
On Tries, Contention Trees and Their Analysis

Stephan Wagner

Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602,
South Africa
swagner@sun.ac.za

Received May 15, 2007

AMS Subject Classification: 68W40; 94A40, 68P05

Abstract. In this paper a survey on tries, a contention resolution algorithm, their similarities,
dissimilarities, and their mathematical treatment, will be given. It has already been mentioned in
some papers that tries and contention trees follow one common stochastic model, but still they
are frequently treated as separate objects in the literature. Hence the aim of the current work
is to contribute to the unification of the various results in that area and to exhibit the employed
methods, which involve, among others, analytic poissonization/depoissonization and the Mellin
transform. For the sake of the example, a new parameter in contention trees, the number of
terminal frames, will be studied.

Keywords: tries, contention trees, poissonization, Mellin transform

1. Introduction

1.1. Tries

We will treat two different kinds of combinatorial objects (which turn out to be
almost isomorphic) in this paper, the first of which are tries. Tries are a very popular
data structure for words over a finite alphabet, and they have also been treated quite
extensively from a mathematical point of view. Let us start with a brief description.

Given a set of n strings over a finite alphabet with m letters (the most typical case
being m = 2), a trie is built up in the following way: A string is stored in an external
node, and a path from the root to an external node represents the shortest prefix of the
string that is not a prefix of any other string. Each outgoing edge at an internal node
represents one letter of the alphabet, so a trie is a special m-ary tree. Figure 1 shows
a very simple example of a binary trie for the strings 000101, 110110, 001010, and
101011. An important special case is given by the suffix trie, which is built up from the
suffixes over a single string.

Tries were first proposed by de la Briandais [3] in the context of information pro-
cessing; the name was suggested by Fredkin [12], being part of the word retrieval.
Tries are used in various applications in computer science due to their simplicity and

Ann. Comb. 12 (2009) 493–507
DOI 10.1007/s00026-009-0002-4
© Birkhäuser Verlag Basel/Switzerland 2009

Annals of Combinatorics

494 S. Wagner

000101 001010

101011 110110

Figure 1: A binary trie.

efficiency. Examples include searching and sorting, fast retrieval (dynamic hashing,
see [4, 21]), the IP-addresses lookup problem [30], polynomial factorization [22], data
compression [29], and many others. The trie structure is also related to coin-flipping
processes, e.g., the leader election algorithm discussed in [6,28] (so-called “incomplete
tries” — only one branch is pursued).

1.2. Contention Trees

The fundamental problem of multi-user communication is to serve many different
senders, given only a single communication channel. For this purpose, the classical
solution of time-division multiplexing becomes rather inefficient when there is a large
number of senders and each of them is inactive most of the time. A far more efficient
and elegant solution to this problem was given by the ALOHA protocol developed in
the early 1970’s (cf. Abramson [33]), which provided immediate random access to the
channel. If two transmitters are active at the same time, a collision occurs, and both
transmitters try again later after some random time period.

The main disadvantage of the ALOHA protocol is its rather poor performance if the
channel occupancy is above a certain level — in fact, the protocol is unstable: If the
senders submit their messages according to a Poisson process, then the backlog tends
to ∞ with probability 1. One strategy to deal with this problem is the contention tree
algorithm due to Capetanakis [2], Tsybakov and Mikhailov [33]. Suppose that a large
number n of submitters contending for channel access is given; each of them receives
ternary feedback on the outcome during a particular contention slot: Either zero (empty
slot), one (successful transmission), or more than one (collision) transmitters have been
broadcasting during this slot.

For some given nodal degree m, we let m consecutive slots be grouped into a con-
tention frame. During the first contention frame, each transmitter picks a slot at random
— usually, the probabilities are equal for all slots, but they may also be given by values
p1, . . . , pm. If a collision occurs at some slot, a new frame is opened for the transmitters
who made use of that slot. This procedure is repeated recursively (the algorithm is ap-
plied to each of the new frames, one after the other), inducing a tree structure as shown
in Figure 2 (with 13 contenders and m = 3).

