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Abstract. Suppose we are given finitely generated groups Γ1, . . . , Γm equipped with
irreducible random walks. Thereby we assume that the expansions of the corresponding
Green functions at their radii of convergence contain only logarithmic or algebraic terms
as singular terms up to sufficiently large order (except for some degenerate cases). We
consider transient random walks on the free product Γ1 ∗ . . . ∗ Γm and give a complete
classification of the possible asymptotic behaviour of the corresponding n-step return
probabilities. They either inherit a law of the form ̺nδn−λi logκi n from one of the free
factors Γi or obey a ̺nδn−3/2-law, where ̺ < 1 is the corresponding spectral radius
and δ is the period of the random walk. In addition, we determine the full range of the
asymptotic behaviour in the case of nearest neighbour random walks on free products of
the form Z

d1 ∗ . . . ∗Z
dm . Moreover, we characterize the possible phase transitions of the

non-exponential types n−λi logκi n in the case Γ1 ∗ Γ2.

1. Introduction

In this article we investigate transient random walks on free products Γ1 ∗ . . . ∗Γm, where
m ≥ 2 and Γ1, . . . ,Γm are finitely generated groups. These random walks arise from convex
combinations of probability measures on the factors Γ1, . . . ,Γm. Our aim is to compute the
asymptotic behaviour of the n-step return probabilities on the free product. In a general
setting, one has a typical asymptotic behaviour of the form µ(n)(x) ∼ Cx ̺nδn−λ, where

µ(n)(x) is the probability of being at x at time n, ̺ is the spectral radius and δ the period
of the random walk, and Cx some constant depending on x. If e is the group identity and
starting point of the random walk, then µ(n)(e) is called the n-step return probability.
Gerl [8] conjectured that the n-step return probabilities of two symmetric measures on
a group satisfying such a limit law have the same n−λ, that is, λ is a group invariant.
Cartwright [2] came to the astonishing result that for random walks on Z

d ∗Z
d with d ≥ 5

there are at least two possible types of asymptotic behaviour, namely n−3/2 and n−d/2. In
relation with his joint work with Chatterji and Pittet [5], L. Saloff-Coste asked whether
the range of different asymptotic behaviours can still be wider than in the case considered
by Cartwright. In this article we will pick up this question by investigating more general
laws of the form C ̺nδ n−λ logκ n. In this case, we speak of the factor n−λ logκ n as the
non-exponential type of the return probabilities.
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The starting point for the present investigation was Woess [22, Section 17.B], where the
result of Cartwright [2] is explained that simple random walk on Z

d ∗Z
d for d ≥ 5 satisfies

a n−d/2-law. In this article we will prove the following more general theorem:

Theorem 1.1. Let m ∈ N with m ≥ 2 and d1, . . . , dm ∈ N. Consider any irreducible
nearest neighbour random walk on the free product Z

d1 ∗ · · · ∗ Z
dm , where e denotes the

identity, i.e. the empty word. Then the return probabilities µ(2n)(e) behave asymptotically

either like Ci · ̺2n · n−di/2 for i ∈ {1, . . . ,m} or like C0 · ̺2n · n−3/2. In particular, if all
exponents di are different and min{d1, . . . , dm} ≥ 5 then exactly m+1 different asymptotic
behaviours may occur by choosing the random walk adequately.

We will consider more general free products which go beyond free products of lattices. For
this purpose, we will present a new approach in order to be able to deal with irreducible
random walks on any free product of the form Γ1 ∗ . . . ∗Γm. At this point we assume that
the Green functions of the random walks on the single factor Γi have singular expansions
(i.e. in a neighbourhood of their radii of convergence ri) containing only singular terms

of the form (ri − z)q logk(ri − z) with q ∈ (1,∞) and k ∈ N0 up to sufficiently large
order, whenever the Green functions on the factors are differentiable. The latter property
is satisfied for several well-known groups as e.g. Z

d or Z
d × (Z/nZ) with d ≥ 5 and

n ≥ 2. If the asymptotic n-step return probabilities of the random walk on Γi satisfy a
r−nδ
i n−λi logκi n-law then we will show that only one of the following non-exponential types

may occur for the random walk on the free product: n−λi logκi n for some i ∈ {1, . . . ,m},
or n−3/2. That is, we may have up to m + 1 different types of asymptotic behaviour for
(symmetric or non-symmetric) random walks, and Theorem 1.1 shows that one can have
indeed exactly m + 1 different behaviours. Moreover, for the case Γ1 ∗ Γ2 equipped with
the probability measure µ = α1µ1 + (1−α1)µ2, where µ1 and µ2 are probability measures
on Γ1 and Γ2 and α1 ∈ (0, 1), we characterize the phase transitions of the non-exponential
types in terms of α1. We split the (0, 1)-interval, i.e. the interval of possible values for
α1, into three distinct subintervals such that, in each of them, we have exactly one of the
non-exponential types n−λ1 logκ1(n), n−λ2 logκ2 n or n−3/2.

Let us briefly recall some results regarding the asymptotic behaviour of return proba-
bilities. Work in this direction has been done since the 1970’s by Gerl, Sawyer, Woess,
Cartwright, Soardi and Lalley, see e.g. [9], [18], [21], [3], [13]. Sawyer [18] applies Fourier
analysis to isotropic random walks on trees (free groups), which uses in a crucial way
methods from complex analysis. For finite range random walks on free groups, it is known
from [9] and [13] that the n-step return probabilities behave asymptotically like C̺nn−3/2,
where ̺ < 1. In [8], [20] and [21] free products of finite groups are considered, which have
a very tree-like structure and where random walks obey a n−3/2-law. In the more general
case of free products of arbitrary groups the interior structure of each free factor is more
complicated. Woess [21], Cartwright and Soardi [3], Voiculescu [19] and McLaughlin [16]
found independently a method to determine the Green function of a free product in terms
of functional equations of the Green functions defined on the free factors. We will study
these equations carefully, in order to obtain – with the help of the well-known method of
Darboux – the asymptotic behaviour of the power series’ coefficients, which are the sought
return probabilities. We refer also to the survey of Woess [23], which outlines the use of
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generating functions. More recently, random walks on free products have also been studied
by Mairesse and Mathéus [15] and Gilch [10], [11], regarding boundary theory, entropy and
rate of escape. For more details and references we refer to Woess [22], which serves also
as reference text for our work.

The structure of this paper is as follows: in Section 2 we introduce some basic facts and
notations. In Section 3 we prove our main result for the case Γ1 ∗ Γ2, while in Sections 4
and 5 we are completing the list of degenerate cases, which, in particular, may occur if the
Green functions of the random walks on the single factors are non-differentiable at their
radii of convergence. In Section 5.3 we are proving inductively the proposed asymptotic
behaviour for multi-factor free products of the form Γ1 ∗ . . . ∗ Γm with m ≥ 3. Section 6
discusses some examples, including the case of free products of the form Z

d1 ∗ . . . ∗ Z
dm

where we give a full classification of the asymptotic behaviour of the return probabilities,
which proves Theorem 1.1. For Γ1 ∗ Γ2, we give in Section 7 a full characterization of the
possible phase transition behaviour of the non-exponential types of the return probabilities
in terms of the weight α1 of the probability measure given on Γ1. Finally, Section 8 gives
some concluding remarks about higher asymptotic order terms.

2. Random Walks on Free Products

Let m ∈ N with m ≥ 2. Suppose we are given finitely generated groups Γ1, . . . ,Γm, and
we denote by ei the identity of Γi. We consider the free product Γ := Γ1 ∗ . . . ∗ Γm, which
consists of all finite words of the form

(2.1) x1x2 . . . xn,

where x1, . . . , xn ∈ ⋃m
i=1 Γi \ {ei} and two consecutive letters are not from the same free

factor Γi. In the case Γi = Γj we may think that the elements of Γi and Γj have different
colours to distinguish their origin. Observe that each factor Γi can be naturally embedded
into Γ, and therefore ei ∈ Γi can be identified with the empty word e ∈ Γ. The free product
is a group with e as identity: the product of two elements is given by concatenation followed
by iterated contractions and cancellations of redundant terms in the middle, in order to
obtain the requested form (2.1). For example, if a, b ∈ Γ1 \ {e1} and c ∈ Γ2 \ {e2}, such
that c2 6= e, then (aca−1)(aca) = ac2a. For further details about free products see e.g.
Lyndon and Schupp [14].

We recall and introduce some notation: for any function f : D ⊆ C → C with f(z0) = 0

for z0 ∈ D, 0 < q ∈ R and k ∈ N0, we use the notation f(z) = o
(
(z0 − z)q logk(z0 − z)

)
,

f(z) = Oc

(
(z0 − z)q logk(z0 − z)

)
or f(z) = O

(
(z0 − z)q logk(z0 − z)

)
, if for z → z0 the

function f(z) divided by (z0 − z)q logk(z0 − z) tends to zero, has a non-zero finite limit
or is bounded nearby z0 (that is, the quotient has a finite limes superior) respectively.

Furthermore, we write (z0 − z)q1 logk1(z0 − z) � (z0 − z)q2 logk2(z0 − z) if and only if

(z0 − z)q2 logk2(z0 − z) = O
(
(z0 − z)q1 logk1(z0 − z)

)
. The value z0 will be obvious from

the context.

Suppose we are given probability measures µi on Γi with 〈supp(µi)〉 = Γi for each
i ∈ {1, . . . ,m}. These measures µi govern random walks on Γi, that is, the single step
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transition probabilities are given by pi(xi, yi) = µi(x
−1
i yi) for all xi, yi ∈ Γi. We lift now

µi to a probability measure µ̄i on Γ by defining µ̄i(x) := µi(x) if x ∈ Γi; otherwise we
set µ̄i(x) := 0. Let α1, . . . , αm > 0 such that

∑m
i=1 αi = 1. Consider now the probability

measure µ :=
∑m

i=1 αiµ̄i on the free product Γ, which arises as a convex combination of
the µ̄i’s. Then the single step transition probabilities on Γ given by p(x, y) := µ(x−1y) for
x, y ∈ Γ define a random walk on Γ, which is an irreducible Markov chain. We denote by

µ
(n)
1 , . . . , µ

(n)
m and µ(n) the n-fold convolution power of µ1, . . . , µm and µ, that is, the dis-

tribution after n steps with start at the identity. For z ∈ C, the associated Green functions
of the random walks on Γi and Γ are given by

Gi(z) :=

∞∑

n=0

µ
(n)
i (ei)z

n and G(z) :=

∞∑

n=0

µ(n)(e)zn.

