))
.
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We expand p(λ1(y),y)
qx (λ1(y),y)

in a Taylor series around y = r ; p(x, y) and −qx (x, y) are
polynomials with positive coefficients, and we have −qx (1, 0) = 1 and p(1, 0) = 1
(note that p(x,0)

q(x,0)
is the counting series for integers with sum of digits 0). This means

that p(λ(y), y) and −qx (λ(y), y) can be bounded above and below for y ≤ 1 (the
bounds depending only on G), and their derivatives are also bounded. Therefore, we
have

p(λ1(re(α)), re(α))

−qx (λ1(re(α)), re(α))
= p(λ(r )), r )

−qx (λ(r ), r )
(1 + b(r )α + OG(α2)).

Likewise, we have

λ1(re(α)) = λ(r ) + 2π iαrλ′(r ) − 2π2r (λ′(r ) + rλ′′(r ))α2 + OG(rα3).

Inserting yields

J1 = λ(r )−ν−1
(
1 + OG

(
η−ν

G

)) ∫ δ

−δ

p(λ(r )), r )

−qx (λ(r ), r )

(
1 + b(r )α + OG(α2)

)
exp

(
− 2π iανrλ′(r )

λ(r )
+ 2π2rα2ν(λ(r )λ′(r ) + rλ(r )λ′′(r ) − rλ′(r )2)

λ(r )2

+ OG(rα3ν) − 2π ikα

)
dα.

r was chosen in such a way that μ(r ) = − rλ′(r )
λ(r )

= k
ν
. Thus, the coefficients of α in the

exponent cancel out. Furthermore, note that

2π2rν(λ(r )λ′(r ) + rλ(r )λ′′(r ) − rλ′(r )2)

λ(r )2
= −2π2rνμ′(r ) ≤ −2π2rνc1(G) < 0

by Lemma 3. We write D = 2π2rμ′(r ) and use the standard estimates

∫ δ

−δ

(b(r )α + OG(α)2) exp(−Dνα2 + OG(rα3ν)) dα

=
∫ δ

−δ

(b(r )α + OG(α2) + OG(rα4ν)) exp(−Dνα2) dα

= OG

( ∫ δ

0

α2 exp(−Dνα2) dα

)
+ OG

(
rν

∫ δ

0

α4 exp(−Dνα2) dα

)
,
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∫ δ

−δ

exp(−Dνα2 + OG(rνα3)) dα

=
∫ δ

−δ

exp(−Dνα2) dα + OG

(
rν

∫ δ

0

α3 exp(−Dνα2)

)

=
√

π√
Dν

− 2

∫ ∞

δ

exp(−Dνα2) dα + OG

(
rν

∫ δ

0

α3 exp(−Dνα2)

)
,

∫ δ

0

α p exp(−Dνα2) dα = (Dν)−(p+1)/2

∫ √
Dνδ

0

x p exp(−x2) dx

≤ (Dν)−(p+1)/2

∫ ∞

0

x p exp(−x2) dx

= O
(
(Dν)−(p+1)/2

)
and ∫ ∞

δ

exp(−Dνα2) dα = 1

2
√

Dν

∫ ∞

Dνδ2

x−1/2 exp(−x) dx

≤ 1

2Dνδ
exp(−Dνδ2).

Since μ′(y) is bounded on [0, 1] by Lemma 3, there are constants c8(G) and c9(G)
such that

c8(G)
k

ν
≤ r ≤ c9(G)

k

ν
.

Therefore, these estimates imply that

J1 = p(λ(r ), r )

−λ(r )qx (λ(r ), r )
(2πrνμ′(r ))−1/2λ(r )−ν(1 + OG((Dν)−1/2)).

Finally, we estimate J2: by Lemma 7,

|J2| =
∣∣∣∣∣
∫

δ≤|α|≤1/2

[xν]
p(x, re(α))

q(x, re(α))
e(−kα) dα

∣∣∣∣∣
≤ 2c6(G)[xν]

p(x, r )

q(x, r )

∫ 1/2

δ

exp(−c7(G)rν‖α‖2) dα

= OG(λ(r )−ν exp(−c7(G)rνδ2)).
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Altogether, we have established formula (14) for k
ν

≤ μ(1). We indicate how to extend

it to the case k
ν

≥ μ(1): if A is taken as in Lemma 3 and l = Aν − k, we have

|F(k, ν)| = [xν yl]
p(xy A, y−1)

q(xy A, y−1)
.