There are several variants of the contention tree algorithm, such as the contention
stack algorithm due to Tsybakov and Vvedenskaya [34] and the Gallagher-Tsybakov-
Mikhailov algorithm, where the partition of the contenders is not based on a random

Contention Trees and Tries 495

5 6 2

2 3 0

1 1 0 0 1 2

1 0 1

1

2 0 01 1 4

0 3 1

1 1 1

0 1

Figure 2: A contention tree.

process, but on the time at which a user became active [13].
In many papers, the contention tree algorithm is mentioned to be an application of

the trie structure [15,16,25] (which is plain to see and will be exhibited in the following
section); however, the algorithm is still frequently treated separately, without making
use of the existing results for tries. One major aim of this paper is to enlarge the gen-
eral awareness of the fact that tries and contention trees are two manifestations of one
common underlying model.

2. Common Parameters, Similarities, and Dissimilarities

Now, we want to exhibit the fact that the contention tree algorithm and tries follow one
common stochastic model. Indeed, we can identify each contender in our contention
resolution algorithm with a word: Simply take the sequence of slots that is chosen by the
contender (which is of course a word over an alphabet of m letters). Then, the position
in the contention tree where the contender is finally able to successfully submit their
data is exactly the position in the trie where the associated word is stored. In Figure 3,
an example of a ternary contention tree and its associated trie is shown. Note that a trie
is an m-ary tree whose leaves are regarded as external nodes, where the data are stored,
whereas a contention tree only consists of internal nodes (it would be possible, though,
to associate an additional external node to each contender). This fact can result in some
minor differences for parameters in the two models.

In view of the described correspondence, a common stochastic model can be ap-
plied to tries and contention trees: We assume that a contender picks the i-th slot with
a probability pi, or equivalently that the i-th letter of our alphabet appears with proba-
bility pi

(
∑m

i=1 pi = 1
)
. This is known as the Bernoulli model. As already mentioned,

it is usually reasonable to assume that p1 = p2 = · · · = pm = 1
m (the so-called symmet-

ric case) in the contention tree algorithm, since the purpose of the algorithm is to split
the group of contenders as effectively as possible. However, there are slightly mod-
ified algorithms which are more efficient in the asymmetric case, and it is also quite
plausible that the frequencies of the letters of our alphabet are all different. Yet the
symmetric case is generally easier to analyze (see, for instance, [20], where the specific
difficulties of the asymmetric case are explained), and there are also parameters where

496 S. Wagner

3 1 2

2 0 ` 1 1 0

0 1 1

1

001 002

02

1

2120

Figure 3: A contention tree and its associated trie.

the behaviors differ in the symmetric and the asymmetric cases.
The case m = 2 is certainly the most interesting and important one, especially in

the case of tries in view of their applications in computer science. Hence, many papers
deal exclusively with this special case, but there are also generalizations to the general
m-ary case (see, [32], for instance).

There is a great variety of parameters that are of interest for tries and/or contention
trees. Among them, the most important parameter for the performance of contention
trees is probably the number of contention frames (equivalently, the size of a trie),
whose average behavior has been studied in several papers. The following formula was
given by Janssen and de Jong [18]:

Theorem 2.1. (Janssen and de Jong [18]) If Ln denotes the average number of frames
for a given number n of transmitters, the asymptotic behavior of Ln for n → ∞ is given
by

Ln

n
=

1
logm

+ Φm (logm n)+ O(1), (2.1)

where Φm is a periodic function (of very small amplitude).

Their proof used an explicit sum formula for Ln:

Ln =
∞

∑
d=0

md
(

1−
(

1−m−d
)n)

−n
(

1−m−d
)n−1

,

whose asymptotics can be determined by means of the Poisson sum formula (in Sec-
tion 3, we will perform a similar analysis, but employ the Mellin transform for this
purpose). However, the asymptotic behavior shown in formula (2.1) had already been
given before by Flajolet and Jacquet [7] (in the case m = 2), and they attributed the
analysis to Knuth [21].

Another common approach for problems of this kind is analytic poissonization and
de-poissonization: One considers the Poisson transform L(x) = e−x ∑∞

n=0
Ln
n! xn, which

satisfies a nice functional equation:

L(mx) = mL(x)+ 1− (1 + mx)e−mx.