The corresponding radii of convergence are denoted by ri and r respectively, which are sin-
gularities according to Pringsheim’s Theorem. Note that r > 1, since Γ is non-amenable
unless Γ = (Z/2Z) ∗ (Z/2Z) (see e.g. [22, Theorem 10.10, Corollary 12.5]; in the latter
case the random walk on Γ is recurrent). In the following we assume that Gi(z) is ex-
actly di-times differentiable at z = ri, where di ∈ N0. At this point we make the basic
assumption that – whenever G′

i(ri) < ∞ – the expansions of the Green functions Gi(z) in
a neighbourhood of z = ri have the form

(2.2) Gi(z) =

di∑

k=0

g
(i)
k (ri − z)k +

∑

(q,k)∈Ti

g
(i)
(q,k)

(ri − z)q logk(ri − z) + O
(
(ri − z)di+2

)
,

where Ti is a finite subset of {(q, k) ∈ R × N0 | di < q ≤ di + 2}. In other words, the
expansions contain only logarithmic and algebraic terms as singular terms up to order
(ri − z)di+2. As we will see, higher order terms are not necessary for the computation of
the non-exponential type of the n-step return probabilities of the random walk on Γ. In the
following we want to motivate this assumption on Gi(z). This property for the expansion is
satisfied in several well-known cases: for example, the Green functions of nearest neighbour
random walks on lattices Z

d have such an expansion; see Proposition 6.1. With some effort,
such an expansion can be deduced for Z

d × (Z/nZ) via the same methods used for Z
d. In

particular, we will prove our main result by induction on the number m of free factors of Γ:
we will see that the assumptions stated in (2.2) are stable under free products (except for
some degenerate cases), that is, G(z) has again a similar expansion whenever G′(r) < ∞.
If the Green function Gi(z) has the form (2.2) then the well-known method of Darboux
yields that the n-step return probabilities of the random walk on Γi (governed by µi)
behave asymptotically like the coefficients of the Taylor expansion of the leading singular
term in (2.2) in a neighbourhood of 0. Assume that Si(z) := (ri − z)qi logki(ri − z) is the
smallest (or leading) singular term in (2.2) w.r.t. �, that is, q > qi or (q = qi ∧ k < ki)
for all (q, k) ∈ Ti \ {(qi, ki)}; then the coefficients of its expansion in a neighbourhood
of 0 behave asymptotically like the n-step return probabilities on Γi (the proof of this
fact is completely analogous to the one of Theorem 3.1). More precisely, they behave like

Cir
−nδi
i n−λi logκi(n), where δi := gcd

{
n ∈ N | µ

(n)
i (ei) > 0

}
is the period of the random
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walk on Γi and

(2.3) λi := qi + 1 and κi :=

{
ki, if qi /∈ N,

ki − 1 if qi ∈ N;

see e.g. Flajolet and Sedgewick [7, Chapter VI.2] for the asymptotic behaviour of the

coefficients in the expansion of (ri−z)qi logki(ri−z) in a neighbourhood of 0. Analogously,
δ := gcd

{
n ∈ N | µ(n)(e) > 0

}
= gcd{δ1, . . . , δm} is the period of the random walk on

Γ. Note that the method of Darboux needs some differentiability assumptions at z = ri;
therefore, we need the expansions of Gi(z) up to terms of order (ri − z)di+2. For more
details about Darboux’s method we refer to the comments in the proof of Theorem 3.1.
We remark that another – modern – tool to handle singular expansions as in (2.2) is
Singularity Analysis, which was developed by Flajolet and Odlyzko [6]. However, in our
context it turns out that the verification of the specific requirements of singularity analysis
is quite cumbersome as one can also see in Lalley [12]. Let us also point out that, in the
case G′

i(ri) = ∞, we do not need any assumptions on the singularity type at z = ri.

In the following we look at free products of the form Γ1 ∗Γ2 different from (Z/2Z)∗(Z/2Z)

(it is well-known that random walks (in our context) on (Z/2Z) ∗ (Z/2Z) obey a n−1/2-
law). Free products with more than two factors are discussed in Section 5.3. We introduce
the following first visit generating functions for z ∈ C, i ∈ {1, 2} and all si ∈ supp(µi),
s ∈ supp(µ) = supp(µ1) ∪ supp(µ2):

Fi

(
si

∣∣z
)

:=
∑

n≥0

P
[
X(i)

n = ei,∀m < n : X(i)
m 6= ei

∣∣X(i)
0 = si

]
zn,

F
(
s
∣∣z
)

:=
∑

n≥0

P
[
Xn = e,∀m < n : Xm 6= e

∣∣X0 = s
]
zn,

where
(
X

(i)
n

)
n∈N0

is a random walk on Γi governed by µi. By conditioning on the number

of visits of ei the functions Fi

(
si

∣∣z
)

are directly linked with Gi(z) via

(2.4) Gi(z) =
1

1 −
∑

si∈supp(µi)
µi(si) z Fi

(
si

∣∣z
) .

In the following we will summarize some further important basic facts, where we will refer
to Woess [22] for further details. Define

(2.5)

ζ1(z) := α1z
1−α2z

P

s2∈supp(µ2) µ2(s2)F (s2|z) and

ζ2(z) := α2z
1−α1z

P

s1∈supp(µ1) µ1(s1)F (s1|z) .

Note that ζi(1) is the probability of starting at e and making a step from e w.r.t. µi after
finite time. Observe that F

(
si

∣∣z
)

= Fi

(
si

∣∣ζi(z)
)

for si ∈ supp(µi); see [22, Proposition

9.18c)]. By [22, Equation (9.20)] and (2.4), the functions Fi

(
si

∣∣ζi(z)
)
, Gi(z) and G(z) can

be linked as follows:

(2.6) G(z) =
ζi(z)

αi z
Gi

(
ζi(z)

)
=

ζi(z)

αi z
(
1 −∑si∈supp(µi)

µi(si) ζi(z)Fi

(
si

∣∣ζi(z)
)) .
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Hence, our aim will be to determine an expansion of ζi(z) in a neighbourhood of z = r, in
order to get a singular expansion for G(z) in a neighbourhood of z = r. By [22, Proposition
9.10], there are functions Φi, i ∈ {1, 2}, and Φ such that

(2.7) Gi(z) = Φi

(
zGi(z)

)
and G(z) = Φ

(
zG(z)

)

for all z ∈ C in an open neighbourhood of the intervals [0, ri) and [0, r) respectively. In
particular, the functions Φi and Φ are analytic in an open neighbourhood of the intervals
[0, θi) and [0, θ) respectively, where θi := riGi(ri) and θ := rG(r). Φi and Φ are also
strictly increasing and strictly convex in [0, θi) and [0, θ) respectively. Furthermore, we
define

(2.8) Ψi(t) := Φi(t) − tΦ′
i(t) and Ψ(t) := Φ(t) − tΦ′(t).

By [22, Theorem 9.19],

(2.9) Φ(t) = Φ1(α1t) + Φ2(α2t) − 1 and Ψ(t) = Ψ1(α1t) + Ψ2(α2t) − 1.

We write Ψi(θi) := limt→θi− Ψi(t). Define

θ̄ := min

{
θ1

α1
,
θ2

α2

}
.

We will make a case distinction according to finiteness of Gi(ri) and G′
i(ri) and also to

the sign of Ψ(θ̄) := limt→θ̄− Ψ(t). If Ψ(θ̄) < 0 then the n-step return probabilities of the
random walk on Γ behave asymptotically like

µ(nδ)(e) ∼ C · r−nδ · n−3/2

and the Green function of the random walk on Γ has the form

(2.10) G(z) = A(z) +
√

r− zB(z),

where A(z), B(z) are analytic functions in a neighbourhood of z = r with B(r) 6= 0; see
[22, Theorem 17.3] or [7, Section VI.7.]. Moreover, if the µi’s (i = 1, 2) are supported on
any finite, symmetric set of generators, where supp(µi) contains at least one element of
order bigger than 2, then α1 can always be chosen in a suitable way in order to obtain
Ψ(θ̄) < 0; see [22, Corollary 17.10]. In particular, the same asymptotic behaviour (including
an expansion of the Green function of the form 2.10) holds if Γ1 and Γ2 are finite, see [21].
Therefore, we assume from now on that at least one out of Γ1 and Γ2 is infinite, and we
may restrict our investigation to the cases Ψ(θ̄) > 0 and Ψ(θ̄) = 0.

We remark some important facts for the case Ψ(θ̄) ≥ 0. If the latter holds, we have θ = θ̄
and G(r) < ∞, see [22, Theorem 9.22]. By [22, Lemma 17.1.a)], we have ζi(r) ≤ ri for
i ∈ {1, 2} with equality if and only if θ = θi/αi.

The proof for the asymptotic behaviours of the return probabilities is split up over the
following sections. In Section 3 we calculate the asymptotics in the case when Ψ(θ̄) > 0,
G′

1(r1) < ∞ and G′
2(r2) < ∞ hold; see Theorem 3.1. In Section 4 we investigate the case

when Ψ(θ̄) = 0, G′
1(r1) < ∞ and G′

2(r2) < ∞ hold; see Theorem 4.1. From the proof of
this theorem we will see that even the case Ψ(θ̄) = 0, G′

1

(
ζ1(r1)

)
< ∞ and G′

2

(
ζ2(r2)

)
< ∞

is covered. In Section 5 we treat the remaining cases: Theorem 5.1 covers the case when
G1(r1) < ∞, G′

1(r1) = ∞ and G′
2(r2) < ∞ hold, while Corollary 5.2 answers the question
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for the asymptotic behaviour when G′
1(r1) = ∞ and G′

2(r2) = ∞. Finally, Theorem 5.3
covers the remaining case when G1(r1) = ∞ or G2(r2) = ∞.

3. The Asymptotic Behaviour in the Case Ψ(θ̄) > 0

Throughout this section we investigate the case m = 2 and assume that Ψ(θ̄) > 0 and G1(z)
and G2(z) are differentiable at their radii of convergence. That is, the Green functions have
an expansion as assumed in (2.2). Recall that the smallest singular term w.r.t. � in the

expansion of Gi(z), is denoted by Si(z) = (ri − z)qi logki(ri − z) with di < qi ≤ di + 1.
Let us remark that Darboux’s method yields that the n-step return probabilities of the
random walk on Γi governed by µi behave asymptotically like Cir

−nδi
i n−λi logκi n, where

λi and κi are given by (2.3). We also may assume throughout this section w.l.o.g. that
θ = θ̄ = θ1/α1. The aim of this section is to prove the following:

Theorem 3.1. Assume that G1(z) and G2(z) are differentiable at z = r1, z = r2 respec-
tively, and have an expansion as in (2.2). If S1(z) � S2(z) and Ψ(θ̄) > 0 then:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−λ1 · logκ1(n), if α1 ≥ θ1
θ1+θ2

,

C2 · r−nδ · n−λ2 · logκ2(n), if α1 < θ1
θ1+θ2

.

Recall that F (si|z) = Fi(si|ζi(z)) for all si ∈ supp(µi). Then we rewrite (2.5) as follows:

α1z = ζ1(z)
(
1 − α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

))
,(3.1)

α2z = ζ2(z)
(
1 − α1z

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

))
.(3.2)

Recall that ζ1(r) = r1 and ζ2(r) ≤ r2 with equality if and only if θ = θ1/α1 = θ2/α2.
We remark also that Ψ(θ̄) > 0 implies G′(r) < ∞: since Φ′(θ̄) < Φ(θ̄)/θ̄ = 1/r we get by
differentiating (2.7)

G′(r) = lim
z→r

Φ′(zG(z)
)
G(z)

1 − z Φ′(zG(z)
) =

Φ′(θ̄)G(r)

1 − rΦ′(θ̄)
< ∞.

Furthermore, we define

D :=

{
d1, if θ̄ < θ2/α2,

min{d1, d2}, if θ̄ = θ1/α1 = θ2/α2.