The proof now goes along the same lines, with μ(y) replaced by A − μ(y−1) and the
roles of y and y−1 interchanged. �

Corollary 9. There is a constant c10(G) depending only on G such that the number
of integers ≤ N with sum of digits k is bounded below by

c10(G) · p(λ(r ), r )

−λ(r )qx (λ(r ), r )
r−kλ(r )−νk−1/2 (15)

uniformly for k ≤ μ(1)ν, k → ∞, where ν + 1 is the number of digits of N .

Theorem 8 is a consequence of general theorems of Bender and Richmond [1, 2]
(see also Drmota [6]) in the case when r is bounded above and below by posi-
tive constants. Equivalenty, k

ν
∈ [a, b] for constants 0 < a < b < A. It is easy to see

that the sum of digits asymptotically follows a normal distribution with mean μ(1)ν
and variance μ′(1)ν: note first that r−kλ(r )−ν = (rμ(r )λ(r ))−ν . The maximal value of
− log(rμ(r )λ(r )) is achieved when the derivative is 0, i.e.

μ(r )

r
+ μ′(r ) log(r ) + λ′(r )

λ(r )
= μ′(r ) log(r ) = 0,

which happens if r = 1. The following corollary of Theorem 8 gives precise informa-
tion:

Corollary 10. When k is near the mean value, i.e. � = μ(1)ν − k = o(ν), we have

|F(k, ν)| = p(λ(1), 1)

−λ(1)qx (λ(1), 1)
λ(1)−ν · (2πνμ′(1))−1/2

exp

(
− �2

2νμ′(1)

)(
1 + OG

(
�

ν
+ ν−1/2

))
. (16)

Proof: We set η = 1 − r and use the Taylor expansion of μ around 1 to find that

η = �

νμ′(1)
+ OG

(
�2

ν2

)
.

Then,

r−k = exp(−k log(1 − η)) = exp

(
kη + 1

2
kη2 + O(kη3)

)
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and

λ(r )−ν = λ(1)−ν exp

(
ν

(
λ′(1)

λ(1)
η + λ′(1)2 − λ(1)λ′′(1)

2λ(1)2
η2 + OG(η3)

))
.

Furthermore,

p(λ(r ), r )

−λ(r )qx (λ(r ), r )
(2πrνμ′(r ))−1/2

= p(λ(1), 1)

−λ(1)qx (λ(1), 1)
(2πνμ′(1))−1/2

(
1 + OG

(
�

ν

))
.

We insert k = μ(1)ν − � and use the formula

μ′(y) = yλ′(y)2 − yλ(y)λ′′(y) − λ(y)λ′(y)

λ(y)2

to obtain the stated result. �

Remark 2. Note that p(λ(1),1)
−λ(1)qx (λ(1),1)

λ(1)−ν is (asymptotically) the number of all integers
with an expansion of ≤ ν digits.

Corollary 11. If k is small, i.e. k = o(ν), we have

|F(k, ν)| = (2πk)−1/2 exp

(
− k log

k

ν
+ k + 1 − λ′′(0)

2
· k2

ν
+ OG

(
k3

ν2
+ 1√

k

))
.

(17)

Remark. It is easy to check that

λ′′(0) =

⎧⎪⎨⎪⎩
4 d = 2, a1 = a2 = 1,

2 d = 1, a1 = 2 or d > 2, a1 = a2 = · · · = ad = 1,

0 otherwise.

Proof: We see that

r = k

ν
− μ′′(0)

2

(
k

ν

)2

+ OG

((
k

ν

)3)
,

since μ′(0) = 1. This gives us

rμ′(r ) = k

ν
+ μ′′(0)

2

(
k

ν

)2

+ OG

((
k

ν

)3)
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and

λ(r )=1 − r + λ′′(0)

2
r2 + OG(r3) = 1 − k

ν
+ λ′′(0) + μ′′(0)

2

(
k

ν

)2

+OG

((
k

ν

)3)
.

