
04. Base, Subbase, Neighbourhood
base

The collection of all open sets in a topological space may be quite com-
plicated or difficult to define. Therefore it is desirable to have simpler
”building blocks” for the topology.

Definition. Let (X, τ) be a topological space.

A subcollection B ⊆ τ is called a base of (X, τ) if

∀ O ∈ τ ∀ x ∈ O ∃ Bx ∈ B such that x ∈ Bx ⊆ O

or, equivalently, if every nonempty open set is the union of certain members
of B .

Remark. Of course, τ itself is a base for (X, τ) .

Remark. Every base B for (X, τ) has a certain cardinality |B| .

w(X) = min{|B| : B is a base for (X, τ)}

is called the weight of (X, τ) .

If w(X) ≤ ℵ0 , i.e. there exists a countable base, then (X, τ) is called
second countable or an A2−space.

Examples.

1) If (X, d) is a metric space with topology τd , then

B = {K(x, ε) : x ∈ X , ε > 0}

is a base for (X, τd) .

2) Consider R (resp. Rn) with the usual metric and topology. Then

B = {(q − 1
n , q +

1
n) : q ∈ Q , n ∈ N}

(resp. B = {K(q, 1n) : q ∈ Qn , n ∈ N} )
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is a countable base, therefore each Rn (with the usual topology) is second
countable.

We observe that ℵ0 = w(X) < |Rn| = c .

3) Let τ be the discrete topology on X .

Every base B for (X, τ) must contain the sets {x} , x ∈ X .

This family {{x} , x ∈ X} is obviously a base, therefore w(X) = |X| .

Proposition. Let w(X) ≤ α and let {Oi : i ∈ I} be a family of open
sets in (X, τ) .

Then there is a subset I0 ⊆ I such that |I0| ≤ α such that∪
i∈I0

Oi =
∪
i∈I

Oi .

Proof. Clearly
∪
i∈I0

Oi ⊆
∪
i∈I

Oi for each I0 ⊆ I .

Now let B be a base with |B| ≤ α .

Let B0 = {B ∈ B : ∃ i ∈ I such that B ⊆ Oi} and for each B ∈ B0
choose iB ∈ I such that B ⊆ OiB .

If I0 = {iB : B ∈ B0} then |I0| ≤ α .

Now let x ∈
∪
i∈I

Oi . Then there exists j ∈ I such that x ∈ Oj and

B ∈ B such that x ∈ B ⊆ Oj .

Then B ∈ B0 , iB ∈ I0 and x ∈ B ⊆ OiB ⊆
∪
i∈I0

Oi .

Therefore
∪
i∈I0

Oi =
∪
i∈I

Oi . �

Theorem. Let ℵ0 ≤ w(X) ≤ α and B be a base for (X, τ) .

Then there exists a base B0 such that B0 ⊆ B and |B0| ≤ α .

Proof. Let B = {Bi : i ∈ I} .

Choose a base B1 = {Wj : j ∈ J} with |J | ≤ α .
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For each j ∈ J let Ij = {i ∈ I : Bi ⊆ Wj} , i.e. Wj =
∪
i∈Ij

Bi .

According to the previous proposition there exists I∗j ⊆ Ij such that
|I∗j | ≤ α and Wj =

∪
i∈I∗j

Bi .

Let B0 = {Bi : i ∈ I∗j , j ∈ J} . Then |B0| ≤ α .

We claim that B0 is a basis. Let O ⊆ X be open and x ∈ O . Then
there exists j ∈ J such that x ∈ Wj ⊆ O .

Consequently there is i ∈ I∗j such that x ∈ Bi ⊆ Wj ⊆ O . Since Bi ∈ B0
we are done. � .

Every base B for a space (X, τ) obviously has the following properties.

(B1) ∀ x ∈ X ∃ B ∈ B : x ∈ B

(B2) ∀ B1, B2 ∈ B and x ∈ B1 ∩B2 there exists B3 ∈ B such that

x ∈ B3 ⊆ B1 ∩B2 .

( (B1) holds because X is open, and (B2) holds because B1 ∩ B2 is
open.)

These properties can be utilized for the construction of topologies on a
given set.

Let X be a set (!) and let B be a family of subsets of X that satisfies
(B1) and (B2).

Then there is a unique topology τ on X such that B is a base for
(X, τ) .