We denote by S(z) the main leading singular term, which is given by

S(z) =

{
S1(z), if θ̄ < θ2/α2,

min
{
S1(z), S2(z)

}
, if θ̄ = θ2/α2.

Lemma 3.2. 0 < ζ ′1(r) < ∞ and 0 < ζ ′2(r) < ∞.
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Proof. We prove the lemma only for ζ ′1(r). We write

H2(z) := α2z
∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

)
.

Since ζ1(r) = r1, we have H2(r) < 1; compare with the definition of ζ1(z). Furthermore,
the coefficient of zn in H2(z) is just the probability for the random walk on Γ of starting
at e, making the first step w.r.t. µ2 and returning for the first time to e at time n. Thus,
this probability is bounded from above by µ(n)(e), and consequently H ′

2(r) < G′(r) < ∞.
Computing the derivative of ζ1(z) in a neighbourhood of z = r gives

ζ ′1(z) =
α1

(
1 − H2(z)

)
+ α1zH ′

2(z)
(
1 − H2(z)

)2 > 0.

Finiteness of ζ ′1(r) follows now directly from the remarks above. �

The functions Fi(si|z), where i ∈ {1, 2} and si ∈ supp(µi), are at least di-times differen-
tiable at z = ri, since the same holds for Gi(z) and we can compare the coefficients of zn

in the definitions of Fi(si|z) and Gi(z) as follows:

µ
(n)
i (ei) ≥ µi(si) · P

[
X(i)

n = ei,∀m < n : X(i)
m 6= ei

∣∣X(i)
0 = si

]
.

Thus, we can rewrite these functions in the form

(3.3) Fi(si|z) =

di∑

n=0

fn(si)(ri − z)n + E(i)(si|z)

with coefficients fn(si) ∈ R and E(i)(si|z) = o
(
(ri − z)di

)
. If ζ2(r) < r2 then F2(s2|z) is

analytic at z = ζ2(r) for all s2 ∈ supp(µ2) and we can even write

F2(s2|z) =
∑

n≥0

fn(s2)
(
ζ2(r) − z

)n
.

Now we can prove:

Lemma 3.3. For z ∈ C in a neighbourhood of ri,
∑

si∈supp(µi)

µi(si) z E(i)(si|z)

= e
(i)
(qi,ki)

(ri − z)qi logki(ri − z) +
∑

(q,k)∈ bTi

e
(i)
(q,k)(ri − z)q logk(ri − z) + O

(
(ri − z)di+2

)
,

where e
(i)
(qi,ki)

6= 0 and T̂i ⊆
{
(q, k) ∈ R×N0 | di < q ≤ di + 2, q > qi or (q = qi ⇒ k < ki)

}

is finite.

Proof. Define

Ui(z) :=
∑

si∈supp(µi)

µi(si) z Fi(si|z).
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Observe that the expansions of Ui(z) and Gi(z) have the same leading singular term:
indeed, both functions are di-times differentiable in a neighbourhood of z = ri due to the
well-known equation Gi(z) = 1/

(
1 − Ui(z)

)
. Therefore, we have expansions

Gi(z) =

di∑

k=0

g
(i)
k (ri − z)k + RGi(z) and Ui(z) =

di∑

k=0

u
(i)
k (ri − z)k + RUi(z),

where RGi(z) = Oc

(
Si(z)

)
and RUi(z) = o

(
(ri − z)di

)
. Substituting these expansions into

Gi(z)(1 − Ui(z)) = 1, and taking all polynomial terms to one side, we get
(
1 − Ui(ri)

)
RGi(z) − Gi(ri)RUi(z) = p(z) + o

(
(ri − z)di+1

)
,

where p(z) is some polynomial. This equation implies that the right hand side is of order
O
(
(ri − z)di+1

)
, that is, RUi(z) = Oc

(
Si(z)

)
and we can write

Ui(z) =

di∑

k=0

u
(i)
k (ri − z)k + u

(i)
(qi,ki)

Si(z) + R̂Ui(z) with R̂Ui(z) = o
(
Si(z)

)
.

Plugging this expansion once again into Gi(z)(1 −Ui(z)) = 1, comparing error terms and
iterating the last steps, together with substituting (3.3) in the definition of Ui(z), yields
the claim. �

The next goal is to show that ζ1(z) and ζ2(z) are D-times differentiable at z = r.

Proposition 3.4. There are real numbers x0, x1, . . . , xD and y0, y1, . . . , yD such that

ζ1(z) =

D∑

k=0

xk (r − z)k + X
(1)
D (z) and ζ2(z) =

D∑

k=0

yk (r − z)k + X
(2)
D (z),

where X
(1)
D (z) = o

(
(r− z)D

)
and X

(2)
D (z) = o

(
(r− z)D

)
.

Proof. We prove the proposition by determining x0, x1, . . . , xD and y0, y1, . . . , yD induc-
tively. By Lemma 3.2 and a well-known characterization of differentiability, we can rewrite
ζ1(z) and ζ2(z) in the following way:

(3.4)
ζ1(z) = r1 − ζ ′1(r) (r − z) + X

(1)
1 (z), where X

(1)
1 (z) = o(r − z),

ζ2(z) = ζ2(r) − ζ ′2(r) (r − z) + X
(2)
1 (z), where X

(2)
1 (z) = o(r − z).

Thus, we have determined x0, x1 and y0, y1. Assume now that we can write for some t < D

(3.5) ζ1(z) =

t∑

k=0

xk (r− z)k + X
(1)
t (z) and ζ2(z) =

t∑

k=0

yk (r − z)k + X
(2)
t (z),

where X
(1)
t (z) = o

(
(r − z)t

)
and X

(2)
t (z) = o

(
(r − z)t

)
. Recall from above that we have

expansions of F1(s1|z
)

and F2(s2|z) of the form

(3.6)
F1(s1|z) =

∑D
n=0 an(s1)(r1 − z)n + E(1)(s1|z) and

F2(s2|z) =
∑D

n=0 bn(s2)
(
ζ2(r) − z

)n
+ E(2)(s2|z),
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where E(i)(si|z) = o
(
(ζi(r) − z)D

)
. In particular, if θ̄ < θ2/α2 then ζ2(r) < r2 and

consequently we can even write F2(s2|z) =
∑

n≥0 bn(s2)
(
ζ2(r) − z

)n
. Observe that the

case D = d1 > d2 implies θ̄ < θ2/α2. We now substitute the expansions (3.5) and (3.6) in
equations (3.1) and (3.2), yielding the following system:

(3.7)

α1z =
(∑t

k=0 xk (r − z)k + X
(1)
t (z)

)[
1 − α2

(
r− (r − z)

)∑
s2∈supp(µ2) µ2(s2)·

·
[∑D

n=0 bn(s2)
(
−∑t

k=1 yk (r− z)k − X
(2)
t (z)

)n
+ E(2)

(
s2

∣∣ζ2(z)
)]
]
,

α2z =
(∑t

k=0 yk (r− z)k + X
(2)
t (z)

)[

1 − α1

(
r − (r− z)

)∑
s1∈supp(µ1) µ1(s1)·

·
[∑D

n=0 an(s1)
(
−∑t

k=1 xk (r − z)k − X
(1)
t (z)

)n
+ E(1)

(
s1

∣∣ζ1(z)
)]
]
.

Observe that
∑

si∈supp(µi)
µ(si)zE(i)

(
si

∣∣ζi(z)
)

= o
(
(ζi(r) − ζi(z))D

)
= o

(
(r − z)D

)
. We

now bring all polynomial and higher order terms to the left hand side and get:

(3.8)

P
(1)
t (z) + o

(
(r− z)t+1

)
=

[
1 − α2r

∑
s2∈supp(µ2) µ2(s2)b0(s2)

]
X

(1)
t (z)

+
[
α2r1r

∑
s2∈supp(µ2) µ2(s2)b1(s2)

]
X

(2)
t (z),

P
(2)
t (z) + o

(
(r− z)t+1

)
=

[
α1ζ2(r)r

∑
s1∈supp(µ1) µ1(s1)a1(s1)

]
X

(1)
t (z)

+
[
1 − α1r

∑
s1∈supp(µ1) µ1(s1)a0(s1)

]
X

(2)
t (z),

where P
(1)
t (z) and P

(2)
t (z) are polynomials in the variable z. By assumption on X

(1)
t (z)

and X
(2)
t (z), the right hand sides of (3.8) are of order o

(
(r − z)t

)
. Therefore, the left

hand sides have to be of order O
(
(r− z)t+1

)
, and consequently the right hand sides have

to be also of order O
(
(r − z)t+1

)
. It remains to show that X

(1)
t (z) = O

(
(r − z)t+1

)
and

X
(2)
t (z) = O

(
(r− z)t+1

)
. For this purpose, define the matrix M = (mij)1≤i,j≤2 by

m11 := 1 − α2r
∑

s2∈supp(µ2)

µ2(s2)b0(s2),

m12 := α2r1r
∑

s2∈supp(µ2)

µ2(s2)b1(s2),

m21 := α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)a1(s1),

m22 := 1 − α1r
∑

s1∈supp(µ1)

µ1(s1)a0(s1).
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Then the system (3.8) is equivalent to

M ·
(

X
(1)
t (z)

X
(2)
t (z)

)
=

(
Q

(1)
t (z)

Q
(2)
t (z)

)
,

where Q
(1)
t (z) = O

(
(r− z)t+1

)
and Q

(2)
t (z) = O

(
(r− z)t+1

)
. If the matrix M is invertible,

then obviously X
(1)
t (z) = O

(
(r− z)t+1

)
and X

(2)
t (z) = O

(
(r− z)t+1

)
. To this end, we now

prove invertibility of M :

Lemma 3.5. det(M) 6= 0.

Proof. We start with differentiating equations (3.1) and (3.2):

α1 =
(
−α2

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

)
− α2z

∑

s2∈supp(µ2)

µ2(s2)F
′
2

(
s2|ζ2(z)

)
ζ ′2(z)

)
ζ1(z)

+ζ ′1(z)
(
1 − α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(z)

))
,

α2 =
(
−α1

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

)
− α1z

∑

s1∈supp(µ1)

µ1(s1)F
′
1

(
s1|ζ1(z)

)
ζ ′1(z)

)
ζ2(z)

+ζ ′2(z)
(
1 − α1z

∑

s1∈supp(µ1)

µ1(s1)F1

(
s1|ζ1(z)

))
.

Observe that we have a0(s1) = F1(s1|r1), a1(s1) = −F ′
1(s1|r1), b0(s2) = F2

(
s2|ζ2(r)

)
and

b1(s2) = −F ′
2

(
s2|ζ2(r)

)
. Substituting these values in the above system and letting z → r

yields

α1 =
(
−α2

∑

s2∈supp(µ2)

µ2(s2)b0(s2) + α2r
∑

s2∈supp(µ2)

µ2(s2)b1(s2)ζ
′
2(r)

)
r1 + ζ ′1(r)m11,

α2 =
(
−α1

∑

s1∈supp(µ1)

µ1(s1)a0(s1) + α1r
∑

s1∈supp(µ1)

µ1(s1)a1(s1)ζ
′
1(r)

)
ζ2(r) + ζ ′2(r)m22.

