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Abstract

Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types.

We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the

lower growth rate still equals the branching number, upper and lower growth rates do not longer coincide

in general. Furthermore, the behaviour of random walks on directed covers of infinite graphs is more

subtle. We provide a classification in terms of recurrence and transience and point out that the critical

random walk may be recurrent or transient. Our proof is based on the observation that recurrence of

the random walk is equivalent to the almost sure extinction of an appropriate branching process. Two

examples in random environment are provided: homesick random walk on infinite percolation clusters

and random walk in random environment on directed covers. Furthermore, we calculate, under reason-

able assumptions, the rate of escape with respect to suitable length functions and prove the existence

of the asymptotic entropy providing an explicit formula which is also a new result for directed covers of

finite graphs. In particular, the asymptotic entropy of random walks on directed covers of finite graphs

is positive if and only if the random walk is transient.

Keywords: trees, random walk, recurrence, transience, upper Collatz-Wielandt number, branch-

ing process, rate of escape, asymptotic entropy
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1 Introduction

Suppose we are given a connected, directed graph G with vertex set V , edge set E, and root

i0. We construct a labelled tree T from G. We start with the root that is labelled with i0.
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Recursively, if x is a vertex in the tree with label i ∈ V , then x has d(i, j) successors with label

j if and only if there are d(i, j) edges from i to j in G. The tree T is called the directed cover of

G. This model generalizes previously investigated ones, namely random walks on directed covers

of finite graphs. These trees are also known as periodic trees, compare with Lyons [17], or trees

with finitely many cone types, compare with Nagnibeda and Woess [20].

If G is finite the directed cover has the property that the growth rate exists and equals

the branching number of T , compare with Lyons [18]. Lyons [17] investigated the behaviour

of homesick random walks on those trees. Takacs [23] computed a formula for the rate of

escape of homesick random walks. Nagnibeda and Woess [20] studied more general random

walks on these trees and gave a criterion for transience, null-recurrence, and positive recurrence.

This criterion depends on the largest eigenvalue of a positive matrix arising from the transition

probabilities. They also computed, among other things, a formula for the rate of escape of

random walks on directed covers of finite graphs. It is worth mentioning that the model of

random strings discussed in Gairat et al. [12] offers a different point of view of this model.

Most of the arguments in the finite case are based on the existence of the Perron-Frobenius

eigenvalue of appropriate non-negative matrices. In the infinite setting, the matrices become

non-negative operators and the existence of a largest eigenvalue can no longer be guaranteed. If

there exists a largest eigenvalue with positive left and right eigenvectors the study is analogous

to the finite case, but in general the behaviour becomes more subtle. In particular, the lower and

upper growth rates of the cover, that are defined by lim infn→∞ |Tn|1/n and lim supn→∞ |Tn|1/n,

where Tn is the number of vertices in T at height n, are no longer equal, compare with Example

3.1. However, the lower growth rate and branching number coincide and equal the upper Collatz-

Wielandt number of the adjacency matrix of G, see Theorem 3.1.

The first main result, Theorem 3.3, is the classification of random walks on directed covers

according to their transience and recurrence behaviour. This result is given in terms of a bounded

operator M that describes the relation between forward and backward probabilities of the random

walk. We show that if the upper Collatz-Wielandt number, λ+(M), of this operator is smaller

than 1 the process is recurrent and if it is greater than 1 it is transient. In the critical case,

λ+(M) = 1, the random walk may be recurrent or transient, compare with Subsection 3.3

and Example 3.2. This is in contrast with the finite setting, where the critical random walk

is recurrent; e.g. see Nagnibeda and Woess [20]. The idea of our proof is based on the

observation that recurrence of the random walk is equivalent to a.s. global extinction of an

appropriate infinite-type Galton-Watson process, compare with Theorem 3.2. Therefore, our

approach gives an alternative proof, that uses standard results for multi-type Galton-Watson

processes, for random walks on directed covers of finite graphs. In Subsection 3.3 we study

several examples where a complete classification is given.