It will be shown in Section 3 how equations of this kind can be derived. Now it follows
from general theorems (see the excellent survey article of Jacquet and Szpankowski

Contention Trees and Tries 497

[17]) that Ln ∼ L(n), which allows one to determine the asymptotic behavior. Indeed,
in a recent paper, Györfi and Győri [14] investigated the asymptotic difference between
Ln and its Poisson transform L(n) in detail to obtain more precise information on the
behavior of Ln depending on n.

However, even more is known — Jacquet and Régnier [16] have already shown in
1988 (in the case of symmetric or unsymmetric binary tries) that the distribution of
the size of a trie tends to a normal distribution, and that the moments converge to the
corresponding moments for the normal distribution:

Theorem 2.2. (Jacquet and Régnier [16]) If Sn is the (random) size of a trie built from
n strings, then the distribution of the normalized random variable tends to a normal
distribution:

Sn −E(Sn)√
V(Sn)

d
→ N(0, 1).

The moments also converge, and the convergence rate is O
(
nε−1/2) for arbitrary ε > 0.

Another parameter of interest is the average number of levels (attempts) a random
contender requires for successful transmission — this parameter is also known as the
depth (distance from the root to a randomly selected external node, see [15] for instance)
and is related to the external path length (the sum of all distances from the external
nodes to the root). In the case of tries, this gives the average time for searching a word
in the trie. However, it is not true that the average number of levels a contender needs
is also a measure for the average time that a contender has to wait until the message
can be sent: Note that all frames to the left of a certain frame in a contention tree are
executed before it. Hence, in order to determine the average waiting time, one needs
another parameter that has no immediate interpretation for tries. It seems that, unlike the
well-studied depth, the average waiting time of a contender has not been investigated
as extensively yet; its analysis should follow the same lines though. For the average
number of attempts that a contender requires, Janssen and de Jong provide the formula

dn = logm n +
1
2

+
γ

logm
+ Ψm(logm n)+ O

(
n−1) ,

where Ψm is a periodic function and γ denotes the Euler-Mascheroni constant. Again,
limiting distributions (for the depth, but apparently not for the average waiting time, see
above) have been studied in the binary case, see [15, 27].

A very similar parameter is the number of tree levels required to complete the whole
algorithm (i.e., the largest number of levels any contender needs). Again, this should
not be confused with the time the algorithm takes. In the language of trees (and, in
particular, tries), this is known as the height (longest path from the root to a leaf).

These are just three examples of important parameters in the analysis of tries and
contention trees. As Hwang, Nicodème, Park and Szpankowski [25, 26] pointed out,
these and other important parameters can be expressed in terms of the profile of tries.
The internal/external profile of the tree is defined as the total number of internal/external
nodes at a given level, i.e., the random variables In,k and Bn,k are given by the number
of internal/external nodes at level k in a random trie (where the root is at level 0).
Important parameters that can be expressed in terms of the profile include, apart from
the aforementioned,

498 S. Wagner

• (internal) path length, i.e., the sum of the distances between the internal nodes and
the root, which is given by ∑ j jIn, j,

• shortest path from the root to an external node: min
{

j : Bn, j > 0
}

, and
• fill-up level (largest full level): max

{
j : In, j = m j

}
.

Hence it is not exaggerated to state that the profile provides an almost complete char-
acterization of the shape of a trie. The main result for the profile, which follows from a
quite intricate analysis, can be roughly stated as follows: The distributions of the inter-
nal and external profile converge (in distribution) to a Gaussian distribution, provided
that the variance tends to infinity (which is the case if limn→∞

k
logn lies within a certain

range); otherwise, it tends to a Poisson distribution or to 0 (the latter being the case
for very large or small k; the former case occurs if the variance is of order Θ(1), i.e.,
bounded above and below by constants). For details on the distributions and on the
asymptotics of the mean and variance, see the papers [25] and [26].

3. Analysis of Terminal Frames

In order to briefly demonstrate some of the techniques that are applied in the analysis of
parameters of contention trees and tries, we investigate the number of terminal frames in
a contention tree; this gives us information about the proportion of those frames that are
merely used for splitting purposes compared to those in which the transmission actually
occurs. There are two plausible ways to define “terminal”: We call a contention frame

• terminal of the first type if all contenders of the frame can transmit successfully;
equivalently, no splitting occurs at such a frame any more,

• terminal of the second type if at least one successful transmission is performed at
this frame.