Therefore,

p(λ(r ), r )

−λ(r )qx (λ(r ), r )
= p(λ(0), 0)

−λ(0)qx (λ(0), 0)

(
1 + OG

(
k

ν

))
= 1 + OG

(
k

ν

)
,

2πrμ′(r )ν = 2πk

(
1 + OG

(
k

ν

))
,

−k log r = −k log
k

ν
+ μ′′(0)

2
· k2

ν
+ OG

(
k3

ν2

)
,

and

−ν log λ(r ) = k − λ′′(0) + μ′′(0) − 1

2
· k2

ν
+ OG

(
k3

ν2

)
.

Inserting in (14) yields the stated result. �

Example 1. It is not difficult to check that our result agrees with (3) in the case d = 1,
a1 = g. We will consider the classical Zeckendorf expansion (d = 2, a1 = a2 = 1,
G0 = 1, G1 = 2) as another example. In this case, we have

p(x, y) = 1 + xy, q(x, y) = 1 − x − yx2,

yielding

λ(y) = 1

2y
(
√

1 + 4y − 1), μ(y) = 1

2

(
1 − 1√

1 + 4y

)
.

If we set k
n = γ , we obtain

|F(k, ν)| ∼
√

(1 − γ )3

2πγ (1 − 2γ )3ν
·
(

(1 − γ )1−γ

γ γ (1 − 2γ )1−2γ

)ν

. (18)

The mean value is given by μν = μ(1)ν = 1
2
(1 − 1√

5
)ν, the variance by σ 2ν =

μ′(1)ν = 5−3/2ν.
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3 Distribution in residue classes

The aim of this section is to prove that F(k, ν) is well-distributed in residue classes
modulo m provided that m is not too large and there is no prime divisor P of m such
that Gn is constant modulo P for all but finitely many values of n.

Theorem 12. Let V (k, N ) be the set of integers ≤ N with G-ary sum of digits k.
There exist positive constants k0(G), c11(G), c12(G), c13(G) (depending on G only)
such that for all l = max(k, Aν − k) ≥ k0(G) (ν denoting the number of G-ary digits
of N), 2 ≤ m < exp(c13(G)l1/2), h ∈ Z, for which there is no prime divisor P of m
such that (Gn) is constant modulo P for all but finitely many values of n, we have

∣∣∣∣|{n ∈ V (k, N ) : n ≡ h mod m}| − 1

m
|V (k, N )|

∣∣∣∣
<

c11(G)

m
|V (k, N )| exp

(
− c12(G)

k

log m

)
. (19)

Remark. The condition on the prime factors of m is a necessary one. If (Gn) was
constant modulo P for all but finitely many values of n, the restriction on the sum of
digits would imply a condition on the residues modulo P . Note that (gn)n≥0 is constant
modulo P for all but finitely many values of n if and only if P|g(g − 1).

Proof: We follow the lines of [19] again. Again, we consider the case k ≤ μ(1)ν only.
If

D(z, γ ) =
N∑

n=1

zsG (n)e(nγ ),

where z ∈ C, γ ∈ R, we have

1

m

m∑
p=1

e

(
− hp

m

)
D

(
z,

p

m

)
=

∑
1≤n≤N

n≡h mod m

zsG (n).

Now we take r as in the proof of Theorem 8 and obtain

|{n ≤ N : sG(n) = k, n ≡ h mod m}|

= r−k
∫ 1

0

e(−kβ)
∑

1≤n≤N
n≡h mod m

(re(β))sG (n) dβ

= 1

m
r−k

m∑
p=1

∫ 1

0

e

(
− kβ − hp

m

)
D

(
re(β),

p

m

)
dβ.
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Obviously, the summand corresponding to p = m equals 1
m |V (k, N )|. Thus we have

to estimate

1

m
r−k

m−1∑
p=1

∫ 1

0

∣∣∣∣D

(
re(β),

p

m

)∣∣∣∣ dβ.