Another result is that the rate of escape w.r.t. different appropriate length functions exists

under reasonable assumptions. For this purpose, we assume the spectral radius to be strictly

smaller than 1 and positive recurrence of a new Markov chain on G, which describes the end of

the tree to which the random walk on T converges. As in Nagnibeda and Woess [20], the
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existence of the rate of escape can not be shown by straight-forward arguments using Kingman’s

subadditive ergodic theorem. Thus, we use modified exit times from [20] to prove existence of

the rate of escape with respect to different length functions, see Theorem 3.8. This enables

us to prove another main result of the paper, namely the existence of the asymptotic entropy

h = limn→∞ E
[

− 1
n log πn(Xn)

]

under reasonable assumptions, where (Xn)n∈N0 is a random walk

on a directed cover and πn is its distribution at time n. This result, whose proof envolves

generating functions techniques, is also new for the case when G is finite. While it is well-known

that entropy (introduced by Avez [1]) exists for random walks on groups existence for random

walks on other structures is not known a priori. For more details about entropy of random

walks on groups see Kaimanovich and Vershik [16] and Derriennic [8]. In particular, we

show that the asymptotic entropy equals the rate of escape with respect to a distance function in

terms of Green functions. This also implies that the asymptotic entropy equals the rate of escape

with respect to the Green metric (introduced by Blachère and Brofferio [5]), which is given by

dG(x, y) = − log F (x, y), where F (x, y) is the probability of ever hitting y when starting at x.

The technique of our proof was motivated by Benjamini and Peres [2], where it is shown

that for random walks on finitely generated groups the entropy equals the rate of escape w.r.t.

the Green metric. Blachère, Haïssinsky and Mathieu [6] generalized this result to random

walks on countable groups. We also want to mention the work of Björklund [4], who gave an

interpretation of the Green metric in terms of Hilbert metrics. Our result also includes an explicit

formula for the entropy and shows that the entropy can be computed along almost every sample

path. Furthermore, we get convergence in L1 of − 1
n log πn(Xn) to h, see Theorem 3.11.

The paper is organized as follows. In Section 2 we give the basic notations and definitions

concerning graphs and trees. The main results, Theorem 3.3, Theorem 3.8, and Theorems 3.9,

3.11, together with examples and discussions are presented in Section 3. All proofs are given in

Section 4.

2 Preliminaries

Most of the time we follow the notation of [18], where the reader can find the basic definitions and

results concerning graphs and random walks on trees. For general information on non-negative

matrices we refer to [22] and on Banach lattices and positive operators to [21].

2.1 Notations and Definitions

Let G = (V,E) be a directed graph with countable vertex set V , edge set E and root o. For

ease of presentation, we also identify a graph with its vertex set, i.e., x ∈ G means x ∈ V . The

adjacency matrix A =
(

a(i, j)
)

i,j∈G
of G is defined by a(i, j) = 1 if there is an edge from i to j

and 0 otherwise. A graph is called locally finite if the row and column sums of A are finite. A

graph is (strongly) connected if there is a directed path from every vertex to any other vertex, and

it has bounded geometry if the vertex degrees are uniformly bounded. A tree T is an undirected

graph in which every two vertices are connected by exactly one shortest path. A rooted tree is
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a tree with a distinguished vertex, the root o. This endows the tree with a natural orientation:

towards or away from the root. Furthermore, denote by |x| the natural distance from a vertex x

of T to o, i.e., the length of the shortest path (we call such a shortest path also a geodesic) from

o to x. Let Tn be the set of vertices at distance n from the root o. Every vertex x ∈ Tn has a

unique geodesic 〈o = x0, x1, . . . , xn = x〉 coming from the origin o. The vertex xn−1 is called the

ancestor x− of x and x is called the direct descendent or successor of x−. In general, a vertex y

is a descendent of x if x lies on the unique geodesic from o to y. A ray ξ = 〈o = x0, x1, . . .〉 is an

infinite path from o to infinity that doesn’t backtrack, i.e., xi 6= xj for all i 6= j. We call the set

of all rays of T the (end) boundary of T , denoted by ∂T . There is a natural metric on ∂T : if

two rays ξ and η have exactly n edges in common their distance is defined as d(ξ, η) := e−n. A

flow θ is a non-negative function on the vertices of T such that θ(x) =
∑

y∈T ,y−=x θ(y). A flow

θ is called a unit flow if θ(o) = 1. The lower and upper growth rates of a tree T are defined as

gr(T ) := lim inf
n→∞

|Tn|1/n and gr(T ) := lim sup
n→∞

|Tn|1/n,

where |Tn| is the cardinality of the set Tn. If these numbers are equal we speak of the growth rate

gr(T ) = limn→∞ |Tn|1/n of T . Another method to measure the growth of a tree is the branching

number br(T ). We recall two possible definitions. The first uses the concept of flows while the

second uses the Hausdorff dimension dim ∂T of the boundary ∂T of the tree T :

br(T ) := sup
{

λ > 0
∣

∣

∣ ∃ flow θ ∀x ∈ T : 0 ≤ θ(x) ≤ λ−|x|
}

:= exp dim ∂T .