In terms of tries, these are the number of internal nodes whose children are all exter-
nal nodes and the number of internal nodes with at least one external node among the
children respectively. We are going to provide explicit formulas for the average number
of terminal frames of both types as well as asymptotic expressions — not surprisingly,
oscillation phenomena (as for the size Ln of contention trees, for instance) can be ob-
served.

3.1. Explicit Formulas

Proposition 3.1. The average number of terminal frames of the first type, given the
number n of contenders, is

tn =
∞

∑
d=0

md
n

∑
k=2

(
n
k

)
m−dk

(
1−m−d

)n−k
(m)km−k.

The average number of terminal frames of the second type, given the number n of con-
tenders, is

Tn = n−
∞

∑
d=0

md
m

∑
l=2

(−1)l(m)l

(
n
l

)
m−(d+1)l

(
1− lm−(d+1)

)n−l
.

Contention Trees and Tries 499

Proof. We apply the probabilistic model that is also used by Janssen and de Jong [18]:
We think of the contention tree as an infinite, complete m-ary tree. At the first level,
each contender chooses one of the m slots at random and proceeds to the corresponding
node of the next level; this process is repeated for each subsequent level. Therefore,
the contenders are randomly distributed among the md nodes of the d-th level. The
probability that k of n contenders are assigned to some level-d node is therefore given
by (

n
k

)
m−dk

(
1−m−d

)n−k
.

The first time contenders pick a slot which they don’t have to share is the time when
their transmission is successfully completed.

Now consider tn first. Obviously, the probability that a contention frame with k
contenders is a terminal frame of the first type is given by

(m)km−k,

where (m)k = m(m−1) · · ·(m−k+1) denotes the falling factorial, since there are (m)k
among the mk possibilities for which all contenders occupy their own slots. Thus, we
have a formula for the probability that a frame at level d is a terminal frame of the first
type:

n

∑
k=2

(
n
k

)
m−dk

(
1−m−d

)n−k
(m)km−k.

Note that we have to sum over k ≥ 2 since a contention frame is only generated when
there are at least two colliding contenders. Summing over all frames now yields the
formula for tn. In a similar manner, we note that the probability that at least l (l ≥ 2)
contenders have successful transmission at a certain level-d frame is given by(

n
l

)
(m)lm−(d+1)l

(
1− lm−(d+1)

)n−l
.

By the inclusion-exclusion principle, we obtain the formula for Tn.

The presented approach works well if one is only interested in expected values.
However, if higher moments or limit distributions are requested, it is much more ad-
vantageous to use a recursive approach and generating functions instead, as exhibited
in the following section and parts of Section 3.3.

3.2. Functional Equations and the Special Case m = 2

Each contender transmits successfully at some terminal frame of the second type. If
this contender is not the only one who transmits at this frame, then it is also a terminal
frame of the first type if m = 2. In this case there are two slots of the frame occupied by
single contenders. This shows that the total number of contenders must equal the sum
of the total number of terminal frames of the first kind and the total number of terminal
frames of the second kind, i.e.,

tn + Tn = n,

500 S. Wagner

if m = 2. This is not the only interesting feature of the case m = 2. We are going to show
that the exponential generating functions of tn and Tn satisfy specifically nice functional
equations. First, we note that the formulas of Proposition 3.1 reduce to

tn =
∞

∑
d=0

2−d−1
(

n
2

)(
1−2−d

)n−2

and Tn = n− tn. Now, we define t0 = t1 = T0 = 0 and T1 = 1 and let t(x) = e−x ∑∞
n=0

tn
n! xn

and T (x) = e−x ∑∞
n=0

Tn
n! xn be the Poisson transforms of tn and Tn respectively. From the

identity tn +Tn = n, it is clear that t(x)+T (x) = x. Now, we insert the formula for tn to
obtain

t(x) = e−x
∞

∑
n=2

∞

∑
d=0

2−d−1
(

n
2

)(
1−2−d

)n−2 xn

n!

= x2e−x
∞

∑
n=2

∞

∑
d=0

2−d−2

((
1−2−d

)
x
)n−2

(n−2)!

=
x2e−x

4

∞

∑
d=0

2−d exp
((

1−2−d
)

x
)

=
x2

4

∞

∑
d=0

2−d exp
(
−2−dx

)
.