Since ζ1(r), ζ2(r) > 0 and a1(s1), b1(s2) < 0 the last equations imply m11,m22 > 0. We
proceed with rewriting the last system:

(3.9)
α2r1r

∑
s2∈supp(µ2) µ2(s2)b1(s2)ζ

′
2(r) = A − ζ ′1(r)m11,

α1ζ2(r)r
∑

s1∈supp(µ1) µ1(s1)a1(s1)ζ
′
1(r) = B − ζ ′2(r)m22,

where

A := α1 + α2r1

∑

s2∈supp(µ2)

µ2(s2)b0(s2) and B := α2 + α1ζ2(r)
∑

s1∈supp(µ1)

µ1(s1)a0(s1).

Multiplying both equations in (3.9) yields the equation

ζ ′1(r)ζ
′
2(r)m12m21 = AB − ζ ′1(r)m11B − ζ ′2(r)m22A + ζ ′1(r)ζ

′
2(r)m11m22.
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Assume now that det(M) = 0. Then we would get

ζ ′1(r)m11B + ζ ′2(r)m22A = AB,

or equivalently,

(3.10) ζ ′2(r) =
AB − ζ ′1(r)m11B

m22A
.

Furthermore, (3.9) would imply

ζ ′1(r) =
(
A − Cζ ′2(r)

)
/m11,

where C := α2r1r
∑

s2∈supp(µ2) µ2(s2)b1(s2) < 0. Substituting the last equation in (3.10)

would lead to

ζ ′2(r) =
BC

m22A
ζ ′2(r).

Observe now that A,B,m22 > 0 and C < 0. This yields a contradiction in the last
equation, since ζ ′2(r) > 0. Thus, det(M) 6= 0. �

The last lemma finishes the proof of Proposition 3.4. �

Recall the definition of the main leading singular term S(z) = Si(z) = (ri−z)qi logki(ri−z).

The next aim is to show that at least one of the functions X
(1)
D (z) and X

(2)
D (z) has order

Oc

(
(r − z)qi logki(r − z)

)
. To this end, we look at the final step of the induction in the

proof of Proposition 3.4. For t = D, the system (3.7) becomes
[
1 − α2r

∑

s2∈supp(µ2)

µ2(s2)b0(s2)
]
· X(1)

D (z) +
[
α2r1r

∑

s2∈supp(µ2)

µ2(s2)b1(s2)
]
· X(2)

D (z)

−α2r1

∑

s2∈supp(µ2)

µ2(s2) z E(2)
(
s2|ζ2(z)

)
= P

(1)
D (z) + o

(
(r − z)D+1

)
,

[
α1ζ2(r)r

∑

s1∈supp(µ1)

µ1(s1)a1(s1)
]
· X(1)

D (z) +
[
1 − α1r

∑

s1∈supp(µ1)

µ1(s1)a0(s1)
]
· X(2)

D (z)

−α1ζ2(r)
∑

s1∈supp(µ1)

µ1(s1) z E(1)
(
s1|ζ1(z)

)
= P

(2)
D (z) + o

(
(r− z)D+1

)
,

where P
(1)
D (z) and P

(2)
D (z) are polynomials in the variable z. By (3.4), we may conclude(

ζi(r) − ζi(z)
)

= Oc(r− z). Since ζ ′i(ri) < ∞ by Lemma 3.2, we have for 1 < p ∈ R

(
ζi(r) − ζi(z)

)p
=
(
ζ ′i(ri)(r− z) + o(r − z)

)p
= ζ ′i(ri)

p (r − z)p
(
1 + o(1)

)p
= Oc

(
(r − z)p

)

and

log
(
ζi(r) − ζi(z)

)
= log

(
ζ ′i(ri)(r − z) + o(r − z)

)

= log
(
ζ ′i(ri)

)
+ log(r − z) + log

(
1 + o(1)

)

= log
(
ζ ′i(ri)

)
+ log(r − z) + o(1).
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We remark that (1 + z)p and log(1 + z) are analytic in a neighbourhood of z = 0. In the
following we denote by i ∈ {1, 2} the index such that S(z) = Si(z). Then, the computations
above imply with Lemma 3.3 that

∑

si∈supp(µi)

µ(si) z E(i)
(
si|ζi(z)

)
= Oc

(
(r− z)qi logki(r− z)

)
.

Since the matrix M from the proof of Proposition 3.4 is invertible, we can conclude anal-
ogously that we must have

X
(1)
D (z) = Oc

(
(r− z)qi logki(r − z)

)
and X

(2)
D (z) = Oc

(
(r− z)qi logki(r− z)

)
.

Thus, the leading singular term of ζi(z) has the same order as the leading singular term in
the expansion of Gi(z) if S(z) = Si(z). By (2.6), we can conclude that the leading singular
term in the expansion of G(z) at z = r has the same form as the leading singular term in

the expansion of Gi(z) at z = ri, namely (r − z)qi logki(r − z).

Recall that we assumed throughout this section that Gi(z) is exactly di-times differentiable
at z = ri. For an application of Darboux’s method we need in a first step the expansion
of G(z) in a neighbourhood of z = r up to terms of order (r − z)D+2, where D = d1, if
θ̄ < θ2α2, and D = min{d1, d2}, if θ̄ = θ1α1 = θ2α2. Thus, by (2.6), we have to extend the
expansions of ζ1(z) and ζ2(z) up to terms of order (r − z)D+2. The next lemma ensures
that there are only finitely many terms up to order (r− z)D+2 in these expansions.

Lemma 3.6. Let i ∈ {1, 2}, then ζi(z) has an expansion of the form

D∑

k=0

xk(r − z)k +
∑

(q,k)∈T
x(q,k)(r − z)q logk(r − z) + o

(
(r − z)D+2

)
,

where xk, x(q,k) ∈ R, T is a finite subset of T̂ :=
{
(q, k) ∈ R × N0 | D < q ≤ D + 2

}
. In

particular, (qi, ki) ∈ T with x(qi,ki) 6= 0.

Proof. Recall the expansion of
∑

si∈supp(µi)
µi(si) z E(i)(si|z) from Lemma 3.3. Assume

that ζi(z) has already an expansion of the form

(3.11)

D∑

k=0

xk(r − z)k +
∑

(q,k)∈T ′

x(q,k)(r − z)q logk(r − z) + o(max T ′),

where T ′ is a finite subset of T̂ and max T ′ := max�
{
(r − z)q logk(r − z) | (q, k) ∈ T ′}.

In particular, x(qi,ki) ∈ T ′ with x(qi,ki) 6= 0. We proceed with expanding the next terms of
ζi(z) analogously to the proof of Proposition 3.4. For this purpose, observe that for p > 1
we can rewrite

(
ζi(r) − ζi(z)

)p
as

(3.12)

(−x1)
p (r−z)p

(
1+

D∑

k=2

xk

x1
(r−z)k−1 +

∑

(q,k)∈T ′

x(q,k)

x1
(r−z)q−1 logk(r−z)+o

(max T ′

r− z

))p
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and log
(
ζi(r) − ζi(z)

)
as

(3.13)

C+log(r−z)+log

(
1+

D∑

k=2

xk

x1
(r−z)k−1+

∑

(q,k)∈T ′

x(q,k)

x1
(r−z)q−1 logk(r−z)+o

(max T ′

r− z

))
.

Note that (1 + z)p with p > 1 and log(1 + z) are analytic in a neighbourhood of z = 0.
We substitute (3.11), (3.12) and (3.13) in Equations (3.1) and (3.2) and compare again
the error terms (we will repeat this procedure in each of the following steps). Therefore,

if max T ′ = (r − z)q̂ logk̂(r − z) then the next possible terms up to order (r − z)q̂ in the
expansion may only be

(r− z)q̂ logk̂−1(r − z), (r − z)q̂ logk̂−2(r − z), . . . , (r − z)q̂.

Analogously to the proof of Proposition 3.4 we determine step by step the corresponding
coefficients of these terms. The next term in the expansion of ζi(z) has now the form

(r − z)q̌ logǩ(r− z), where q̌ > q̂ is a sum of elements from the finite set
{
1, q, q − 1 | (q, ·) ∈ T1 ∪ T2

}

with Ti given as in (2.2). The value of q̌ is minimal such that q̌ > q̂. Due to (3.12) and

(3.13) there is obviously a maximal ǩ ∈ N0 such that (r − z)q̌ logǩ(r − z) may be a non-
vanishing next term in the expansion of ζi(z). Thus, we may iterate the last few steps
again. Since there are only finitely many possible values for q such that a term of the
form (r − z)q logk(r − z) may appear in the expansion up to order (r − z)D+2, we have
shown that there are only finitely many terms up to order (r− z)D+2 in the expansion of
ζi(z). �

With the last lemma we are now able to prove Theorem 3.1:

Proof of Theorem 3.1. We start by expanding ζ1(z) and ζ2(z) as in Proposition 3.4. If
α1 ≥ θ1/(θ1 + θ2) then θ̄ = θ1/α1 and ζ1(r) = r1, and consequently the leading singular

term in the expansion of ζ1(z) (and ζ2(z)) is then (r − z)q1 logk1(r − z). Otherwise, we

have θ̄ = θ2/α2 < θ1/α1, and the leading singular term is then (r − z)q2 logk2(r − z). For
the rest of the proof, we denote by i ∈ {1, 2} the index such that S(z) = Si(z). Therefore,
the expansion of the common leading singular term of ζ1(z) and ζ2(z), namely Si(z), in a
neighbourhood of 0 has coefficients of asymptotic order proportional to n−λi logκi n.

We will use the technique which is called Darboux’s method : recall that the Riemann-
Lebesgue-Lemma states that if a function H(z) =

∑
n≥0 hnzn has radius of convergence

rH and if H is k-times continuously differentiable on its circle of convergence, then
hnr

n
Hnk → 0 as n → ∞. Thus, one identifies all singularities on the circle of conver-

gence and subtracts parts of the expansion near them such that the remaining part is
sufficiently often differentiable on the circle. The asymptotics of the coefficients arise then
from the main leading singular terms. We refer to Olver [17, Chap. 8, §9.2] for more details.

Lemma 3.6 assures that we have a singular expansion of ζ1(z) up to terms of order
⌈λi⌉ = ⌈qi⌉ + 1 = D + 2, which allows us to apply Darboux’s method: we get the asymp-

totic behaviour of µ(nδ)(e) by plugging ζ1(z) into Equation (2.6). Thus, the leading singular
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term in the expansion of G(z) in a neighbourhood of z = r is the same as the one of ζ1(z),

namely (r− z)qi logki(r− z). We have to show that the expansion of G(z) at every singu-
lar point on the disc of convergence has the same form. The singularities are exactly the
points r exp(i2πj/δ) with 0 ≤ j < δ − 1; see e.g. [22, Theorem 9.4]. Writing z = λrωj,
where ωj = exp(i2πj/δ) and λ ∈ C with |λ| < 1,

G(z) = G(λrωj) =
∑

n≥0

µ(nδ)(e)(λrωj)
nδ =

∑

n≥0

µ(nδ)(e)(λr)nδ = G(λr) = G(z/ωj).