Let us remark that there is the following general connection between the lower growth rate and

the branching number

br(T ) ≤ gr(T ). (1)

2.2 Non-negative Infinite Matrices

Let M :=
(

m(x, y)
)

x,y∈G
be an infinite matrix with non-negative entries. For n ∈ N, let Mn =

(

m(n)(x, y)
)

x,y∈G
be the n-th matrix power of M and set M0 := I, the identity matrix over N.

A non-negative matrix M is called irreducible if for all x, y ∈ G there exists some k ∈ N such

that m(k)(x, y) > 0. We will assume throughout the paper that there exist constants c, C > 0

such that

0 < c <
∑

y∈G

m(x, y) < C < ∞ for all x ∈ G. (2)

Due to the upper bound the matrix M can be interpreted as a bounded linear operator on

ℓp, p ∈ [1,∞]. For each f ∈ ℓp, let Mf(x) =
∑

y∈G m(x, y)f(y). The spectrum of M is

σ(M, ℓp) :=
{

λ ∈ C | λI − T is not a bijection of ℓp

}

. It is compact and non-void. Denote by

rp(M) := sup
{

|λ|
∣

∣λ ∈ σ(M, ℓp)
}

= lim
n→∞

n

√

‖Mn‖p
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the ℓp-spectral radius of M . Observe that in general the spectral radius is not an eigenvalue, and

hence no direct generalization of the Perron-Frobenius eigenvalue from the finite dimensional

case exists. A priori it is not clear if some ℓp-spectral radius may serve as an analogon for the

Perron-Frobenius eigenvalue in the finite dimensional setting. Indeed, the following characteristic

turns out to be appropriate:

λ+(M) := sup
{

λ > 0
∣

∣ ∃ 0 < f ∈ ℓ∞ : Mf ≥ λf
}

.

This number is also known as the upper Collatz-Wielandt number, compare with [11]. The

number λ+(M) is well-defined, since under the general assumption (2) we have

c ≤ inf
x∈G

∑

y∈G

m(x, y) ≤ λ+(M) ≤ sup
x∈G

∑

y∈G

m(x, y) ≤ C.

The lower bound for λ+(M) is obtained by investigating M1, where 1 is the vector with all

entries equal to 1. The upper bound is obvious, since with f ∈ ℓ∞ such that ‖f‖∞ = 1 we obtain

Mf(x) ≤∑y∈G m(x, y). Furthermore, it is easy to see that the upper Collatz-Wielandt number

is less than or equal to the ℓ∞-spectral radius of M , that is,

λ+(M) ≤ r∞(M).

If M is homogeneous in the sense of quasi-transitiveness, we have that λ+(M) = r∞(M), compare

with Example 3.3.2. We also refer to [24] where several other relations between the ℓp-spectral

radii and λ+(M) for symmetric matrices are discussed.

Remark 2.1. The sup in the definition of λ+(M) may or may not be attained. Consider the

adjacency matrix AZ of the graph G = Z. By the latter we mean the graph G with V = Z

and E =
{

(x, y) ∈ Z
2 | |x − y| = 1

}

. Clearly, λ+(AZ) = 2 and the sup is attained with the

vector 1. On the other hand, consider G = N with its adjacency matrix AN. We still have that

λ+(AN) = 2. This can be seen using a recurrence argument or observing that r2(AN) = 2 and

r2(AN) ≤ r∞(AN) ≤ 2. Assume that λ+(AN) is attained using the function f . Since f(1) ≥ 2f(0)

and f(n + 1) ≥ 2f(n) − f(n − 1) for all n ≥ 1 we see that f is unbounded and hence obtain a

contradiction.

Remark 2.2. Another characteristic that might serve as a generalization of the Perron-Frobenius

eigenvalue to the infinite setting is ρ(M) := lim supn→∞

(

m(n)(x, y)
)1/n

. The latter is inde-

pendent of the specific choice of x, y and equals the ℓ2-spectral radius if M is symmetric, e.g.

compare with [25, Chapter II, Section 10]. It can be seen analogously to von Below [24, Corollary

4.6] that ρ(M) ≤ λ+(M). Furthermore, ρ(M) can be given in terms of convergence parameters

of Green functions, rate functions of large deviation principles, and super-harmonic functions.

Moreover, ρ(M) depends on local properties, since

ρ(M) = sup
F⊂G,|F |<∞

ρ(MF ), (3)

where MF =
(

mF (x, y)
)

x,y∈F
is the matrix induced by F , i.e., mF (x, y) = m(x, y) for x, y ∈ F

and 0 otherwise. This fact indicates that ρ(M) is not the good characteristic for recurrence and

transience, since these properties describe a global behaviour.
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Remark 2.3. Let A be the adjacency matrix of a graph G, which is symmetric, that is, there

is an edge from i ∈ G to j ∈ G if and only if there is an edge from j to i. While in the finite

case we always have r2(A) = r∞(A), in general we only have r2(A) ≤ r∞(A) for infinite A. Let

G = Td be the regular tree with degree d ≥ 3. Clearly, we have r∞ = d and it is very well-known

that r2(A) = 2
√

d − 1. It is worth noting that if r2(A) < r∞(A) we can not approximate r∞(A)

using Perron-Frobenius eigenvalues of finite subgraphs, compare with Equation (3).