Now, replacing x by 2x yields

t(2x) = x2
∞

∑
d=0

2−d exp
(
−2−d+1x

)

= x2
∞

∑
d=−1

2−d−1 exp
(
−2−dx

)

= x2e−2x +
x2

2

∞

∑
d=0

2−d exp
(
−2−dx

)

= x2e−2x + 2t(x).

As a corollary, we have T (2x) = −x2e−2x + 2T(x). These functional equations reflect
the recursive structure of contention trees. A simple combinatorial argument shows that
we have

tn = 2−n
n

∑
k=0

(
n
k

)
(tk + tn−k)+

δn2

2
,

from which the functional equation follows easily as well. Indeed, the probability that
the n contenders split into one group of k contenders and another group of n− k con-
tenders in the first step is exactly

(n
k

)
2−n; afterwards, we have an average of tk + tn−k

terminal frames of the first type, except for the case n = 2, where we have to add 1

Contention Trees and Tries 501

with probability 1
2 . Similar arguments show that in the general case, there is always a

recursion of the form

tn = m−n ∑
k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
(tk1 + tk2 + · · ·+ tkm)+ rn

and thus an analytic function fm(x) such that

t(mx) = mt(x)+ fm(x).

This kind of linear additive functional equation is typical for the probabilistic models of
tries, contention trees, and many similar structures, and it has been studied extensively
(see for example, [5, 31]). The order of the steps can be reversed — frequently, explicit
formulas are deduced from functional equations by iteration, e.g.,

t(x) =
x2e−x

4
+ 2t

(x
2

)
=

x2e−x

4
+

x2e−x/2

8
+ 4t

(x
4

)
+ · · · .

The behavior of the sum ∑∞
d=0 2−d exp

(
−2−dx

)
that appears in the explicit formula for

t(x) can be determined by means of the Mellin transform (see the papers of Flajolet et
al. [8–11] for various applications): The Mellin transform is always particularly useful
when one is dealing with sums of the type g(x) = ∑n≥1 λn f (µnx), since the Mellin
transforms f ∗(s) =

∫ ∞
0 xs−1 f (x)dx and g∗(s) are connected via

g∗(s) = ∑
n≥1

λnµ−s
n f ∗(s).

In our case, the Mellin transform of e−x is given by Γ(s), and thus the transform of the
sum we are interested in is

∞

∑
d=0

2−d 2ds Γ(s) =
Γ(s)

1−2s−1 .

Using the Mellin inversion formula, we have

∞

∑
d=0

2−d exp
(
−2−dx

)
=

1
2πi

∫ 1/2+i∞

1/2−i∞

Γ(s)
1−2s−1 x−s ds.

Shifting the path of integration to the right and collecting residues at the points 1+ 2πia
log2

(a ∈ Z), we obtain

∞

∑
d=0

2−d exp
(
−2−dx

)
=

1
x log2

∞

∑
a=−∞

exp(−2πia log2 x)Γ
(

1 +
2πia
log2

)
+ O

(
x−2) .

Finally, from general depoissonization theorems [17], we find that

tn = t(n)+ o(n) =
n

4 log2

∞

∑
a=−∞

exp(−2πia log2 n)Γ
(

1 +
2πia
log2

)
+ o(n).

502 S. Wagner

The function that is represented by the Fourier series

F(x) =
∞

∑
a=−∞

Γ
(

1 +
2πia
log2

)
exp(−2πiax)

is periodic, and the non-constant terms yield a function of very small amplitude —
compare the formula of Janssen and de Jong given in Theorem 2.1.

3.3. Asymptotic Evaluation

In a similar way, the Mellin transform can be used to determine the asymptotic
behavior of the quantities tn and Tn from the explicit formulas: For this purpose, we
study the infinite sum

∞

∑
d=0

m−(k−1)d
(

1−αm−d
)n−k

,

where 0 < α ≤ 1 and k, m are fixed. We are going to show that it behaves, apart from
an oscillatory term, like Γ(k−1)

logm (α(n−k))−(k−1). For this purpose, we replace 1−αm−d

by exp
(
−αm−d

)
and estimate the error. Fix some positive ε < 1

k+1 . Then, in the case
that d ≤ (1− ε) logm(n), we have m−d ≥ nε−1 and thus

(
1−αm−d

)n−k
≤ exp

(
−αm−d(n− k)

