Homework 1

Exercise 1. Let $f : A \longrightarrow B$ be a ring homomorphism and let \mathfrak{q} be a prime ideal of B. Show that $f^*(\mathfrak{q}) := f^{-1}(\mathfrak{q})$ is a prime ideal of A. Thus f induces a natural map $f^* : \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A), \mathfrak{q} \mapsto f^*(\mathfrak{q}).$

Exercise 2. Preserve the notation given in Exercise 1. Is it true that if \mathfrak{m} is a maximal ideal of B, then $f^*(\mathfrak{m})$ is a maximal ideal of A?

Exercise 3. Let $f : A \longrightarrow B$ be a surjective ring homomorphism, and let $f^* : \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$ be the natural map defined in Exercise 1.

- (1) Show that $f^*(\operatorname{Max}(B)) \subseteq \operatorname{Max}(A)$.
- (2) Give an example of when the inclusion \subseteq of part (1) is strict.
- (3) Show that, if f is an isomorphism, then $f^*(\operatorname{Max}(B)) = \operatorname{Max}(A)$.

Exercise 4. Let K be a field and let $A := K[T_1, \ldots, T_n]$ be the polynomial ring over K in the indeterminates T_1, \ldots, T_n . Let $\mathbf{a} := (\lambda_1, \ldots, \lambda_n) \in K^n$.

- (1) Let $\tau_{\mathbf{a}} : A \longrightarrow A$ be the ring homomorphism defined by setting $\tau_{\mathbf{a}}(f(T_1, \ldots, T_n)) := f(T_1 \lambda_1, \ldots, T_n \lambda_n)$. Show that τ is a ring automorphism.
- (2) Show that the ideal $(T_1, \ldots, T_n)A$ is a maximal ideal of A.
- (3) More generally, show that $\mathfrak{m}_{\mathbf{a}} := (T_1 \lambda_1, \dots, T_n \lambda_n)A$ is a maximal ideal of A.
- (4) Find a field K and a positive integer n such that the inclusion

$$\{\mathbf{\mathfrak{m}}_{\mathbf{a}}:\mathbf{a}\in K^n\}\subseteq \operatorname{Max}(A)$$

is strict.

Exercise 5. Let A be an integral domain, K be the quotient field of A, T be an indeterminate over A and let λ be a nonzero element of A. Consider the ring homomorphism

$$\tau: A[T] \longrightarrow K, \qquad f(T) \mapsto f(\lambda^{-1})$$

- (1) Show that $\mathfrak{p} := \operatorname{Ker}(\tau)$ is a prime ideal of A[T].
- (2) Show that, if $f(T) \in \mathfrak{p}$ and f(T) is linear, then $f(T) \in (\lambda T 1)A[T]$.
- (3) More generally, show that $\mathfrak{p} = (\lambda T 1)A[T]$. [Hint: take a polynomial $f(T) \in \mathfrak{p}$. Argue by induction on the degree h of f(T). Note that, if $f(T) = a_h T^h + \ldots a_1 T + a_0$, then there is a polynomial $g(T) \in A[T]$ such that $f(T) + a_0(\lambda T - 1) = Tg(T)...$]