3 Results

3.1 Trees as Directed Covers of Infinite Graphs of Bounded Geometry

Suppose we are given a connected and directed graph G = (V,E) of bounded geometry without

multiple edges. In some cases, e.g. Remark 3.3, we can drop the assumption of bounded geometry.

Let i0 ∈ V be a distinguished vertex of G. The directed cover T of G (rooted in i0) is defined

recursively as a rooted tree T , whose vertices are labelled by the vertex set V . The root o of T
has label i0; recursively, if x ∈ T is labelled with i, then x has one direct descendent with label

j if and only if there is an edge from i to j in G. And vice versa we define the label function

τ : T → V to be the function that associates to each vertex in T its label in V . In order to

distinguish between the two graphs G and V we use in general the variables i, j for vertices in

G (and labels in T ) and x, y for the vertices of T . We refer to [17] and [20] for more details and

references for finite graphs G. In the finite case these trees are known as periodic trees ([17],

[23]) or trees with finitely many cone types ([20]).

We remark that we may assume w.l.o.g. that the graph has no multiple edges. Indeed,

suppose that G has multiple edges. Then one can replace G by a new graph G′, which arises

from G by introducing new vertices and edges and deleting those multiple edges. That is, if

there are m > 2 edges from i to j in G, then we add to G the new vertices j1, . . . , jm−1 and add

an edge from i to each of these new vertices. Each of these new vertices is again connected with

every vertex which has an edge coming from j. Repeating this operation gives a new graph G′,

which has now no multiple edges.

Note that there is a one-to-one correspondence between all finite paths 〈i0, i1, i2, . . . in〉 in G

starting at i0 and all vertices in T . Each vertex xn ∈ T at height n corresponds to a unique

geodesic 〈o, x1, x2, . . . , xn〉 coming from the origin. This geodesic is uniquely determined by its

labels, i.e., the path 〈i0, τ(x1), τ(x2), . . . , τ(xn)〉 in G.

The cone T x := {y ∈ T | y is a descendent of x} is the subtree rooted at x and spanned by

all vertices y such that x lies on the geodesic from o to y. We say that T x has cone type τ(x).

Observe that if x, y ∈ T with τ(x) = τ(y) then the trees T x and T y are isomorphic as rooted

trees.

For general trees we have br(T ) ≤ gr(T ). While for directed covers of finite graphs br(T ) =

gr(T ) the growth rate does not exist in general, compare with Example 3.1. Nevertheless we

have the following result for directed covers of infinite graphs.
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Theorem 3.1. Let A be the adjacency matrix of G and T be the directed cover of G. Then:

1. λ+(A) = br(T ) = gr(T ).

2. gr(T ) ≤ r∞(A).

Example 3.1. We give an example where the growth rate does not exist. The desired graph G

will be constructed inductively. To this end, let (kn)n∈N be the sequence defined by k1 := 2 and

kn+1 := 3
∑n

j=1 kj . For n odd, let Gn be the circle with kn vertices {1, 2, . . . , kn} and directed

edges (i, i + 1) for 1 ≤ i < kn and (kn, 1). We call 1 the starting point and kn the end point

of the circle. For n even, Gn is constructed as follows. Let T kn−1
2 be a rooted binary tree of

height kn − 1 with directed edges all leading away from the root. The leaves at level kn − 1 are

enumerated by {1, 2, . . . , 2kn−1}. Now we add direct paths of length kn+1 from leaf i to leaf i+1

for 1 ≤ i < 2kn−1 and one directed path from leaf 2kn−1 to on of length kn+1. Here, on is an

additional vertex with a directed edge from on to the root of T kn−1
2 . Observe that all graphs Gn

are connected. The graph G is now defined inductively. We start with G1. We add a copy of

G2 in gluing (vertices are identified) the end point of G1 with o2 of G2. At each leave of G2 we

glue a copy of G3 and continue inductively. Observe that each vertex has outdegree at most 2

and the vertices (except the starting and end point) in copies of the circle Gn (n odd) have only

outdegree 1 as well as the vertices on the directed paths leading away from the leaves of Gn (n

even). Let βn =
∑n

i=1 ki. Therefore, for n even we find that

|Tβn
| ≥ 1

βn
4 2

3βn
4 .