We write N in base-G representation:

N =
L(N )∑
j=0

ε j G j =
t∑

i=1

ενi Gνi ,

where ν1 > ν2 > · · · > νt and all ενi are positive (i.e., we neglect all digits 0 in the
base-G representation). Then, the set {0, . . . , N } can be partitioned into sets Al , where
Al is the set of integers representable as

l−1∑
i=1

ενi Gνi + aGνl + b,

where 0 ≤ a ≤ ενl − 1 and b is an arbitrary integer with ≤ νl G-ary digits. Let the
set of all such integers be denoted by Bνl . Additionally, we set At+1 = {N }. Then we
have

1 + D(re(β), γ ) =
N∑

n=0

(re(β))sG (n)e(nγ )

=
t+1∑
l=1

∑
n∈Al

(re(β))sG (n)e(nγ )

= (re(β))sG (N )e(Nγ ) +
t∑

l=1

ενl −1∑
a=0

∑
b∈Bνl

(re(β))εν1
+···+ενl−1

+a+sG (b)

e

((
l−1∑
i=1

ενi Gνi + aGνl + b

)
γ

)
,

from which it follows that

|D(re(β), γ )| ≤ 2 +
t∑

l=1

r εν1
+···+ενl−1

∣∣∣∣∣
ενl −1∑
a=0

(re(β + Gνl γ ))a

∣∣∣∣∣
∣∣∣∣∣ ∑

b∈Bνl

(re(β))sG (b)e(bγ )

∣∣∣∣∣
≤ 2 +

t∑
l=1

rl−1ενl

∣∣∣∣∣ ∑
b∈Bνl

(re(β))sG (b)e(bγ )

∣∣∣∣∣.
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We write

uν(β, γ ) :=
∑
b∈Bν

(re(β))sG (b)e(bγ ).

Then we see that uν satisfies a recursive relation:

Lemma 13. For ν ≥ 2d, we have

uν(β, γ ) =
d∑

i=1

(
ai −1∑
j=0

(re(β + Gν−iγ )) j

)(
i−1∏
l=1

(re(β + Gν−lγ ))al

)
uν−i (β, γ ). (20)

Proof: This is proved in the same way as Proposition 2: note that appending a sequence
of the form (ε, ai−1, . . . , a1) with ε < ai to a good sequence of length ν − i gives a
factor of

(re(β))a1+···+ai−1+εe((Gν−1a1 + · · · + Gν−i+1ai−1 + Gν−iε)γ ).

�

The recurrence can be used to prove an analogue of Lemma 7:

Lemma 14. There exist constants c14(G), c15(G) depending only on G such that

uν(β, γ ) ≤ c14(G) exp

(
− c15(G)r

ν−1∑
n=0

‖β + Gnγ ‖2

)
uν(0, 0) (21)

for all 0 < r ≤ 1 and all β, γ ∈ R.

Proof: This is done almost analogously to the proof of Lemma 7. For a1 > 1 (the
other case is similar), we have

|uν(β, γ )| ≤
(

1 − 2r

a1

‖β + Gν−1γ ‖2

) a1−1∑
j=0

r j |uν−1(β, γ )|

+
d∑

i=2

ai −1∑
j=0

r j
i−1∏
l=1

ral |uν−i (β, γ )|
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by the same argument as in Lemma 7. If we define Uν(β, γ ) by Uν(β, γ ) = uν(0, 0)
for ν < 2d and

Uν(β, γ ) =
(

1 − 2r

a1

‖β + Gν−1γ ‖2

) a1−1∑
j=0

r jUν−1(β, γ )

+
d∑

i=2

ai −1∑
j=0

r j
i−1∏
l=1

ral Uν−i (β, γ ),

we know that |uν(β, γ )| ≤ Uν(β, γ ) for all ν, and the argument of Lemma 7 shows
that

Uν(β, γ ) ≤
(

1 − 2r

a1d
‖β + Gν−1γ ‖2

) d∑
i=1

ai −1∑
j=0

r j
i−1∏
l=1

ral Uν−i (β, γ ).

Write Ci := ∑ai −1
j=0 r j

∏i−1
l=1 ral . For a sequence x = (xn)n≥0 with 1 ≥ xn ≥ 1 − r

2
,

define Wν(x) by Wν(x) = uν(0, 0) for ν < 2d and

Wν(x) = xν

d∑
i=1

Ci Wν−i (x).

