MAT.632 - Elective subjects Mathematics Topological Methods in Commutative Ring Theory

Homework 8

"He stepped down, trying not to look long at her, as if she were the sun, yet he saw her, like the sun, even without looking." L. Tolstoj

Exercise 1. Let $\operatorname{Spec}(A)^{\mathfrak{g}}$ be the prime spectrum of a ring A, endowed with the \mathscr{G} -topology, i.e. the topology such that the nonempty closed subsets are the sets $C \subseteq \operatorname{Spec}(A)$ satisfying the following condition: whenever D is a subset of C and $\bigcap \{\mathfrak{p} : \mathfrak{p} \in D\}$ is a prime ideal of A, then $\bigcap \{\mathfrak{p} : \mathfrak{p} \in D\} \in C$.

- (1) Determine if any open subset of Spec(A), endowed with the Zariski topology, is clopen in $\text{Spec}(A)^{\text{g}}$.
- (2) Prove that the constructible topology and the \mathscr{G} -topology on $\operatorname{Spec}(A)$ are the same topology if and only if $\operatorname{Spec}(A)$, with the Zariski topology, is a Noetherian space.

Exercise 2. Let A be a ring and let $\mathfrak{p} \in \text{Spec}(A)$. Show that the following conditions are equivalent.

- (1) \mathfrak{p} is a G-ideal of A.
- (2) $V(\mathfrak{p}) \{\mathfrak{p}\}$ is closed, with respect to the constructible topology.

Exercise 3. Let A be a ring. Determine when Spec(A) is a Noetherian space, when it is endowed with the constructible topology.

Exercise 4. Determine if a closed and bounded interval of the real line \mathbb{R} is a spectral space, when it is endowed with the subspace topology induced by the euclidean topology of \mathbb{R} .

Exercise 5. Let X be any set, endowed with the cofinite topology (i.e., the proper closed subsets of X are the finite subsets of X). Determine if X is spectral.

Exercise 6. Let A be a ring and let Y, Z be subsets of Spec(A) having the same closure, with respect to the constructible topology. Determine if $\bigcup \{\mathfrak{p} : \mathfrak{p} \in Y\} = \bigcup \{\mathfrak{q} : \mathfrak{q} \in Z\}$.

Exercise 7. Let $\{A_x : x \in X\}$ be a nonempty family of local rings, and let $A := \prod_{x \in X} A_x$.

Determine if Max(A), equipped with the subspace topology induced by the Zariski topology of Spec(A), is homeomorphic to βX (endowed with the Stone-Cech topology). In such a case, find explicitly a homeomorphism $\beta X \longrightarrow Max(A)$.