Due to the construction of G every path emanating from the origin of length βn for n odd has

at most βn/2 vertices of degree 2. This yields for n odd

|Tβn
| ≤ 2

βn
2 .

Eventually,

gr(T ) ≤ 2
1
2 < 2

3
4 ≤ gr(T ). (4)

3.2 Recurrence and Transience of Random Walks on Directed Covers

We consider the model of nearest neighbour random walks on T according to [20]. Suppose

we are given transition probabilities pG(i, j) on G, where (i, j) ∈ E. We hereby assume that

pG(i, j) > 0 if and only if there is an edge from i to j in G. Furthermore, suppose we are given

backward probabilities p(−i) ∈ (0, 1) for each i ∈ G. For ease of presentation and technical

reasons, we add to T a loop at the origin o. Then the random walk on the tree T is defined

through the following transition probabilities p(x, y), where x, y ∈ T :

p(o, y) :=

{

(

1 − p(−i0)
)

pG

(

i0, τ(y)
)

, if y 6= o,

p(−i0), if y = o,
(5)
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and for x 6= o with τ(x) = i,

p(x, y) :=

{

(

1 − p(−i)
)

pG

(

i, τ(y)
)

, if x = y−,

p(−i), if y = x−.
(6)

We will also write p(i, j) :=
(

1 − p(−i)
)

pG(i, j) and p(−i) := p(x, x−), where τ(x) = i, for the

transition probabilities in T . The random walk on T starting at o is denoted by the sequence of

random variables (Xn)n∈N0 . We are going to characterize recurrence and transience in terms of

λ+(M), where

M =
(

m(i, j)
)

i,j∈G
with m(i, j) :=

p(i, j)

p(−i)
. (7)

Observe that our notation differs from the one in [20] where the finite analogue of the matrix

M is denoted by A. In [20] it is proved that for finite G the random walk on T is positive

recurrent if λ(M) < 1, null-recurrent if λ(M) = 1, and transient if λ(M) > 1; here λ(M) is

the Perron-Frobenius eigenvalue of M . This classification was also obtained in [12] for the more

general model of random strings. The matrix used in [12] is different from the one in [20] but

leads to the same results.

As an additional assumption we demand that there is some ε ∈ (0, 1) such that

ε < p(−i) < 1 − ε for all i ∈ G. (8)

This assumption is necessary to exclude degenerate examples and it assures assumption (2) on

the infinite matrix M .

Due to the tree structure the random walk is reversible with reversible measure m defined

recursively by

m(o) := 1 and m(x) := m(x−)
p(x−, x)

p(x, x−)
if x 6= o. (9)

Hence, the random walk can be considered as an electric network, see [9] or [18] for general

information on electric networks. Recall that transience of a subnetwork implies transience of

the larger network, compare with Chapter 2 in [18]. Let

ρ(M) := lim sup
n→∞

(

m(n)(x, y)
)1/n

be the spectral radius of M . If ρ(M) > 1 then there exists a finite set F such that λ(MF ) > 1

and hence we conclude from the results of [20] that the walk restricted to the cover of F is

transient. Therefore, we have that ρ(M) > 1 implies transience of the random walk. The reverse

is not true in general, compare with Theorem 3.3 and Remark 2.2.

Since the methods used in [12] and [20] cannot directly be generalized to the infinite setting

we present a new approach for proving recurrence and transience. This provides an alternative

proof in the finite case. The idea is to couple an infinite-type generalized Galton-Watson process

(in continuous time) to the random walk (in discrete time) such that the Galton-Watson process

dies out if and only if the random walk on T visits the edge (o, o). To this end observe that M is
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a non-negative (infinite) matrix. Thus, M can be interpreted as the first moment matrix of an

infinite-type Galton-Watson process. That means that m(i, j) is the mean number of particles of

type j that one particle of type i produces in its lifetime. Let us define a process Zt with types

indexed by G with first moment matrix M . The process is described through the number Zt(i)

of particles of type i at time t and evolves according the following rules: for each i ∈ G

Zt(i) → Zt(i) − 1 at rate Zt(i)p(−i),

Zt(i) → Zt(i) + 1 at rate
∑

j

Zt(j)p(j, i).

In words, each particle of type i dies at rate p(−i) and gives birth to new particles of type j

at rate p(i, j). Let Zt =
(

Zt(i)
)

i∈G
describe the whole population of the process. We consider the

probability of (global) extinction q := P[∃t : Zt = 0] and make the following crucial observation:

Theorem 3.2. The extinction probability q of the process Zt equals the probability that the

random walk on T visits the edge (o, o).

