MAT.632 - Elective subjects Mathematics Topological Methods in Commutative Ring Theory

Homework 3

"None of us can ever express the exact measure of his needs or his thoughts or his sorrows; and human speech is like a cracked kettle on which we tap crude rhythms for bears to dance to, while we long to make music that will melt the stars." G. Flaubert

Exercise 1. Let X be a topological space. Show that the following conditions are equivalent.

- (1) X is irreducible.
- (2) Any nonempty open subset of X is irreducible.
- (3) Any nonempty open subset of X is connected.

Exercise 2. Let A be a ring.

- (1) Show that if \mathfrak{a} is a primary ideal of A, then $\mathfrak{p} := \sqrt{\mathfrak{a}}$ is a prime ideal of A. We will say that \mathfrak{a} is a \mathfrak{p} -primary ideal.
- (2) Show that if \mathfrak{a} is an ideal of A whose radical is a maximal ideal, then \mathfrak{a} is primary.
- (3) Give an example of an ideal \mathfrak{a} which is not primary and such that $\sqrt{\mathfrak{a}}$ is a prime ideal.
- (4) Show that if $\mathfrak{a}, \mathfrak{b}$ are \mathfrak{p} -primary ideals, then $\mathfrak{a} \cap \mathfrak{b}$ is a \mathfrak{p} -primary ideal.
- (5) Prove that if \mathfrak{a} is a \mathfrak{p} -primary ideal and $x \in A \mathfrak{a}$, then

$$(\mathfrak{a}:_A x) := \{a \in A : ax \in \mathfrak{a}\}$$

is a \mathfrak{p} -primary ideal of A.

(6) Find a ring A and an irreducible ideal of A which is not prime.

Exercise 3. Let K be a field let T, U be indeterminates over K, and consider the ideal $\mathfrak{a} := (T^2, TU)K[T, U]$. Set

$$\mathfrak{p} := TK[T, U], \mathfrak{m} := (T, U)K[T, U], \mathfrak{q} := (T^2, U)K[T, U].$$

- (1) Prove that $\mathfrak{p}, \mathfrak{m}^2, \mathfrak{q}$ are primary ideals of K[T, U].
- (2) Prove that $\{\mathfrak{p}, \mathfrak{m}^2\}, \{\mathfrak{p}, \mathfrak{q}\}$ are distinct irredundant primary decompositions of \mathfrak{a} .

Exercise 4. Let X be a topological space and let \mathcal{F} be a finite collection of closed irreducible subspaces of X such that $\bigcup \mathcal{F} = X$. Show that any irreducible component of X belongs to \mathcal{F} . In particular, X has only finitely many irreducible components. Moreover, prove that, if the sets in \mathcal{F} are pairwise incomparable, then \mathcal{F} is the set of the irreducible components of X.

Exercise 5. Let K be a field and let $S \subseteq \mathbb{A}^n_K$. Show that $\overline{S} = Z(I(S))$, where \overline{S} denotes the closure of S, with respect to the Zariski topology.

Exercise 6. Let K be an infinite field, let T_1, T_2, T_3 be indeterminates over K, and let

$$C := Z(\{T_2 - T_1^2, T_3 - T_1 T_2\}) \subseteq \mathbb{A}_K^3.$$

- (1) Prove that $C = \{(t, t^2, t^3) : t \in K\}.$
- (2) Find a system of generators of I(C).
- (3) Show that C is irreducible, with respect to the Zariski topology of \mathbb{A}^3_K .

Exercise 7. Let K be an algebraically closed field, and let $f_1, \ldots, f_n \in K[T]$ be polynomials.

- (1) Show that $\{(f_1(k), \ldots, f_n(k)) : k \in K\}$ is a closed subset of \mathbb{A}_K^n , with respect to the Zariski topology.
- (2) Is the statement of part (1) necessarily true, if K is not algebraically closed?