Thus, for every j ∈ {0, 1, . . . , δ − 1}, we have expansions of G(z) in a neighbourhood of
z = rωj given by

G(z) =
D∑

k=0

gk(r− z/ωj)
k +

∑

(q,k)∈Ti

g(q,k)(r − z/ωj)
q logk(r − z/ωj) + O

(
(rωj − z)D+2

)
,

where Ti is a finite subset of {(q, k) ∈ R×N | D < q ≤ D + 2, q > qi ∨ (q = qi ⇒ k < ki)},
g(qi,ki) ∈ Ti and g(qi,ki) 6= 0. Therefore, the difference

G(z) −
δ−1∑

j=0

∑

(q,k)∈T〉

g(q,k)(r − z/ωj)
q logk(r − z/ωj)

is (D + 2)-times differentiable on the circle of convergence. Observe now that the co-

efficients of the expansion of (r − z/ωj)
qi logki(r − z/ωj) in a neighbourhood of 0 be-

have asymptotically like Ci ω
−n
j n−λi logκi(n). We can drop higher order terms in the

above difference because the corresponding coefficients have higher asymptotic order. Since
G(z) =

∑
n≥0 µ(n)zn, we can conclude that

µ(n)(e) ∼
δ−1∑

j=0

C n−λi logκi(n) r−n ω−n
j .

Observe that
∑δ−1

j=0 ω−n
j = δ if δ divides n, and this sum is zero otherwise.

We note once again that the asymptotic behaviour of the coefficients in the expansion of the
function (r − z)qi logki(r − z) near 0 are well-known; see e.g. Flajolet and Sedgewick [7].

�

Let us remark that the reasoning in the above proof shows analogously the asymptotic

behaviour µ
(n)
i (ei) ∼ Ci r

−n
i n−λi logκi n. That is, in the presented case of Ψ(θ̄) > 0,

G′
1(r1) < ∞ and G′

2(r2) < ∞ the asymptotics are directly inherited from the asymptotics
of the random walk on Γi governed by µi.

4. The Case Ψ(θ̄) = 0

We now consider the case Γ = Γ1 ∗ Γ2 and assume that Ψ(θ̄) = 0, G′
1(r1) < ∞ and

G′
2

(
ζ2(r)

)
< ∞ hold. W.l.o.g. we may also assume θ = θ̄ = θ1/α1. The aim of this section

is to prove the following:
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Theorem 4.1. Assume that G′
1(r1) < ∞ and G′

2

(
ζ2(r2)

)
< ∞. If Ψ(θ̄) = 0 then

µ(nδ)(e) ∼ C · r−nδ · n−3/2.

In the following we will derive expansions of ζi(z) and G(z) in a neighbourhood of z = r

in order to prove Theorem 4.1. Recall from (2.8) that Ψ(θ̄) = 0 implies

Φ′(θ̄) =
Φ(θ̄)

θ̄
=

Φ(θ)

θ
=

Φ
(
rG(r)

)

rG(r)
=

G(r)

rG(r)
=

1

r
.

Differentiating (2.7) yields

(4.1) G′(z) =
G(z)Φ′(zG(z)

)

1 − zΦ′(zG(z)
) .

Therefore, G′(r) = ∞, and consequently we have to proceed differently from the previous
section in order to find the expansion of G(z). First, we show positivity of Φ′′(θ̄) in the
present setting:

Lemma 4.2. Assume that G′
1(r1) < ∞ and G′

2

(
ζ2(r2)

)
. If Ψ(θ̄) = 0 then Φ′′(θ̄) > 0.

Proof. Differentiating (2.9) twice yields

(4.2) Φ′′(θ̄) = α2
1Φ

′′
1(α1θ̄) + α2

2Φ
′′
2(α2θ̄).

Since Φ1(t) and Φ2(t) are strictly convex for t ∈ [0, θ1) and t ∈ [0, θ2) respectively, we
get Φ′′(θ̄) > 0 whenever θ1/α1 6= θ2/α2: if θ̄ = θ1/α1 < θ2/α2 then α2θ̄ < θ2, that is,
Φ′′

2(α2θ̄) > 0.
We consider now the case θ1/α1 = θ2/α2, that is ζ2(r) = r2. Assume now Φ′′(θ̄) = 0. Then
Φ′′

1(θ1) = limt→θ1 Φ′′
1(t) = 0 and Φ′′

2(θ2) = limt→θ2 Φ′′
2(t) = 0 must hold. For i ∈ {1, 2},

differentiating (2.7) yields

G′
i(ri) = lim

z→ri

Gi(z)Φ′
i

(
zGi(z)

)

1 − zΦ′
i

(
zGi(z)

) ,

or equivalently

Φ′
i(θi) = lim

z→ri

G′
i(z)

zG′
i(z) + Gi(z)

=
G′

i(ri)

riG′
i(ri) + Gi(ri)

< ∞.

In particular, we have Φ′
i(θi) < 1/ri since G′

i(ri) < ∞ by assumption. If Φ′′
i (θi) = 0,

differentiating (2.7) twice yields

G′′
i (ri) = lim

z→ri

Φ′′
i

(
zGi(z)

)(
Gi(z) + zG′

i(z)
)2

+ 2Φ′
i

(
zGi(z)

)
Gi(z)

1 − zΦ′
i

(
zGi(z)

) =
2Φ′

i(θi)Gi(ri)

1 − riΦ
′
i(θi)

< ∞.

Define the first return generating function as

Ui(z) :=
∑

n≥1

P
[
X(i)

n = ei,∀m < n : X(i)
m 6= ei | X

(i)
0 = ei

]
zn,
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which satisfies the well-known equation Gi(z) = 1/
(
1 − Ui(z)

)
and is strictly convex.

G′′
i (ri) < ∞ implies obviously U ′′

i (ri) < ∞. Therefore, we can compute Φ′′
i (θi) as

Φ′′
i (θi) = lim

z→ri

Gi(z)3U ′′
i (z)

(
Gi(z) + zG′

i(z)
)3 =

Gi(ri)
3U ′′

i (ri)(
Gi(ri) + riG′

i(ri)
)3 > 0,

and consequently Φ′′(θ̄) > 0 due to (4.2). �

We proceed with expanding G(z) nearby z = r.

Proposition 4.3. Assume that Φ′′(θ̄) < ∞. If Ψ(θ̄) = 0, G′
1(r1) < ∞ and G′

2(ζ2(r)) < ∞
then we can expand G(z) in a neighbourhood of z = r as follows:

G(z) = g0 + g1

√
r− z + o

(√
r− z

)
,

where g0, g1 ∈ R with g1 6= 0.

Proof. Consider the auxiliary function H(z) :=
(
G(z) − G(r)

)2
, and its first derivative

H ′(z) = 2G′(z)
(
G(z) − G(r)

)
. Using Equation (4.1), we get

H ′(z) = 2
G(z)Φ′(zG(z)

)

1 − zΦ′(zG(z)
)
(
G(z) − G(r)

)
.

The next aim is to show differentiability of H(z) at z = r. For this purpose, we want to
show finiteness of the following limit:

lim
z→r

H ′(z) = lim
z→r

2G(z)Φ′(zG(z)
) G(z) − G(r)

1 − zΦ′(zG(z)
) .

Since 2G(z)Φ′(zG(z)
)

tends to A := 2G(r)/r < ∞, we just look at the following limit:

lim
z→r

G(z) − G(r)

1 − zΦ′(zG(z)
) = lim

z→r

Φ
(
zG(z)

)
− G(r)

1 − zΦ′(zG(z)
)

= lim
z→r

Φ′(zG(z)
)(

G(z) + zG′(z)
)

−Φ′(zG(z)
)
− zΦ′′(zG(z)

)(
G(z) + zG′(z)

) .(4.3)

In the last equation we applied De L’Hôpital’s rule. We now write G(z) := G(z) + zG′(z),
which tends to infinity for z → r. Recall that θ̄ = θ = rG(r) if Ψ(θ̄) = 0. Therefore,
Equation (4.3) yields

H ′(r)= lim
z→r

AΦ′(θ)G(z)

−Φ′(θ) − rΦ′′(θ)G(z)
= lim

x→∞
AΦ′(θ)x

−Φ′(θ) − rΦ′′(θ)x
=

A

−r2Φ′′(θ)
∈ (−∞, 0).

Thus,

lim
z→r

G(r) − G(z)√
r− z

= lim
z→r

√(
G(z) − G(r)

)2

r− z
=
√

−H ′(r) ∈ (0,∞)

leads to the proposed expansion, namely

G(z) = G(r) −
√

−H ′(r)
√

r − z + o(
√

r − z),

where
√

−H ′(r) 6= 0. �
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The next lemma shows that also ζ1(z) and ζ2(z) have the same expansion type:

Lemma 4.4. Assume Φ′′(θ̄) < ∞. If Ψ(θ̄) = 0, G′
1(r1) < ∞ and G′

2(ζ2(r)) < ∞ we can
expand ζ1(z) and ζ2(z) in a neighbourhood of z = r in the following way:

ζ1(z) = r1 + a0

√
r− z + o(

√
r − z), ζ2(z) = ζ2(r) + b0

√
r− z + o(

√
r− z),

where a0, b0 ∈ R \ {0}.

Proof. Obviously, we can write

(4.4) ζ1(z) = r1 + X1(z), ζ2(z) = ζ2(r) + X2(z),

where X1(r) = X2(r) = 0. Moreover, for i ∈ {1, 2},

(4.5) Gi

(
ζi(z)

)
= Gi

(
ζi(r)

)
− G′

i

(
ζi(r)

)(
−Xi(z)

)
+ o
(
Xi(z)

)
.

Substituting (4.4) and (4.5) in (2.6) yields the claim when comparing all error terms. �

Now we can show that Φ′′(θ̄) < ∞ holds in the present setting¿

Lemma 4.5. Assume G′
1(r1) < ∞ and G1(ζ2(r)) < ∞. If Ψ(θ̄) = 0 then Φ′′(θ̄) < ∞.

Proof. Assume now that Φ′′(θ̄) = ∞. We rewrite ζ1(z) and ζ2(z) as

(4.6) ζ1(z) = r1 + X1(z), and ζ2(z) = ζ2(r) + X2(z),

with X1(r) = X2(r) = 0. More precisely, if Φ′′(θ̄) = ∞, then the reasoning in Propo-
sition 4.3 yields H ′(r) = 0, and consequently X1(z),X2(z) = o(

√
r− z). Furthermore,

X1(z),X2(z) 6= O
(
(r − z)

)
, because otherwise ζ ′1(r), ζ

′
2(r) < ∞ together with (2.6) would

lead to a contradiction with G′(r) = ∞. For i ∈ {1, 2} and si ∈ supp(µi), we write in the

following Fi(si|z) =
∑

n≥1 f
(i)
n (si)z

n with suitable coefficients f
(i)
n (si) ∈ R. Our next aim

is to find real numbers C
(i)
1 and C

(i)
2 such that

(4.7) C
(i)
1 X1(z) + C

(i)
2 X2(z) + o(r − z) = LPi,

where LPi is a linear polynomial. For this purpose, we rewrite Equations (3.1) and (3.2)
with the help of (4.6). In the following j denotes the element of {1, 2} which is different
from i. We get:
(4.8)(

1 − αj(r−(r−z))
∑

sj∈supp(µj)

µj(sj)
∑

n≥1

f (j)
n (sj)

(
ζj(r) + Xj(z)

)n)(
ζi(r) + Xi(z)

)
= αiz.
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The coefficients C
(i)
1 and C

(i)
2 of X1(z) and X2(z) respectively, are

C
(1)
1 := 1 − α2r

∑

s2∈supp(µ2)

µ2(s2)
∑

n≥1

f (2)
n (s2) ζ2(r)

n

= 1 − α2r
∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(r)

)
,

C
(1)
2 := −α2r1r

∑

s2∈supp(µ2)

µ2(s2)
∑

n≥1

f (2)
n (s2)n ζ2(r)

n−1

= −α2r1r
∑

s2∈supp(µ2)

µ2(s2)F
′
2

(
s2|ζ2(r)

)
,

C
(2)
1 := −α1ζ2(r)r

∑

s1∈supp(µ1)

µ1(s1)
∑

n≥1

f (1)
n (s1)nrn−1

1

= −α1ζ2(r)r
∑

s1∈supp(µ1)

µ1(s1)F
′
1

(
s1|r1

)
,

C
(2)
2 := 1 − α1r

∑

s1∈supp(µ1)

µ1(s1)
∑

n≥1

f (1)
n (s1)r

n
1

= 1 − α1r
∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1).