Now, we use a result on infinite-type Galton-Watson processes of [3] in order to obtain the

classification result:

Theorem 3.3. The random walk (Xn)n∈N0 on T is recurrent if λ+(M) < 1 and it is transient

if λ+(M) > 1. In the critical case, λ+(M) = 1, it may be transient or recurrent.

Example 3.2. We consider Example 3 of [3] that was given in terms of infinite-type Galton-

Watson processes. Let G := N0 with edges of the form (i, i+ 1) and (i, i− 1) for i ≥ 1, including

the edge (0, 1). Let p(−0) := 1/3, p(0, 1) := 2/3 and

p(−i) :=

(

1 +

(

1 +
1

i

)2

+

(

1

3

)i
)−1

,

p(i, i + 1) := p(−i)

(

1 +
1

i

)2

and p(i, i − 1) := p(−i)

(

1

3

)i

for i ≥ 1

define the random walk on T . Hence the values of M are m(0, 1) = 2 and

m(i, i + 1) =

(

1 +
1

i

)2

and m(i, i − 1) =

(

1

3

)i

for i ≥ 1

and 0 otherwise. Observe now that the function g : N0 → R defined by g(0) := 1 and g(i) :=

i/(i + 1) for i ≥ 1 is a solution for the inequality Mg ≥ g. Furthermore, one can easily show

by induction that Mg ≥ λg with λ > 1 implies that either g ≡ 0 or g(i) → ∞ for i → ∞.

Eventually, λ+(M) = 1. In order to show that the random walk on T is transient we use

a coupling argument. We compare the original process with the Markov chain on the positive

integers with transition probabilities p̃(0, 1) := 1, and p̃(i, i+1) := p(i, i+1), p̃(i, i) := p(i, i−1),

and p̃(i, i − 1) := p(−i) for i ≥ 1. Hence, using a coupling argument, the random walk on the
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directed cover is transient if the Markov chain (X̃n)n∈N0 on N0 with transition probabilities p̃(·, ·)
is transient. To see the latter, observe that the mean drift is

µ1(i) := E
[

X̃n+1 − X̃n

∣

∣X̃n = i
]

= p(−i)

(

2

i
+

1

i2

)

and

µ2(i) := E
[

(X̃n+1 − X̃n)2
∣

∣X̃n = i
]

≤ 1.

Hence, for i sufficiently large we obtain

µ1(i) ≥
2

3i
≥ 2µ2(i)

3i

and conclude from Theorem 3.6.1 in [10] that the random walk is transient.

Example 3.3. For any given graph G, a straightforward example for recurrence in the critical

case λ+(M) = 1 is given by p(−i) := 1/2 for every i ∈ G. The random walk on T can then be

naturally projected on N0, that is, Xn will be projected on |Xn|. In this case, the Markov chain

(|Xn|)n∈N0 is null recurrent, and thus, (Xn)n∈N0 is also null-recurrent.

3.3 Examples

3.3.1 Homesick Random Walks

A special class of random walks on trees are homesick random walks, compare with [18] and [23].

In this model the edge leading back towards the root is λ times as likely to be taken as each

other edge, that is, p(x, x−) = λ/(λ + deg(x) − 1) and p(x−, x) = 1/(λ + deg(x−) − 1), where

deg(x) is the number of edges adjacent to x. We denote the dependence of the random walk

on the parameter λ by RWλ. In [17] it is shown that the RWλ is recurrent if λ > br(T ) and

transient if λ < br(T ). This result holds for any tree T , not necessarily directed cover.

Given an underlying simple random walk on a graph G the homesick random walk is the

random walk on the directed cover with p(−i) = λ/(λ+outdeg(i)), where outdeg(i) =
∑

j a(i, j)

is the number of outgoing edges from i ∈ G. It is easy to see that λ+(M) = λ+(A)/λ, where A

is the adjacency matrix of G and M is defined as in Equation (7). As a consequence of Theorem

3.3 we obtain the following:

Corollary 3.4. Let A be the adjacency matrix and T the directed cover of G. Then the homesick

random walk RWλ on T is recurrent if λ > λ+(A) and transient if λ < λ+(A).

While λ = λ+(A) implies recurrence if G is finite (compare with Theorem 3.5 in [18]), the

behaviour for infinite graphs G is not known in general.

3.3.2 Directed Covers of Quasi-Transitive Graphs

Suppose we are given a locally finite graph G with bounded geometry. Denote by AUT(G) the

group of all automorphisms γ of the vertex set of G which leave the adjacency relation invariant,

10



that is, there is an edge from γ(i) to γ(j) if and only if there is an edge from i ∈ G to j ∈ G.

