MAT.632 - Elective subjects Mathematics Topological Methods in Commutative Ring Theory

Homework 7

"Mathematics reveals its secrets only to those who approach it with pure love, for its own beauty." Archimedes

Exercise 1. Let X be a set and let \mathscr{U} be an ultrafilter on X. Show that, if $U \in \mathscr{U}$, then $\mathscr{U}|_U := \{V \subseteq U : V \in \mathscr{U}\}$ is an ultrafilter on U.

Exercise 2. Let $f: X \longrightarrow Y$ be a function and let \mathscr{U} be an ultrafilter on X. Show that $\mathscr{U}_f := \{Z \subseteq Y : f^{-1}(Z) \in \mathscr{U}\}$ is an ultrafilter on Y.

Exercise 3. Let X be a set and let \mathscr{U} be a collection of subsets of X. Show that the following conditions are equivalent.

- (1) \mathscr{U} is an ultrafilter on X.
- (2) \mathscr{U} is a filter on X and, for any subset Y of X satisfying the condition $Y \cap U \neq \emptyset$ for any $U \in \mathscr{U}$, then $Y \in \mathscr{U}$.

Exercise 4. Let X be a set and let βX denote the set of all ultrafilters on X, endowed with the Stone-Cech topology.

- (1) Find all clopen subsets of βX .
- (2) Show that the closure of any open subset of βX is open.

Exercise 5. Let $f : X \longrightarrow Y$ be a function, let $\iota_X : X \longrightarrow \beta X, \iota_Y : Y \longrightarrow \beta Y$ be the canonical topological embeddings (where X, Y are equipped with the discrete topology and $\beta X, \beta Y$ with the Stone-Cech topology).

- (1) Show that there exists a unique continuous function $\tilde{f} : \beta X \longrightarrow \beta Y$ such that $\tilde{f} \circ \iota_X = \iota_Y \circ f$.
- (2) Show that if f is injective (resp., surjective), then \tilde{f} is injective (resp., surjective).
- (3) Show that if f is bijective, then \tilde{f} is a homeomorphism.

Exercise 6. Let A be a ring. Show that the following conditions are equivalent.

- (1) A is reduced and any prime ideal of A is maximal.
- (2) For any element $a \in A$ there is an element $\lambda \in A$ such that $a = a^2 \lambda$.

[Hint: in order to show that (1) \Longrightarrow (2) it could be useful to consider, for any $a \in A$, the ideal $\mathfrak{a}_a := \operatorname{Ann}_A(a) + aA$ of A...]

Exercise 7. For any ring E let N(E) (resp., J(E)) denote the nilradical (resp., Jacobson radical) of A. Let $\{A_x : x \in X\}$ be a nonempty collection of rings and let $A := \prod_{x \in X} A_x$.

Solve the following questions.

- (1) Show that $J(A) = \prod_{x \in X} J(A_x)$.
- (2) Show that the following conditions are equivalent.
 - (a) A is zero-dimensional.
 - (b) A_x is zero-dimensional, for any $x \in X$, and $N(A) = \prod_{x \in Y} N(A_x)$.

[Hint: (b) \Longrightarrow (a). Consider the factor ring A/N(A)...]

(3) Let p be a prime number. Determine if the ring $\prod_{i\geq 1} (\mathbb{Z}/p^i\mathbb{Z})$ is zero-dimensional.