For i = 1, the linear polynomial term on the left hand side of (4.8) is

r1

(
1 − α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(r)

))
,

while on the right hand side it is α1z. For i = 2, we have on the left hand side of (4.8)

ζ2(r)
(
1 − α1z

∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1)
)
,

and on the right hand side α2z. Therefore, (4.7) holds with

LP1 := α1z − r1

(
1 − α2z

∑

s2∈supp(µ2)

µ2(s2)F2

(
s2|ζ2(r)

))
and

LP2 := α2z − ζ2(r)
(
1 − α1z

∑

s1∈supp(µ1)

µ1(s1)F1(s1|r1)
)
.

The coefficients C
(i)
1 , C

(i)
2 satisfy

(4.9) C
(1)
1 C

(2)
2 − C

(2)
1 C

(1)
2 = 0.

Indeed, assume that C
(1)
1 C

(2)
2 − C

(2)
1 C

(1)
2 6= 0. Then the following linear system

C
(1)
1 X1(z) + C

(1)
2 X2(z) + o(r − z) = LP1,

C
(2)
1 X1(z) + C

(2)
2 X2(z) + o(r − z) = LP2
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has a unique solution for X1(z) and X2(z), but this means that both of them are of order
O(r − z), a contradiction to (4.6).

Evaluating Equation (4.8) with i = 2 at z = r gives C
(2)
2 > 0. Equation (4.9) yields

(4.10) LP1 −
C

(1)
2

C
(2)
2

LP2 = 0.

Evaluating the last equation at z = 0 yields

(4.11) −r1 +
C

(1)
2

C
(2)
2

· ζ2(r) = 0.

Since C
(1)
2 < 0, Equation (4.11) gives us a contradiction, therefore Φ′′(θ̄) = ∞ cannot hold

when Ψ(θ̄) = 0. �

We now proceed analogously to the previous section: we substitute the expansion of the
last lemma in Equations (3.1) and (3.2) and determine step by step the next terms in the
expansions of ζ1(z) and ζ2(z). The next lemma shows that we get only a finite number of
terms up to order (r− z)2:

Lemma 4.6. Let i ∈ {1, 2}. If Ψ(θ̄) = 0, we can expand ζi(z) in a neighbourhood of z = r

in the following way:

ζi(z) = ζi(r) + c0

√
r− z +

∑

(q,k)∈T
c(q,k)(r − z)q logk(r − z) + O

(
(r − z)2

)
,

where T is a finite subset of T̂ :=
{
(q, k) ∈ R × N0 | 1/2 < q ≤ 2

}
and c0, c(q,k) ∈ R with

c0 6= 0.

Proof. We start by plugging ζi(z) = ζi(r) + c0
√

r− z + X
(i)
0 (z) with X

(i)
0 (z) = o(

√
r − z)

into Equations (3.1) and (3.2) and determine step by step the next terms inductively
analogously to the proof of Lemma 3.6. Assume now that ζi(z) has an expansion of the
form

ζi(r) + c0

√
r− z +

∑

(q,k)∈T ′

c(q,k)(r− z)q logk(r − z) + o(max T ′),

where T ′ = T ′′ ∪ {(1/2, 0} with T ′ ⊆ T̂ finite. For p > 1,
(
ζi(r)− ζi(z)

)p
can be rewritten

as

(4.12) (−c0)
p (r − z)p/2

(
1 +

∑

(q,k)∈T ′

c(q,k)

c0
(r− z)q−1/2 logk(r − z) + o

(max T ′
√

r− z

))p

and log
(
ζi(r) − ζi(z)

)
as

(4.13) C +
1

2
log(r − z) + log

(
1 +

∑

(q,k)∈T ′

c(q,k)

c0
(r − z)q−1/2 logk(r− z) + o

(max T ′
√

r− z

))
.
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Once again, if max T ′ = (r − z)q̂ logk̂(r − z) then the next possible terms up to order
(r − z)q̂ in the expansion may only be

(r− z)q̂ logk̂−1(r − z), (r − z)q̂ logk̂−2(r − z), . . . , (r − z)q̂.

We determine step by step the corresponding coefficients of these terms by plugging the
expansions of ζi(z), (4.12) and (4.13) into Equations (3.1) and (3.2) and comparing error

terms. The next term has the form (r − z)q̌ logǩ(r − z), where q̌ ≤ 2 is now a sum of
elements from the finite set

{
1/2, q/2, q/2 − 1/2 | (q, ·) ∈ T1 ∪ T2

}
such that q̌ > q̂. Due to

(4.12) and (4.13) there is obviously a maximal ǩ ∈ N0 such that (r − z)q̌ logǩ(r − z) may
be a non-vanishing next term in the expansion of ζi(z). Iterating the last steps yields the
claim of the lemma, since there are only finitely many possible values for q such that the
term (r− z)q logk(r − z) may appear in the expansion of ζi(z). �

Substituting the obtained expansion of ζ1(z) into Equation (2.6) yields the proposed claim
of Theorem 4.1.

Remark: The result could also be obtained analogously to Flajolet and Sedgewick [7,
Section VI.7.] by singularity analysis, but one still has to prove positivity and finiteness
of Φ′′(θ̄).

5. The Remaining Cases

In this section we look at all remaining cases not covered by Section 3 and 4. Moreover
we will extend our results to free produncts Γ1 ∗ . . . ∗ Γm with m > 2.

5.1. Case G1(r1) < ∞ and G′
1(r1) = ∞.

Theorem 5.1. Consider a free product of the form Γ1∗Γ2, where G1(r1) < ∞, G′
1(r1) = ∞

and G′
2(r2) < ∞. Then:

µ(nδ)(e) ∼






C1 · r−nδ · n−3/2, if θ̄ = θ1/α1 or Ψ(θ̄) ≤ 0,

C2 · r−nδ · n−λ2 · logκ2(n), if θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0.

Proof. For the first part of the proof assume that θ̄ = θ1/α1. With

U1(z) :=
∑

g∈Γ1

µ1(g) z F1(g
−1|z)

we have the well-known equation G1(z) = 1/
(
1 − U1(z)

)
. Therefore, G′

1(r1) = ∞ implies
U ′

1(r1) = ∞, and we get due to [22, Equation (9.14)]

(5.1) Ψ1(α1θ̄) = lim
z→r1

Ψ1

(
zG(z)

)
= lim

z→r1

1

zU ′
1(z) + 1 − U1(z)

= 0.

Thus,

Ψ(θ̄) = Ψ1(α1θ̄) + Ψ2(α2θ̄) − 1 = Ψ1(θ1) + Ψ2(α2θ̄) − 1 = Ψ2(α2θ̄) − 1.
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Recall that Ψ(t) is strictly decreasing and Ψ2(0) = 1. Therefore, Ψ(θ̄) < 0, and conse-

quently we obtain the asymptotic behaviour µ(nδ)(e) ∼ C1r
−nδn−3/2; see [22, Theorem

17.3].

For the case θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) = 0, we refer to Section 4.

In the case θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0 the Green function G1(z) is analytic
at z = ζ1(r) < r1 and thus we may apply the technique from Section 3 to obtain the
proposed asymptotic behaviour. �

At this point, let us remark that the formula for Ψ(t) used in Equation (5.1) always implies
Ψi(θi) = 0 whenever G′

i(ri) = ∞. Moreover:

Corollary 5.2. If G′
1(r1) = G′

2(r2) = ∞, then µ(nδ)(e) ∼ C · r−nδ · n−3/2.

Proof. Since U ′
1(r1) = U ′

2(r2) = ∞, Equation (5.1) implies that at least one of Ψ1(α1θ̄)
and Ψ2(α2θ̄) equals zero, yielding Ψ(θ̄) < 0. �

5.2. Case G1(r1) = ∞. For finite groups Γ1 and Γ2, Woess [21] proved that the n-step

return probabilities behave asymptotically like Cr−nδn−3/2. Moreover, we get the following
asymptotic behaviours:

Theorem 5.3. Consider a free product of the form Γ1 ∗ Γ2, where G1(r1) = ∞. Then:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−3/2, if Ψ(θ̄) ≤ 0,

C2 · r−nδ · n−λ2 · logκ2(n), if Ψ(θ̄) > 0.

Proof. If G′
2(r2) = ∞, we have Ψ(θ̄) < 0; see proof of Corollary 5.2.

If G2(r2) < ∞ and G′
2(r2) = ∞ then θ̄ = θ2/α2, and U ′

2(r2) = ∞. This implies once again
Ψ(α2θ̄) = 0, and thus Ψ(θ̄) < 0.

If G′
2(r2) < ∞ then θ̄ = θ2/α2 and ζ1(r) < r1. Therefore, we can follow the argumentation

of Section 3 and 4 analogously to prove the proposed claim. �

5.3. Free Products with more than two Factors. Let m ∈ N with m ≥ 3. Suppose
we are given finitely generated groups Γ1, . . . ,Γm. We consider now a free product of the
form Γ := Γ1 ∗ . . . ∗ Γm, on which a random walk is governed by the measure µ defined as
µ :=

∑m
j=1 αj µ̄j; see Section 2. We get the following result:

Theorem 5.4. Let m ≥ 3. Consider the free product Γ := Γ1 ∗ . . . ∗ Γm equipped with a
random walk governed by µ :=

∑m
j=1 αjµ̄j . Assume that the corresponding Green functions

Gi(z) on the free factors Γi have an expansion as in (2.2) whenever G′
i(r) < ∞. Denote by

r the radius of convergence of the Green function associated with the random walk on Γ.
Then the asymptotic behaviour of the corresponding n-step transition probabilities must
obey one of the following laws: Ci r

−nδ n−λi logκi(n), where λi and κi are inherited from

one of the µi, or C0 r−nδ n−3/2.
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Proof. In order to prove the theorem, we just remark that – by induction on the number
of free factors – the Green function (with radius of convergence r∗) of the random walk

on Γ∗ := Γ1 ∗ . . . ∗ Γm−1 governed by µ∗ :=
∑m−1

j=1
αj

α1+...+αm−1
µ̄j has an expansion either

of the form

(I) G∗(z) =

D∑

k=0

gk(r
∗ − z)k +

∑

(q,k)∈T
g(q,k)(r

∗ − z)q logk(r∗ − z) + O
(
(r∗ − z)D+2

)
,

where T is a finite subset of {(q, k) ∈ R × N0 | D < q ≤ D + 2} and gk, g(q,k) ∈ R, or of
the form

(II) G∗(z) = g0 + g1

√
r∗ − z +

∑

(q,k)∈T
g(q,k)(r

∗ − z)q logk(r∗ − z) + O
(
(r∗ − z)2

)
,

where T is a finite subset of {(q, k) ∈ R × N0 | 1 < q ≤ 2} and g0, g1, g(q,k)) ∈ R.
Thus, we may apply the results from Section 3 to the free product Γ∗ ∗Γm equipped with
µ = (α1 + . . . + αm−1)µ

∗ + αmµ̄m and obtain the proposed result. �

6. Examples

6.1. Free Products of Lattices. Let d1, . . . , dm ∈ N. In this subsection we consider
free products of the form Γ := Z

d1 ∗ . . . ∗ Z
dm , equipped with a nearest neighbour random

walk. In the following subsection we show that the Green functions of nearest neighbour
random walks on Z

d have an expansion as requested by (2.2). Afterwards we can give a
complete classification of the asymptotic behaviour.