Since xνC1 ≥ (1 − r
2
)(1 + r ) = 1 + r (1−r )

2
≥ 1, we know that Wν(x) is increasing, and

we also know that the Ci are decreasing, so Ci Wν−i (x) is always decreasing. Let x(n)

be the sequence x with 1 at the place of xn . We claim that

Wν(x) ≤
(

1 − 1 − xn

d

)
Wν

(
x(n)

)
holds for ν ≥ n. This is trivial for ν = n, since we have

Wn(x) = xn Wn
(
x(n)

)
and

(
1 − 1−xn

d

) ≥ xn . We proceed by induction: for 1 ≤ j ≤ d − 1, we have

Wn+ j (x) =
j−1∑
i=1

Ci Wn+ j−i (x) + C j Wn(x) +
d∑

i= j+1

Ci Wn+ j−i (x)

≤
(

1 − 1 − xn

d

) j−1∑
i=1

Ci Wn+ j−i
(
x(n)

)+xnC j Wn
(
x(n)

)+ d∑
i= j+1

Ci Wn+ j−i
(
x(n)

)
≤

(
1 − 1 − xn

d

) j−1∑
i=1

Ci Wn+ j−i
(
x(n)

) + d − j + xn

d − j + 1

d∑
i= j

Ci Wn+ j−i
(
x(n)

)
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≤
(

1 − 1 − xn

d

) d∑
i=1

Ci Wn+ j−i
(
x(n)

)
=

(
1 − 1 − xn

d

)
Wn+ j

(
x(n)

)
.

For j ≥ d, the induction is even simpler. Another straightforward induction shows
that

Wν(x) ≤
ν∏

j=2d

(
1 − 1 − x j

d

)
Wν(1),

where 1 is the sequence consisting only of 1’s. In our special case, we take xn =
1 − 2r

a1d ‖β + Gn−1γ ‖2 to show that

Uν(β, γ ) ≤
ν∏

n=2d

(
1 − 2r

a1d2
‖β + Gn−1γ ‖2

)
uν(0, 0)

≤
(

1 − 1

2a1d2

)1−2d ν∏
n=1

(
1 − 2r

a1d2
‖β + Gn−1γ ‖2

)
uν(0, 0)

≤
(

1 − 1

2a1d2

)1−2d

exp

(
− 2r

a1d2

ν−1∑
n=0

‖β + Gnγ ‖2

)
uν(0, 0),

which finally proves the claim. �

Lemma 15. Let m, ρ ∈ N and 1 ≤ p ≤ m − 1. If there is no prime divisor P of m
such that the sequence Gn is constant modulo P for all but finitely many values of n,
we have

ρ−1∑
n=0

∥∥∥∥β + Gn
j

m

∥∥∥∥2

≥ c16(G)
ρ

log m
+ OG(1). (22)

Proof: Without loss of generality, we may assume that (p, m) = 1 (cancellation of
common factors only improves the bound, and the conditions keep true). First, we
show that there exist constants c17(G) and c18(G) such that, among any set of c17(G) +
c18(G) log m consequent integers, there is an integer n such that

∥∥∥(Gn+1 − Gn)
p

m

∥∥∥ ≥ 1

2(a1 + · · · + ad )
.

For this purpose, we define a sequence (An)n≥0 by An ≡ (Gn+1 − Gn)p mod m and
−m

2
< An ≤ m

2
. We want to show that there are constants c17(G) and c18(G) such that
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for all I ≥ 0, there is an n < c17(G) + c18(G) log m with∥∥∥∥ AI+n

m

∥∥∥∥ ≥ 1

2(a1 + · · · + ad )
.

First of all, we will take c17(G) ≥ d . Consider the values AI , AI+1, . . . , AI+d−1. If one
of them has absolute value ≥ m

2(a1+···+ad )
, we are done. Otherwise, define the sequence

(Bn)n≥0 by Bn = AI+n (n = 0, . . . , d − 1) and

Bn+d = a1 Bn+d−1 + a2 Bn+d−2 + · · · + ad Bn.

Note that Bn ≡ AI+n for all values of n. Now we use a result of Brauer [4] that was
also applied in [21]: The characteristic polynomial

xd − a1xd−1 − · · · − ad

has a dominating root θ ∈ [a1, a1 + 1) that is a Pisot number, i.e., all conjugates
θ2, . . . , θd (if d > 1) have modulus < 1. Thus, we can express Bn by an explicit
formula:

Bn = βθn +
d∑

i=2

βi n
δ(i)θn

i ,

where the βi are linear combinations of the initial values B0, B1, . . . , Bd−1 (with
algebraic coefficients depending only on the characteristic polynomial). Therefore,
there exist constants c19(G) and κ3(G) such that

|Bn − βθn| ≤ c19(G)mnκ3(G)|θ2|n.