(This resembles the construction of the topology of a metric space.)

Let τ = {∅}∪ {O ⊆ X : ∀ x ∈ O ∃ Bx ∈ B such that x ∈ Bx ⊆ O} .

We first show that τ is a topology on X . Clearly, ∅ ∈ τ and X ∈ τ
(since (B1)).

Let O1, O2 ∈ τ and x ∈ O1 ∩O2 .
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Then there exist B1, B2 ∈ B with x ∈ B1 ⊆ O1 and x ∈ B2 ⊆ O2 .

By (B2) , there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2 ⊆ O1 ∩O2 .

Therefore O1 ∩O2 ∈ τ .

Let Oi ∈ τ , i ∈ I and let O =
∪
i∈I

Oi .

For each x ∈ O there exists j ∈ I such that x ∈ Oj and B ∈ B such
that x ∈ B ⊆ Oj ⊆ O . Thus O ∈ τ .

According to the construction of τ , B is obviously a base for (X, τ) .

Let σ be another topology on X for which B is a base.

If O ∈ σ then O is the union of sets of B , therefore O ∈ τ and thus
σ ⊆ τ . In the same manner one shows that τ ⊆ σ , therefore σ = τ .

Example. (Sorgenfrey line)

Let X = R and consider B = {[a, b) : a, b ∈ R and a < b} .

It is easy to see that (B1) and (B2) are satisfied therefore exists a unique
topology τ for which B is a base.

This space is called the Sorgenfrey line.

Some of the properties of the Sorgenfrey line are:

1) Each half-open interval [a, b) is open and closed in (X, τ) .

2) τd ⊆ τ but τd ̸= τ .

3) Q = R

4) (X, τ) is not second countable.

(Proofs as exercise)

Definition. Let (X, τ) be a topological space.

A subcollection S ⊆ τ is called a subbase of (X, τ) , if the family of
finite intersections of members of S is a base of (X, τ) .
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This means, whenever O ∈ τ and x ∈ O there exist S1, S2, . . . , Sk ∈ S
such that x ∈ S1 ∩ S2 ∩ . . . ∩ Sk ⊆ O .

Remarks.

1) Every base of (X, τ) is also a subbase.

2) Let X = R have the usual topology.

Then S = {(−∞, b) : b ∈ R} ∪ {(a,∞) : a ∈ R} is a subbase but not
a base.

Now let (X, τ) be a space and S be a subbase. Then

(SB) ∀ x ∈ X ∃ S ∈ S such that x ∈ S

(SB) holds because X is open. So a subbase is, in particular, a so-called
covering of X .

The property (SB) can again be utilized for the construction of topological
spaces.

Let X be a set and S be a family of subsets of X satisfying (SB) .

Then there is a unique topology τ on X such that S is a subbase of
(X, τ) .

Proof. Let B be the family of finite intersections of members of S . In
particular, S ⊆ B .

If x ∈ X there exists S ∈ S such that x ∈ S , therefore (B1) holds.

Let B1, B2 ∈ B and x ∈ B1 ∩B2 .

Then there exist S1, . . . , Sn, Sn+1, . . . , Sn+m ∈ S such that

B1 = S1 ∩ . . . ∩ Sn and B2 = Sn+1 ∩ . . . ∩ Sn+m

Since B3 = S1 ∩ . . . Sn+m = B1 ∩B2 and x ∈ B3 , (B2) holds.

Hence there is a unique topology τ on X having B as a base, and
obviously S as a subbase. �
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Remark. τ is the coarsest topology on X where all sets of S are open.
We also say that τ is ”generated” by S .

Proof. Let σ be a topology on X with S ⊆ σ . Then B ⊆ σ and
consequently τ ⊆ σ . �

Examples.

1) Let X = R and S be the family of all halfopen Intervals.

Then S generates the discrete topology τ .

For x ∈ R we have [x, x+ 1) ∩ (x− 1, x] = {x} ∈ τ , i.e. each singleton
is open.

For A ⊆ R , A =
∪
x∈A
{x} ∈ τ .

2) Let (X,<) be a linearly ordered set (|X| > 1) .

For each x ∈ X let

(←, x) = {y ∈ X : y < x} and (x,→) = {y ∈ X : y > x} .

Then S = {(←, x) , (x,→) : x ∈ X} generates the so-called order
topology on (X,<) .