6.1.1. Expansion of the Green Function on Z
d. Let d ∈ N. Suppose we are given a proba-

bility measure π with supp(π) = {±e1, . . . ,±ed}, the set of natural generators of Z
d. Then

π defines a random walk on Zd, and we denote by π(n) its n-fold convolution power. We
write for 1 ≤ i ≤ d

βi := π(ei) + π(−ei) and pi :=
π(ei)

π(ei) + π(−ei)
.

Let 0 be the zero vector in Z
d. Once again Gd(z) :=

∑
n≥0 π(n)(0)zn denotes the associ-

ated Green function, which has radius of convergence rd. The crucial point for our later
discussion is the following:

Proposition 6.1. The Green function of the random walk on Z
d has an expansion of the

form

Gd(z) =

{
f(z) + g(z)(rd − z)(d−2)/2, if d is odd,

f(z) + g(z)(rd − z)(d−2)/2 log(rd − z), if d is even,

where the functions f(z), g(z) are analytic in a neighbourhood of z = rd and g(rd) 6= 0.

Remarks: For the case of simple random walks on Z
d a proof of this proposition can be

found in [22, Proposition 17.16]. In our case, we generalize the statement to arbitrary near-
est neighbour random walks on Z

d, but we will only give a sketch of the (elementary) proof
and refer once again to [22]. From the expansion follows with the help of Darboux’s method
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that π(2n)(0) ∼ C r−2n
d n−d/2; this asymptotic behaviour follows also from Cartwright and

Soardi [4].

Proof. First, note that the spectral radius of the random walk on Z
d is given by

̺ =
d∑

i=1

βi

√
4pi(1 − pi) =

1

rd
;

compare with [22, Theorem 8.23]. We define random walks on Z governed by probability
measures πi with πi(1) := pi and πi(−1) := 1 − pi. For z ∈ C, the exponential generating
function on Z

d is given by

E(z) :=
∞∑

n=0

π(n)(0)
zn

n!

and on the i-th coordinate axis it is given by

Ei(z) :=
∑

n≥0

π
(n)
i (0)

zn

n!
=

∫ 1

−1
e
√

4pi(1−pi)tz
1

π
√

1 − t2
dt.

In the last equation we applied the following relation, which is easy to check:

π
(n)
i (0) =

∫ 1

−1

√
4pi(1 − pi)

n
tn

1

π
√

1 − t2
dt.

Furthermore, we get E(z) =
∏d

i=1 Ei(βiz) =
∫ ̺
−̺ etz

(
f̂1 ∗ . . . ∗ f̂d

)
(t)dt, where

f̂i(t) :=
1

βi

√
4pi(1 − pi)

f0

( t

βi

√
4pi(1 − pi)

)
and f0(t) :=

{
1

π
√

1−t2
, if t ∈ (−1, 1),

0, otherwise.

This allows us to rewrite the Green function in the following way:

(6.1) Gd(z) =

∫ ̺

−̺

1

1 − zt

(
f̂1 ∗ . . . ∗ f̂d

)
(t) dt.

Moreover, there is a function gd(t), which is analytic in a neighbourhood of t = ̺ and
satisfies gd(̺) 6= 0 such that

(6.2)
(
f̂1 ∗ . . . ∗ f̂d

)
(t) = (̺ − t)(d−2)/2gd(t).

To prove this, we define f̄i(t) := f̂i

(
βi

√
4pi(1 − pi)− t

)
and show inductively that we can

write

(f̄1 ∗ . . . ∗ f̄d)(t) = t(d−2)/2ḡd(t),

where the function ḡd(t) is analytic in a neighbourhood of t = 0 and ḡd(0) 6= 0. Analogously
to the proof of [22, Proposition 17.16], we may conclude together with (6.1) and (6.2) that
Gd(z) has the proposed expansion. �
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6.1.2. Classification of the Asymptotic Behaviour. Observe that a nearest neighbour ran-
dom walk on Z

d has period 2 since it can come back to the origin only in an even number
of steps. Therefore, the period of a nearest neighbour random walk on Z

d1 ∗ Z
d2 is δ = 2.

Now we can give a complete classification of the asymptotic behaviour of n-step return
probabilities of nearest neighbour random walks on Z

d1 ∗ Z
d2 :

Theorem 6.2. Consider irreducible nearest neighbour random walks on the lattices Z
d1

and Z
d2 with d1 ≤ d2. Then the n-step return probabilities of the associated random walk

on Z
d1 ∗ Z

d2 obey one the following laws:

µ(2n)(e) ∼






C1 · r−2n · n−d1/2, if d1 ≥ 5 and Ψ(θ̄) > 0 and θ̄ = θ1/α1,

C2 · r−2n · n−d2/2, if d2 ≥ 5 and Ψ(θ̄) > 0 and θ̄ = θ2/α2 < θ1/α1,

C3 · r−2n · n−3/2, otherwise.

2

Consider now the multi-factor free product Z
d1 ∗ . . . ∗ Z

dm. Let µi be the simple random
walk on Z

di for each i ∈ {1, . . . ,m} and choose α1, . . . , αm > 0 with
∑m

j=1 αj = 1. Let

Gi(z) denote the Green function of the simple random walk on Z
di , which has radius of

convergence ri = 1, and define Ψi(t) analogously as in (2.8). Cartwright [1] computed
numerically some of the values of Ψi

(
Gi(1)

)
and showed that Ψi

(
Gi(1)

)
→ 1 if di → ∞.

Thus, for large di we have Ψi

(
Gi(1)

)
> 1 − 1/m. Recall also that Ψi(t) is decreasing.

Denote by G(z) the Green function of the random walk on Z
d1 ∗ . . . ∗ Z

dm and by r its
radius of convergence, and define Ψ(t) analogously as in (2.8). By [22, Equation 9.21],

Ψ(θ̄) = 1 +

m∑

j=1

(
Ψi(αiθ̄) − 1

)
,

where θ̄ = min1≤i≤m θi/αi. If all exponents di ≥ 5 are big enough, we get Ψ(θ̄) > 0. Fur-

thermore, if αi is chosen big enough, we get an asymptotic behaviour of type Ci r
−2n n−di/2.

Moreover, one can define (symmetric) measures µ1, . . . , µm supported on the natural gen-

erators in such a way that we obtain a C0 r−2n n−3/2-law: one chooses µ1 and µ2 such
that Ψ1(θ1),Ψ2(θ2) < 1/2 and chooses α1 and α2 such that θ̄ = θ1/α1 = θ2/α2, yielding
Ψ(θ̄) < 0; see comments at the end of Section 2. That is, we can have m + 1 different
asymptotic behaviours. This finally proves Theorem 1.1.

For instance, consider Γ = Z
5 ∗Z

6 ∗Z
7 equipped with simple random walks µ1, µ2 and µ3

on each free factor. For i ∈ {1, 2, 3}, we define Ψi(t) analogously to (2.8). Cartwright [1]
computed the values Ψ1

(
G1(1)

)
= 0.691, Ψ2

(
G2(1)

)
= 0.824 and Ψ3

(
G3(1)

)
= 0.876.

Thus, the random walk on Z
5∗Z

6 governed by µ12 := α∗
1µ̄1+α∗

2µ̄2, where α∗
1 = α1/(α1+α2)

and α∗
2 = α2/(α1 + α2), satisfies Ψ(M) ≥ 0.515 with M := min{θ1/α

∗
1, θ2/α

∗
2}. That is,

M = r1.2G1,2(r1,2), where G1,2(z) is the Green function of the random walk on Z
5 ∗ Z

6

with radius of convergence r1,2. Since all Ψi-functions are strictly decreasing, we obtain
for the random walk on Γ = Γ1 ∗ Γ2 with Γ1 = Z

5 ∗ Z
6 and Γ2 = Z

7:

Ψ(θ̄) = Ψ1

(
(α1 + α2)θ̄

)
+ Ψ2(α3θ̄) − 1 ≥ 0.515 + 0.876 − 1 > 0.
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For the simple random walk on Γ, we have then the asymptotic non-exponential type
n−7/2, if α1 + α2 < M/

(
M + G3(1)

)
. Otherwise, we have the asymptotic behaviour n−5/2

or n−3, if M = θ1/α
∗
1 or M = θ2/α

∗
2 6= θ1/α

∗
1 respectively.

6.2. (Z/mZ) ∗ Z
d. Consider the groups Γ1 = Z/mZ and Γ2 = Z

d for any m ≥ 2, d ∈ N.
Suppose we are given a probability measure µ1 on Γ1 and a probability measure µ2 on
Z

d, which is supported on the natural generators. Then G1(1) = ∞, and thus we get the
following classification:

µ(nδ)(e) ∼
{

C1 · r−nδ · n−d/2, if d ≥ 5 and Ψ(θ̄) > 0,

C2 · r−nδ · n−3/2, otherwise.

6.3. Πq ∗ Z
d. Consider the groups Γ1 = Πq := ∗q

i=1(Z/2Z) and Γ2 = Z
d for any q ≥ 2,

d ∈ N. Observe that the Cayley graph of Γ1 is the homogeneous tree of degree q. Suppose
we are given probability measures µ1 on Γ1 and µ2 on Z

d, which are both supported on
the natural generators. If q = 2 then G1(1) = ∞, and thus we get the same classification
as in the case (Z/mZ) ∗ Z

d. If q ≥ 3, then it is well-known that G1(z) can be written as

G1(z) = A(z) +
√

r1 − z B(z),

where A(z), B(z) are analytic in a neighbourhood of z = r1 and B(r1) 6= 0; see e.g.
Woess [23, Equation (4.5)]. Therefore, we get the following classification for the associated
random walk on the free product Γ1 ∗ Γ2:

µ(2n)(e) ∼
{

C1 · r−2n · n−d/2, if d ≥ 5 and θ̄ = θ2/α2 < θ1/α1 and Ψ(θ̄) > 0,

C2 · r−2n · n−3/2, otherwise.

7. Classification of Phase Transitions

Let us return to the case m = 2, that is, Γ = Γ1 ∗ Γ2. Now we fix the measures µ1 and
µ2, and investigate the variation of Ψ(θ̄) as a function of the parameter α1.