The coefficient β is also a linear combination of the initial values, i.e. it is of the form

x0 B0 + · · · + xd−1 Bd−1,

where the xi are algebraic numbers depending on the characteristic polynomial. By a
result of Schmidt (cf. [7, Theorem 2.1]), the inequality

0 < |x0 B0 + · · · + xd−1 Bd−1| < M−d+1−ε

with |Bn| ≤ M has only finitely many solutions for every ε > 0; therefore, there are
constants c20(G) > 0 and κ4(G) such that either

β = x0 B0 + · · · + xd−1 Bd−1 = 0

or

|β| = |x0 B0 + · · · + xd−1 Bd−1| ≥ c20(G)M−κ4(G)
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whenever |B0|, . . . , |Bd−1| ≤ M . We know that β cannot be 0, since then we would
have limn→∞ Bn = 0, i.e. An ≡ 0 mod m for all but finitely many values of n. This
contradicts the assumptions on G: as (p, m) = 1, Gn would be constant modulo m for
all but finitely many values of n. Therefore, since |Bn| ≤ m

2(a1+···+ad )
for 0 ≤ n ≤ d − 1,

|β| ≥ c21(G)m−κ4 , where c21 > 0 depends only on G. It follows that

|Bn| ≥ c21(G)m−κ4θn − c19(G)mnκ3(G)|θ2|n

for all n; there are constants c22(G) and c23(G) such that

c21(G)m−κ4(G)θn − c19(G)mnκ3(G)|θ2|n ≥ m

2(a1 + · · · + ad )

for all n ≥ c22(G) log m + c23(G). Thus, |Bn| ≥ m
2(a1+···+ad )

for some n ≤
c22(G) log m + c23(G); for the smallest index n for which this is true, we must also
have |Bn| ≤ m

2
, so ∥∥∥∥ AI+n

m

∥∥∥∥ =
∥∥∥∥ Bn

m

∥∥∥∥ ≥ 1

2(a1 + · · · + ad )
.

This proves the claim, and the lemma is a simple consequence if we make use of the
inequality ∥∥∥β + Gk+1

p

m

∥∥∥2

+
∥∥∥β + Gk

p

m

∥∥∥2

≥ 1

2

∥∥∥Gk+1

p

m
− Gk

p

m

∥∥∥2

.

�

We turn back to the proof of Theorem 12. By the preceding lemmas, there are constants
c24(G) and c25(G) such that

uν

(
β,

p

m

)
≤ c24(G) exp

(
− c25(G)

rν

log m

)
uν(0, 0).

Therefore, since uνl (0, 0) = ∑
b∈Bνl

r sG (b), we have

∣∣∣∣D

(
re(β),

p

m

)∣∣∣∣ ≤ c24(G)

(
t∑

l=1

rl−1ενl exp

(
− c25(G)

rνl

log m

) ∑
b∈Bνl

r sG (b)

)
+OG(1).

We divide the sum on the right side into two parts by defining the integer q for which
νq ≥ ν/2 > νq+1 (set νt+1 = 0): the first part is defined by

S1 :=
q∑

l=1

rl−1ενl exp

(
− c25(G)

rνl

log m

) ∑
b∈Bνl

r sG (b)

≤ c26(G) exp

(
− c25(G)

rν/2

log m

) q∑
l=1

rl−1
∑

b∈Bνl

r sG (b),
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where c26(G) is the largest possible digit that can appear in a G-ary expansion. Next,
we observe that

∑
b∈Bνl

r sG (b) = [xνl ]
p(x, r )

q(x, r )
.

By Corollary 5, this equals

∑
b∈Bνl

r sG (b) = − p(λ(r ), r )

qx (λ(r ), r )
λ(r )−νl−1

(
1 + OG

(
η

−νl
G

))
,

so that we obtain

S1 ≤c26(G) exp

(
−c25(G)

rν/2

log m

) q∑
l=1

rl−1

·
(

− p(λ(r ), r )

qx (λ(r ), r )

)
λ(r )−νl−1

(
1 + OG

(
η

−νl
G

))
= c26(G) exp

(
−c25(G)

rν/2

log m

) (
1 + OG

(
η

−ν/2
G

))
·
(

− p(λ(r ), r )

λ(r )qx (λ(r ), r )

)
λ(r )−ν ·

q∑
l=1

rl−1λ(r )ν−νl

≤ c26(G) exp

(
−c25(G)

rν/2

log m

) (
1 + OG

(
η

−ν/2
G

))
·
(

− p(λ(r ), r )

λ(r )qx (λ(r ), r )

)
λ(r )−ν ·

∞∑
j=0

(rλ(r )) j .