Assume now that G is quasi-transitive, that is, AUT(G) acts with finitely many orbits on the

vertex set of G. We write Orb := {o1, . . . , or} for the set of orbits. We construct a new finite

graph G′ with vertex set Orb in the following natural way: there are d(i, j) ∈ N0 edges from oi to

oj if and only if there are d(i, j) edges in G from some k ∈ oi to some l ∈ oj. Now we can apply

the well-known results from the finite setting, since G′ and G create the same (unlabelled) cover

T . Thus, br(T ), which becomes the largest eigenvalue of the adjacency matrix of G′, equals

λ+(A). Furthermore, it is easy to see that for quasi-transitive graphs we have λ+(A) = r∞(A).

Now, suppose we are given a random walk on G governed by the transition matrix PG. The set

AUT(G,PG) is the group of all automorphisms γ of the vertex set of G, which leave PG invariant,

that is, pG

(

γ(i), γ(j)
)

= pG(i, j). Then (G,PG) is called quasi-transitive if AUT(G,PG) acts with

finitely many orbits on the vertex set of G. Assume now that (G,PG) is quasi-transitive and

that the backward probabilities p(−i) are constant on the orbits of AUT(G,PG). Denote by

Orb := {o1, . . . , or} the orbits of AUT(G,PG). We define a random walk on Orb by setting

p̃(oi, oj) :=
∑

l∈oj
pG(k, l), where k ∈ oi is arbitrary. Then λ+(M) is the Perron-Frobenius of the

matrix
(

p̃(oi, oj)/p(−oi)
)

1≤i,j≤r
. This follows from the results of [20]. In particular, the random

walk is null-recurrent if λ+(M) = 1.

3.3.3 Directed Covers of Percolation Clusters

We consider supercritical Bernoulli(p) percolation on Z
d, i.e., for fixed p ∈ [0, 1], each edge is kept

with probability p and removed otherwise, independently of the other edges. It is well-known that

there exists a critical value pc such that for p < pc there is almost surely no infinite connected

component and for p > pc there is almost surely exactly one infinite connected component.

In the latter case we denote by Cω the infinite connected component for the realization or

environment ω. We refer to §6 in [18] for more information on percolation models. Let Aω be the

adjacency matrix and Tω be the directed cover of the infinite cluster Cω with respect to some

i0 ∈ Cω. We get the following classification:

Theorem 3.5. The homesick random walk RWλ on almost every directed cover Tω is recurrent

if λ ≥ 1/2d and transient if λ < 1/2d.

3.3.4 Random Walk on Directed Covers in Random Environment

We consider the nearest neighbour random walk in random environment on V = Z and edge set

E =
{

(x, y) | |x − y| = 1
}

. We choose i.i.d. random variables ω+
z (z ∈ Z) with values in (0, 1)

and call η the distribution of the environment with one-dimensional marginal distribution θ.

For a given realization ω of this random environment, we consider the Markov chain on Z with

transition kernel Pω defined as

pZ,ω(z, z + 1) := ω+
z and pZ,ω(z, z − 1) := ω−

z := 1 − ω+
z for all z ∈ Z.

11



We refer to [26] for details on this model. In addition, we introduce an environment that defines

the backwards probabilities. So let νz (z ∈ Z) be i.i.d. random variables with values in (ε, 1 − ε)

for some ε ∈ (0, 1). We call η̃ the distribution of this environment and denote by θ̃ its one-

dimensional marginal distribution. Every given realization ν = (νz)z∈Z determines the backwards

probabilities by pν(−z) := νz. Let Θ be the corresponding product measure with one-dimensional

marginal θ×θ̃. Every given realization (ω, ν) defines a random walk on a directed cover in random

environment (RWDCRE) with corresponding matrix Mω,ν . The classification in recurrence and

transience will be stated in terms of the top Lyapunov exponent of sequences of random matrices.

For k ∈ {1, 2, 3, . . .}, we write

Ak :=





νkω
+
k −ω−

k

ω+
k

1 0



 and Ãk :=





νkω
−
k −ω+

k

ω−
k

1 0



 . (10)

Denote by γ1 the top Lyapunov exponent associated with the sequence (Ak)k∈N, i.e.,

γ1 = lim
n→∞

1

n
E
[

ln ‖An · · ·A1‖
]

,

where ‖·‖ is any matrix norm. Analogously, let γ̃1 be the top Lyapunov exponent of the sequence

(Ãk)k∈N. For sake of better readability, we set µ−
i = ω−

i /νi and µ+
i = ω+

i /νi. Combining Theo-

rem 3.2 with Theorem 2.6 and Theorem 2.9 in [13] yields the following classification. (Observe

that µ0
i of [13] equals 0 in our special case.)