Remarks.

(a) The order topology on R (with the usual order) is the usual topology
(generated by the metric). The order topology on N (with the usual
order) is the discrete topology.

(b) Typical open neighbourhoods (depending on the order) can be intervals
of the form (a, b) , [x, a) , (a, x] .

3) The product topology (see later).

4) The weak topology with respect to a family of functions (see later).

Let X be a set and {fi : X → R : i ∈ I} be a family of functions.

The weak topology on X with respect to the given family of functions is

6



the coarsest topology on X which makes all fi continuous.

Obviously, S = {f−1i (O) : O open in R , i ∈ I} is a subbase for this
topology.

Definition. Let (X, τ) be a space and let x ∈ X .

A family B(x) ⊆ U(x) of neighbourhoods of x is called a neighbour-
hood base in x if

∀ U ∈ U(x) ∃ B ∈ B(x) such that B ⊆ U .

If all members of B(x) are open (resp. closed) we speak of an open
neighbourhood base (resp. closed neighbourhood base).

Example. For a metric space (X, d) and x ∈ X is

B(x) = {K(x, 1n) : n ∈ N}

a countable (!) open neighbourhood base in x .

Definition. (X, τ) is called first countable or A1−space if each point
has a countable open neighbourhood base.

Remarks. Let X = R .

(a) If τd is the usual topology then (X, τd) is first countable.

(b) If σ is the topology of the Sorgenfrey line then (X, σ) is first
countable.

(c) If ρ is the cofinite topology then (X, ρ) is not first countable.

(d) If τ is the discrete topology then (X, τ) is first countable but not
second countable.

Remark. Let B(x) = (Bn)n∈N be a countable neighbourhood base in
x ∈ X . Then there exists a nested neighbourhood base in x .

Let Un = B1 ∩ . . . ∩ Bn for each n ∈ N . Since the finite intersection of
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neighbourhoods is a neighbourhood, (Un)n∈N is clearly also a neighbour-
hood base satisfying Un+1 ⊆ Un ⊆ Bn for each n ∈ N .

Now let (X, τ) be a space and for each x ∈ X let B(x) be an open
neighbourhood base in x .

Then the following properties obviously hold

(UB 1) B(x) ̸= ∅ ∀ x ∈ X and x ∈ B ∀ B ∈ B(x)

(UB 2) B1, B2 ∈ B(x) ⇒ ∃ B3 ∈ B(x) such that B3 ⊆ B1 ∩B2

(UB 3) y ∈ B and B ∈ B(x) ⇒ ∃ B∗ ∈ B(y) such that B∗ ⊆ B .

Again these properties can be utilized for the construction of topologies.

Let X be a set. For each x ∈ X let B(x) be a family of sets such that
(UB 1) - (UB3) are satisfied.

Then there is a unique topology τ on X such that for each x , B(x) is
an open neighbourhood base in x .

Proof.

Let τ = {∅} ∪ {O ⊆ X : ∀ x ∈ O ∃ Bx ∈ B(x) such that Bx ⊆ O} .

Then (TR 1) and (TR 3) obviously hold.

Let O1, O2 ∈ τ and let x ∈ O1 ∩ O2 . Then there exist B1, B2 ∈ B(x)
such that x ∈ B1 ⊆ O1 and x ∈ B2 ⊆ O2 .

(UB 2) ⇒ ∃ B3 ∈ B(x) such that B3 ⊆ B1 ∩B2 ⊆ O1 ∩O2 .

Therefore O1 ∩O2 ∈ τ and (TR2) holds and τ is a topology on X .

(UB 3) ⇒ B ∈ τ ∀ B ∈ B(x)

According to the definition of τ , each family B(x) is an open neighbour-
hood base in x .

It is easy to see that τ is uniquely determined. �
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Example. (Niemitzky plane)

Let X = {(x, y) ∈ R2 : y ≥ 0} be the upper half plane in R2 .

Let p = (x, y) ∈ X .

If y > 0 then B(p) consists of all open discs with center p and radius
1
n that do not intersect the x−axis.

If y = 0 then B(p) consists of all sets which are the union of {p} and
an open disc with center (x, 1n) and radius 1

n .

Obviously, (UB 1) - (UB 3) are satisfied.

The resulting space is called the Niemitzky plane. Clearly it is first
countable but not second countable (Exercise!).
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