)
≤ exp

(
−αnε−1(n− k)

)
,

which shows that the contribution of the terms with d ≤ (1− ε) logm(n) decreases with

exp(−nε). On the other hand, we make use of the inequality exp(−x)− (1− x) ≤ x2

2
for positive x to show that

∑
d>(1−ε) logm(n)

m−(k−1)d
(

exp
(
−α(n− k)m−d

)
−

(
1−αm−d

)n−k
)

≤ ∑
d>(1−ε) logm(n)

m−(k−1)d(n− k)
(

exp
(
−αm−d

)
−

(
1−αm−d

))

≤ ∑
d>(1−ε) logm(n)

m−(k−1)d(n− k)
α2m−2d

2

� nm−(k+1)(1−ε) logm(n)

= n−k+ε(k+1).

Now we consider the behavior of

∞

∑
d=0

m−(k−1)d exp
(
−αm−d(n− k)

)
.

Contention Trees and Tries 503

Using the Mellin transform again (alternatively, the Poisson summation formula could
also be applied), we obtain

∞

∑
d=0

m−(k−1)d exp
(
−αm−d(n− k)

)

=
1

logm
(α(n− k))−(k−1)

∞

∑
a=−∞

exp(−2πia logm(α(n− k)))Γ
(

k−1 +
2πia
logm

)

+ O
(

n−k
)

.

Altogether, we obtain the following asymptotic formulas for tn and Tn:

Proposition 3.2. The average number of terminal frames of the first type is given by

tn =
n

logm

m

∑
k=2

(
m
k

)
m−k

∞

∑
a=−∞

exp(−2πia logm(n− k))Γ
(

k−1 +
2πia
logm

)
+ o(n).

Note that only the summands up to k = m are necessary, since (m)k = 0 for k > m.
Analogously, we have

Proposition 3.3. The average number of terminal frames of the second type is given by

Tn = n

(
1−

1
m logm

m

∑
l=2

(−1)l

ll−1

(
m
l

)

∞

∑
a=−∞

exp(−2πia logm(l(n− l)))Γ
(

l −1 +
2πia
logm

))
+ o(n).

Note again that the coefficients of n are not constant, but periodic functions in
logm(n).

As mentioned in Section 2, it is also possible to obtain limiting distributions for
parameters like the size (number of frames); an example of such a result is stated in
Theorem 2.2. In order to achieve this, one has to consider bivariate generating functions
— in the case of terminal frames, let tn,k be the probability that a contention tree with n
contenders has exactly k terminal frames of the first type and Tn,k the probability that a
contention tree with n contenders has exactly k terminal frames of the second type. In
order to obtain a simpler functional equation, we set t1,0 = T1,0 = 1 and t1,1 = T1,1 = 0.
Then, the relevant generating functions

s(x, z) := e−x ∑
n,k

tn,k
xn

n!
zk

and

S(x, z) := e−x ∑
n,k

Tn,k
xn

n!
zk

504 S. Wagner

satisfy, in view of the recursive structure,

s(x, z) = s
(x

m
, z
)m

+(z−1)e−x
((x

m
+ 1

)m
−1− x

)
and

S(x, z) = zS
(x

m
, z
)m

− (z−1)
(

xe−x +
(

S
(x

m
, z
)
− x

m e−x/m
)m)

.

However, to keep the paper short, we won’t perform any analysis with these bivariate
functions.

Finally, we consider the coefficients of the non-oscillating parts in the asymptotic
formulas for tn and Tn, namely,

a(m) =
1

logm

m

∑
k=2

(
m
k

)
m−k(k−2)!

and

b(m) = 1−
1

m logm

m

∑
l=2

(−1)l

ll−1

(
m
l

)
(l −2)!

and study their behavior when m is large. The first sum is easily estimated by el-
ementary means: We divide the range of summation into the three parts

[
2, m1/3],[

m1/3, m1/2+ε], and
[
m1/2+ε, m

]
. It is not difficult to see that the third part is smaller

than any power of m. For the other parts, we apply Stirling’s formula:

(
m
k

)
m−k(k−2)! =

1
k(k−1)

(
1 +

k
2m

+
3k2

8m2 + · · ·

)

exp

(
−

k2

2m
−

k3

6m2 −
k4

12m3 + · · ·

)
.