If a1 ≥ 2, we have q((1 + r + · · · + ra1−1)−1, r ) < 0 and thus λ(r ) ≤ (1 + r + · · · +
ra1−1)−1 ≤ (1 + r )−1, which in turn means that rλ(r ) ≤ r

1+r ≤ 1
2
. If a1 = 1, we also

have a2 = 1 and thus q(
√

1+4r−1
2r , r ) ≤ 0, so we obtain rλ(r ) ≤

√
1+4r−1

2
≤

√
5−1
2

.

This means that the infinite sum converges and is bounded by 3+√
5

2
. Together with

Corollary 9, we obtain

S1 = OG

(
|V (k, N )|rkk1/2 exp

(
−c25(G)

rν/2

log m

))
.

The other part of the sum,

S2 :=
t∑

l=q+1

rl−1ενl exp

(
−c25(G)

rνl

log m

) ∑
b∈Bνl

r sG (b),
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can be estimated as follows:

S2 ≤ c26(G)
t∑

l=q+1

rl−1
∑

b∈Bνl

r sG (b)

= c26(G)
t∑

l=q+1

rl−1 ·
(

− p(λ(r ), r )

qx (λ(r ), r )

)
λ(r )−νl−1

(
1 + OG

(
η

−νl
G

))
≤ c26(G) ·

(
− p(λ(r ), r )

λ(r )qx (λ(r ), r )

) t−q∑
i=1

r i−1λ(r )−ν/2+(i−1)(1 + OG(1))

≤ c26(G) ·
(

− p(λ(r ), r )

λ(r )qx (λ(r ), r )

)
λ(r )−ν/2

∞∑
j=0

(rλ(r )) j (1 + OG(1))

and thus

S2 = OG
(|V (k, N )|rkk1/2λ(r )ν/2

)
.

It is known that μ′(y) is bounded above and below by positive constants depending
only on G, which means that there are constants c8, c9 such that

c8(G)
k

ν
≤ r ≤ c9(G)

k

ν
.

Furthermore, λ′(y) = − λ(y)μ(y)
y is strictly negative on (0, 1] with limy→0+ λ′(y) = −1,

so it is bounded above and below by negative constants. So there are constants c27(G)
and c28(G) such that

c27(G)
k

ν
≤ λ(0) − λ(r ) = 1 − λ(r ) ≤ c28(G)

k

ν
,

and thus

λ(r )ν/2 ≤
(

1 − c27(G)
k

ν

)ν/2

≤ exp

(
−c27(G)

2
k

)
.

Altogether, we obtain

S1 + S2 = OG

(
|V (k, N )|rkk1/2

(
exp

(
−c29(G)

k

log m

)
+ exp

(
−c27(G)

2
k

)))
,

which proves Theorem 12. �

Remark. As an example, we note that, since the Fibonacci numbers clearly satisfy
the condition for any modulus, the set of integers with a fixed number of 1’s in the
Zeckendorf representation is well-distributed modulo any integer modulus. As in [19],
Theorem 12 can also be used to prove the following:
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Corollary 16. If z ∈ N, z ≥ 2, then there are constants N0(G), c30(G), c31(G) (de-
pending on G and z) such that for all N ≥ N0(G) and all k with

|μ(1)ν − k| < c30(G)(log N )3/4,

where ν + 1 is the number of G-ary digits of N , the number of integers in V (k, N )
which are not divisible by the z-th power of a prime P in the set

P := {P : P prime, P satisfies the condition of Theorem 12}

is given by(
ζ (z)

∏
P∈P

(
1 − 1

pz

))−1

|V (k, N )| (1 + O
(
exp(−c31(G)(log N )1/2)

))
. (23)
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8. Erdős, P., Mauduit, C., Sárközy, A.: On arithmetic properties of integers with missing digits. I. Distri-
bution in residue classes. J. Number Theory 70(2), 99–120 (1998)
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