MAT.632 - Elective subjects Mathematics Topological Methods in Commutative Ring Theory

Homework 10

"When you love someone, you love the person as they are, and not as you'd like them to be. "

L. Tolstoj

Exercise 1. Let $f: X \longrightarrow Y$ be a continuous map of T_0 spaces.

- (1) Show that f is order preserving, with respect to the orders induced by the topologies of X and Y.
- (2) Deduce that, if f is a homeomorphism, then f is an order isomorphism.

Exercise 2. Let X be a compact T_0 space and let $x_0 \in X$. Determine if there exists a point $x \in X$ such that $x_0 \leq x$ and $\{x\}$ is closed, where \leq denotes the order induced by the topology of X.

Exercise 3. Let K be a field and let T, U be indeterminates over K. Consider the subring $D := K + UK(T)[U]_{(U)}$ of K(T, U).

- (1) Draw a picture of Spec(D).
- (2) Determine if D is Noetherian.
- (3) Determine if D is a valuation domain.
- (4) Determine if D is a Prüfer domain.
- (5) Determine if D is integrally closed.

Exercise 4. Let A be a ring and let $Y \subseteq \text{Spec}(A)$. We say that Y is *locally finite* if, for any $a \in A - \{0\}$ the set $V(a) \cap Y$ is finite. Assume that there exists a subset Δ of Spec(A) which is locally finite and infinite.

- (1) Determine if A is an integral domain.
- (2) Find the closure of Δ , with respect to the constructible topology.

Exercise 5. Let A be a ring.

- (1) Show that, if Max(A) is locally finite and $A_{\mathfrak{m}}$ is Noetherian, for any maximal ideal \mathfrak{m} of A, then A is Noetherian.
- (2) Determine if part (1) is true without the assumption that Max(A) is locally finite.

Exercise 6. Preserve the notation of Exercise 5 of Homework 9, let K be a field, let D be a subring of K and let $\mathcal{F}(K|D) := \{F \in \mathcal{R}(K|D) : F \text{ is a field}\}$ be endowed with the subspace topology induced by the topology of $\mathcal{R}(K|D)$.

- (1) Show that $\mathcal{F}(K|D)$ is a spectral space.
- (2) Let $\zeta \in \mathbb{C}$ be a primitive 7th root of 1. Sketch a procedure to find a ring whose prime spectrum is homeomorphic to $\mathcal{F}(\mathbb{Q}(\zeta)|\mathbb{Q})$.

Exercise 7. Let A be a ring whose prime spectrum has the following order structure

and assume that some field is a subring of A. Use the ring A to find a ring B whose prime spectrum has the following order structure