For k ≤ m1/3, we may expand the exponential in another series and then calculate
the sums; for k ≥m1/3, we approximate the sum by an integral. Elementary calculations
show that

a(m) =
1

logm

m

∑
k=2

(
m
k

)
m−k(k−2)! =

1
logm

(
1−

√
π

2m
+ · · ·

)
.

The second sum is alternating, so its asymptotic evaluation is somewhat trickier.
We use the technique of “Rice’s integrals” (cf. Flajolet and Sedgewick [11]) to write
the sum as a complex integral:

m

∑
l=2

(−1)l

ll−1

(
m
l

)
(l −2)! =

(−1)m−1

2πi

∫ 3/2+i∞

3/2−i∞

m!Γ(s−1)s−s+1

s(s−1) · · ·(s−m)
ds

=
(−1)m−1

2πi

∫ 3/2+i∞

3/2−i∞

m!Γ(s−m)

ss(s−1)
ds.

Contention Trees and Tries 505

Shifting the path of integration to the line Res = 1
2 and collecting the residue at 1 yields

m

∑
l=2

(−1)l

ll−1

(
m
l

)
(l −2)! = m(logm−1)−

1
2

+ O
(

1
m

)

+
(−1)m−1

2πi

∫ 1/2+i∞

1/2−i∞

m!Γ(s−m)

ss(s−1)
ds.

Now, we have to deform the contour to a curve surrounding 0 at a radius of 1
logm (cf.

[11]). Then the contribution of the logarithmic singularity around 0, whose expansion
is given by

(−1)m−1 m!Γ(s−m)

ss(s−1)
=

1
s
− logs+ O(1),

is seen to be 1 + O
(

log logm
logm

)
; therefore, the second sum is

m

∑
l=2

(−1)l

ll−1

(
m
l

)
(l −2)! = m(logm−1)+

1
2

+ · · · ,

yielding

b(m) =
1

logm
−

1
2m logm

+ · · · .

So we see that in both cases the main term tends to n
logm for large m — which is the

main asymptotic term for the average total number of frames; some specific values are
given in the following table:

m a(m) b(m) 1
logm

2 0.360674 0.639326 1.442695
3 0.337126 0.578593 0.910239
4 0.321225 0.533504 0.721348
5 0.309375 0.498516 0.621335
10 0.275333 0.398501 0.434294
20 0.245456 0.321580 0.333808
50 0.211946 0.252169 0.255622
100 0.190634 0.215736 0.217147

Acknowledgments. The author thanks Michael Drmota and Alois Panholzer for their valuable
suggestions.

References

1. N. Abramson, Development of the alohanet, IEEE Trans. Inform. Theory 31 (2) (1985) 119–
123.

2. J.I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Trans. Inform. Theory
25 (5) (1979) 505–515.

506 S. Wagner

3. R. da la Briandais, File searching using variable length keys, In: Proceedings of the Western
Joint Computer Conference, Vol. 15, New York, (1959) pp. 295–298.

4. R. Fagin, J. Nievergelt, N. Pippenger, and H. Raymond Strong, Extendible hashing — a fast
access method for dynamic files, ACM Trans. Database Syst. 4 (3) (1979) 315–344.

5. G. Fayolle, P. Flajolet, and M. Hofri, On a functional equation arising in the analysis of a
protocol for a multi-access broadcast channel, Adv. in Appl. Probab. 18 (2) (1986) 441–472.

6. J.A. Fill, H.M. Mahmoud, and W. Szpankowski, On the distribution for the duration of a
randomized leader election algorithm, Ann. Appl. Probab. 6 (4) (1996) 1260–1283.

7. P. Flajolet and P. Jacquet, Analytic models for tree communication protocols, In: Flow Con-
trol of Congested Networks, Vol. 38, A.R. Odoni, L. Bianco, and G. Szegö, Eds., Springer-
Verlag, (1987) pp. 223–234.

8. P. Flajolet and M. Golin, Mellin transforms and asymptotics: the mergesort recurrence, Acta
Inform. 31 (7) (1994) 673–696.