Lemma 7.1. Assume θ̄ < ∞. Then the function Υ(·) : (0, 1) 7→ R defined by

Υ(α1) := Ψ1(α1θ̄) + Ψ2((1 − α1)θ̄) − 1

is continuous, strictly decreasing in the interval
(
0, θ1

θ1+θ2

]
and strictly increasing in the

interval
[

θ1
θ1+θ2

, 1
)
. (We set c

c+∞ := 0 and ∞
∞+c := 1 for c ∈ (0,∞).)

Proof. We leave the proof of continuity of Υ as an easy exercise to the reader, since Ψi is
analytic in an open neighbourhood of the interval [0, θi).

Note that Υ(α1) = Ψ(θ̄). We divide the proof into two parts, according to finiteness of θ1

and θ2.

Case θ1, θ2 < ∞. If 0 < α1 < θ1
θ1+θ2

then θ̄ = θ2/α2. Consequently, we have

Υ(α1) = Ψ1(
α1

1 − α1
θ2) + Ψ2(θ2) − 1.
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Since the function α1
1−α1

is strictly increasing, it follows that Ψ1(
α1

1−α1
θ2) is strictly decreas-

ing, implying Υ(α1) strictly decreasing.

If α1 = θ1
θ1+θ2

we obtain θ̄ = θ1/α1 = θ2/α2, that is, Υ(α1) = Ψ1(θ1) + Ψ2(θ2) − 1.

If θ1
θ1+θ2

< α1 < 1 we have Ψ(θ̄) = Ψ1(θ1)+ Ψ2(
1−α1

α1
θ1)− 1. Since 1−α1

α1
is strictly decreas-

ing, Υ(α1) is a strictly increasing function in the abovementioned interval.

Case θ1 = ∞. Then θ̄ = θ2
1−α1

. The same reasoning as before shows that Υ(α1) is strictly

decreasing in the interval (0, 1).

Case θ2 = ∞. Then θ̄ = θ1
α1

. Analogously, Υ(α1) is strictly increasing in the interval

(0, 1). �

Let us remark that θ̄ = ∞ implies Ψ(θ̄) < 0 (see [22, Theorem 9.22]); otherwise we would
have a contradiction to ρ-transience.

Now we can give a complete picture of the phase transition of the asymptotic behaviour of
the return probabilities depending on the parameter α1, and we present specific examples.
In the following we discuss the different possible behaviours of the function Υ(α1) = Ψ(θ̄).
In Figure 1, the dashed line will represent approximately the qualitative behaviour of
Υ(α1); we denote its zeros (if they exist) by αlow and αhigh (with αlow ≤ αhigh). Moreover,
we write αc := θ1/(θ1 + θ2). We decompose the interval (0, 1) into subintervals such that
every choice of α1 in a fixed subinterval leads to the same non-exponential type. With the
help of Figure 1 we discuss case by case the different behaviours of Υ(α1), and for each
case we give an example of a nearest neighbour random walk on Z

d1 ∗ Z
d2. Recall that

Ψ(0) = Ψi(0) = 1.

Case A: We give an example such that this case holds. We set Γ = Z
d1 ∗Z

d2 with d1, d2 ≥ 5,
and we choose µ1 and µ2 such that Ψ1(θ1) < 1/2 and Ψ2(θ2) < 1/2. Recall that it
is possible to find such measures (see end of Section 2 and [22, Lemma 17.9]). We
remark that Ψi(θi) > 0: indeed, Ψi(θi) = 0 would imply

Φ′
i(θi) =

Φi(θi)

θi
=

Gi(ri)

riGi(ri)
=

1

ri
.

Differentiating (2.7) would yield G′
i(ri) = ∞, a contradiction to Proposition 6.1,

according to which, G′
i(ri) must be finite due to di ≥ 5.

– If α1 is small then θ̄ = θ2/(1 − α1) and

(7.1) Ψ(θ̄) = Ψ1

(
α1

θ2

1 − α1︸ ︷︷ ︸
α1→0−−−→0

)

︸ ︷︷ ︸
α1→0−−−→1

+ Ψ2(θ2)︸ ︷︷ ︸
>0

−1,

that is, Ψ(θ̄) > 0 if α1 is sufficiently small. This yields a n−d2/2-law for small
values of α1.

– If α1 is close to 1 then θ̄ = θ1/α1 and we get analogously an n−d1/2-law.
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Υ(α1)
↑

α1

0 1αc

α1

0 1αlow αhigh

n−λ2 logκ2n n− 3

2 n−λ1 logκ1n

Type A

Υ(α1)
↑

α1

0 1

α1

0 1αlow

n− 3

2n−λ2 logκ2n

Type B

Υ(α1)
↑

α1

0 1

α1

0 1αhigh

n− 3

2 n−λ1 logκ1n

Type C

Υ(α1)

↑

α1

0 1

α1

0 1αc

n−λ2 logκ2n n−λ1 logκ1n

Type D

Υ(α1)

↑
α1

0 1

α1

0 1

n− 3

2

Type E

Υ(α1)
↑

α1

0 1αc

α1

0 1αc

n−λ2 logκ2n
n− 3

2

↓ n−λ1 logκ1n

Case F

Figure 1. The different behaviours of α1 7→ Ψ(θ̄).

– For α1 = αc, we get Ψ(θ̄) = Ψ1(θ1) + Ψ2(θ2) − 1 < 0, that is, we have a

n−3/2-law in this case.
Case B: We set Γ = Z

2 ∗ Z
7. By Lemma 7.1, Υ(α1) is strictly decreasing and θ̄ = θ2/α2.

– If α1 is small then the same reasoning as in (7.1) holds and Ψ(θ̄) > 0, that is,

we have a n−d2/2-law for small α1.
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– If α1 is close to 1 then

Ψ(θ̄) = Ψ1

(
α1

θ2

1 − α1︸ ︷︷ ︸
α1→1−−−→∞

)

︸ ︷︷ ︸
α1→1−−−→0

+ Ψ2(θ2)︸ ︷︷ ︸
<1

−1 < 0,

since limt→∞ Ψ1(t) = 0, which follows analogously to (5.1). That is, we have

a n−3/2-law for large α1.
Case C: By setting Γ = Z

7 ∗Z
2, we have the symmetric situation as in Case B, which gives

an example for this case by exchanging the roles of Z
2 and Z

7.
Case D: We set Γ = Z

5 ∗ Z
6 and consider simple random walks on the factors Z

5 and Z
6.

By Cartwright [1], we have Ψ1(θ1) = 0.691 and Ψ2(θ2) = 0.824. Since Ψ1(z) and
Ψ2(z) are strictly decreasing, we have Υ(α1) ≥ Ψ1(θ1) + Ψ2(θ2) − 1 > 0 for all
α1 ∈ (0, 1). Thus, we obtain a n−5/2-law, if α1 ≥ αc, and a n−3-law, if α1 < αc.

Case E: We set Γ = Z
3 ∗ Z

4. By Equation (5.1), follows that Ψ1(α1θ̄) = 0 or Ψ2(α2θ̄) = 0,

that is, we have Υ(α1) < 0 for all α1 ∈ (0, 1). This yields a n−3/2-law for all
α1 ∈ (0, 1).

We now give an example (see Case F of Figure 1) where the n−3/2-interval of case A
collapses to a singleton. For this purpose, we have to prove the following:

Lemma 7.2. Consider Γ = Z
5 ∗ Z

6. Then there are probability measures µ1 and µ2, sup-
ported on the natural generators of Z

5 and Z
6 respectively, such that Ψ1(θ1) = Ψ2(θ2) = 1

2 .

Proof. Let i ∈ {1, 2}. We have d1 = 5, d2 = 6 and choose any δ ∈ (0, 1). We define

ν
(i)
δ (x) :=

{
(1 − δ)/2, if x = (±1, 0, . . . , 0) ∈ Z

di

δ
2di−2 , if x = (0, . . . , 0,±1, 0, . . . , 0) ∈ Z

di \ {(±1, 0, . . . , 0)} .

The Green function associated with the random walk on Z
di governed by ν

(i)
δ is symmetric,

that is, its radius of convergence is ri = 1; see [22, Cor. 8.15]. If δ = 1 − 1/di then
Ψ1(θ1) = 0.691 > 1/2 and Ψ2(θ2) = 0.824 > 1/2; see Cartwright [1]. On the other
hand side, if δ is small enough then Ψ1(θ1) < 1/2 and Ψ2(θ2) < 1/2; see proof of [22,
Lemma 17.9]. It remains to show that Ψi(θi) varies continuously in dependence of δ, which

implies that there is some δ
(i)
0 such that Ψi(θi) = 1/2. We now write Gi(z) = Gi(δ|z),

Ui(z) = Ui(δ|z) and Ψi(t) = Ψi(δ|t). Recall that

Ψi(δ|θi) =
1

U ′
i(δ|1) + 1 − Ui(δ|1)

.

Since Ui(δ|1) can be rewritten as a power series in the variable δ, the function δ 7→ Ψi(δ|θi)
is continuous in δ. This finishes the proof. �

We can now present an example, where Case F of Figure 1 holds: we set Γ = Z
5 ∗ Z

6 and
choose the measures µ1 and µ2 such that Ψ1(θ1) = Ψ2(θ2) = 1/2. Obviously, we have then

Υ(αc) = Ψ1(θ1) + Ψ2(θ2) − 1 = 0. That is, we get a n−5/2-law, if α1 > αc, a n−3-law, if

α1 < αc, and a n−3/2-law for α1 = αc.
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As a final remark let us explain that it is not possible that Υ(α1) is strictly increasing or
decreasing with Υ(α1) > 0 for all α1 ∈ (0, 1). Assume that Υ(α1) is strictly increasing.
Then, by Lemma 7.1, θ2 = ∞ must hold, that is, G2(r2) = ∞. The same reasoning as in
Equation (5.1) leads to limz→r2 Ψ2

(
zG(z)

)
= limt→∞ Ψ2(t) = 0. Therefore, we obtain for

α1 small enough

Ψ(θ̄) = Ψ1(θ1)︸ ︷︷ ︸
<1

+ Ψ2

(
(1 − α1)

θ1

α1︸ ︷︷ ︸
α1→0−−−→∞

)

︸ ︷︷ ︸
α1→0−−−→0

−1 < 0.

Analogously, if Υ(α1) is strictly decreasing, then it must have a zero.

8. Higher Asymptotic Orders

The techniques we used for determining the asymptotic behaviour give us not only the
leading term n−λ logκ n, but also the proceeding terms of higher order, according to the
singular terms in the expansion following the leading one. For instance, consider a nearest
neighbour random walk on Z

7 ∗ Z
8 with α1 = θ1/(θ1 + θ2). Then the associated Green

function has the following expansion:

4∑

k=0

gk(r − z)4 + ĝ1(r− z)5/2 + ǧ1(r− z)3 log(r− z)

+ĝ2(r − z)7/2 + ǧ2(r − z)4 log(r − z) + o
(
(r − z)4

)
,

where ĝ1 6= 0. That is,

µ(2n)(e) ∼ r−2n ·
(
C1 n−7/2 + C2 n−4 + C3 n−9/2 + C4 n−5 + o(n−5)

)
,

where C1 6= 0.
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