9. P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: harmonic sums,
Theoret. Comput. Sci. 144 (1-2) (1995) 3–58.

10. P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, and R.F. Tichy, Mellin transforms and
asymptotics: digital sums, Theoret. Comput. Sci. 123 (2) (1994) 291–314.

11. P. Flajolet and R. Sedgewick, Mellin transforms and asymptotics: finite differences and
Rice’s integrals, Theoret. Comput. Sci. 144 (1-2) (1995) 101–124.

12. E. Fredkin, Trie memory, Comm. ACM 3 (9) (1960) 490–499.
13. R.G. Gallagher, Conflict resolution in random access broadcast networks, In: Proceedings

of the AFOSR Workshop in Communication Theory and Applications, Provincetown, MA,
(1978) pp. 74–76.

14. L. Györfi and S. Győri, Analysis of tree algorithm for collision resolution, In: 2005 Interna-
tional Conference on Analysis of Algorithms, Barcelona, (2005) pp. 357–364.

15. P. Jacquet and M. Régnier, Trie partitioning process: limiting distributions, In: Lecture Notes
in Comput. Sci. Vol. 214, Springer, Berlin, (1986) pp. 196–211.

16. P. Jacquet and M. Régnier, Normal limiting distribution of the size of tries, In: Perfor-
mance’87, North-Holland, Amsterdam, (1988) pp. 209–223.

17. P. Jacquet and W. Szpankowski, Analytical de-Poissonization and its applications, Theoret.
Comput. Sci. 201 (1-2) (1998) 1–62.

18. A.J.E.M. Janssen and M.J.M. de Jong, Analysis of contention tree-algorithms, IEEE Trans.
Inform. Theory 46 (6) (2000) 2163–2172.

19. M.A. Kaplan and E. Gulko, Analytic properties of multiple-access trees, IEEE Trans. Inform.
Theory 31 (2) (1985) 255–263.

20. P. Kirschenhofer, H. Prodinger, and W. Szpankowski, On the variance of the external path
length in a symmetric digital trie, Discrete Appl. Math. 25 (1-2) (1989) 129–143.

21. D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley Publishing Co.,
Reading, Mass., 1973.

22. D. Lazard, On polynomial factorization, In: Proceedings of the European Computer Algebra
Conference on Computer Algebra, Lecture Notes in Comput. Sci., Vol. 44, Springer-Verlag,
London, (1982) pp. 126–134.

23. J.L. Massey, Collision resolution algorithms and random access algorithms, In: Multi-User
Communication Systems, Springer Verlag, New York, (1981) pp. 73–137.

24. P. Mathys and P. Flajolet, Q-ary collision resolution algorithms in random-access systems
with free or blocked channel access, IEEE Trans. Inform. Theory 31 (2) (1985) 217–243.

25. G. Park, H.-K. Hwang, P. Nicodème, and W. Szpankowski, Profiles of tries, SIAM J. Com-
put., to appear.

26. G. Park and W. Szpankowski, Towards a complete characterization of tries, In: Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
(2005) pp. 33–42.

Contention Trees and Tries 507

27. B. Pittel, Paths in a random digital tree: limiting distributions, Adv. Appl. Probab. 18 (1)
(1986) 139–155.

28. H. Prodinger, How to select a loser, Discrete Math. 120 (1-3) (1993) 149–159.
29. R. Sedgewick, Algorithms, Addison-Wesley Publishing Co., Advanced Book Program,

Reading, MA, 1983.
30. V. Srinivasan and G. Varghese, Fast address lookups using controlled prefix expansion, ACM

Trans. Comput. Syst. 17 (1) (1999) 1–40.
31. W. Szpankowski, On a recurrence equation arising in the analysis of conflict resolution al-

gorithms, Comm. Statist. Stochastic Models 3 (1) (1987) 89–114.
32. W. Szpankowski, Some results on V -ary asymmetric tries, J. Algorithms 9 (2) (1988) 224–

244.
33. B.S. Tsybakov and V.A. Mikhaı̆lov, Free synchronous packet access in a broadcast channel

with feedback, Problems Inform. Transmission 14 (4) (1978) 32–59.
34. N.D. Vvedenskaya and B.S. Tsybakov, Packet delay in a multiple-access stack algorithm,

Problemy Peredachi Informatsii 20 (2) (1984) 77–97.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