Theorem 3.6. We have the following classification:

1. If there exists no λ > 0 such that µ−
0 λ−1 + µ+

0 λ ≤ 1 Θ-almost surely, then the RWDCRE is

transient Θ-almost surely.

2. If there exists λ > 1 such that µ−
0 λ−1 + µ+

0 λ ≤ 1 Θ-almost surely, then the RWDCRE is

transient Θ-almost surely if and only if

γ1 < E ln

(

µ−
0

µ+
0

)

.

3. If there exists λ < 1 such that µ−
0 λ−1 + µ+

0 λ ≤ 1 Θ-almost surely, then the RWDCRE is

transient Θ-almost surely if and only if

γ̃1 < E ln

(

µ+
0

µ−
0

)

.

Remark 3.1. Observe that Theorem 3.6 gives a complete classification since µ−
0 +µ+

0 = 1/ν0 > 1.

3.4 Ergodicity

In order to prove (non-)ergodicity we investigate whether the reversible measure in Equation (9)

is (in)finite. This method leads to the following generalization of the finite case.
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Proposition 3.7. The random walk on T is non-ergodic if λ+(M) > 1 and it is ergodic if

r∞(M) < 1. If λ+(M) = 1 and the supremum in the definition of λ+(M) is attained the process

is non-ergodic as well.

Since in the infinite case the random walk is more transient in the critical case we conjecture

the random walk to be non-ergodic for λ+(M) ≥ 1.

3.5 Rate of Escape

In this section we generalize the results of [20] to covers of infinite graphs and more general length

functions. In order to state the main result we need the following definitions and notations.

Suppose we are given a bounded function w : G×G → R representing a weight for each edge in

G. We define recursively a length function l on T by l(o) := 0 and l(x) := l(x−)+w
(

τ(x−), τ(x)
)

otherwise. If w(·, ·) = 1, then l(x) is just the natural graph distance on T (that is, the number

of edges that connect o with x) denoted by |x|. Observe that w may take negative values; in

this case one can think of w describing height differences between neighbour vertices. If there is

some constant ℓ ∈ R such that

ℓ = lim
n→∞

l(Xn)

n
almost surely,

then ℓ is called the rate of escape or drift of (Xn)n∈N0 w.r.t. the length function l. We suppose

for the rest of this section that (Xn)n∈N0 is transient. Let i ∈ G, x, y ∈ T with τ(x) = i and

z ∈ C. We introduce the following generating functions:

F (−i|z) :=
∑

n≥0

P[Xn = x−,∀m < n : Xm 6= x− | X0 = x] zn,

G(x, y|z) :=
∑

n≥0

P[Xn = y | X0 = x] zn,

Gi(z) :=
∑

n≥0

P[Xn = x,∀m < n : Xm 6= x− | X0 = x] zn.

We also write F (−i) := F (−i|1). Note that the definitions of F (−i|z) and Gi(z) are independent

of the specific choice of x ∈ T with τ(x) = i. Moreover, we have the following equations:

F (−i|z) = p(−i) z +
∑

j∈G

p(i, j) z F (−j|z)F (−i|z), (11)

Gi(z) =
1

1 −∑j∈G p(i, j) z F (−j|z)
.

Furthermore, we have F (−i|z) = Gi(z) p(−i) z. Recall that the spectral radius of (Xn)n∈N0 is

the inverse of the radius of convergence R of G(o, o|z).

Define for k ∈ N0 the exit times

ek := min
{

m ∈ N0

∣

∣ ∀m′ ≥ m : |Xm′ | ≥ k
}

(12)
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and write Wk := Xek
. Observe that

(

τ(Wk)
)

k∈N0
is a Markov chain with transition matrix

Q =
(

q(i, j)
)

i,j∈G
defined by

q(i, j) :=
1 − F (−j)

1 − F (−i)
p(i, j)Gi(1). (13)

This can be easily verified analogously to [20] or [14]. Now, we can state the result about the

rate of escape.

Theorem 3.8. Suppose that Q is positive recurrent with invariant probability measure ν. Let

Λ :=
∑

i∈G

ν(i)
F ′(−i|1)
F (−i)

.

Then the following hold::

1. If Λ < ∞ we have for each bounded weight function w

lim
n→∞

l(Xn)

n
=

(

∑

i,j∈G

w(i, j)ν(i)q(i, j)

)

·
(

∑

i∈G

ν(i)
F ′(−i|1)
F (−i)

)−1

almost surely. (14)

In this case the rate of escape w.r.t. the natural distance exists and is positive, i.e.,

lim
n→∞

|Xn|
n

> 0 almost surely.

2. If the spectral radius of (Xn)n∈N0 is strictly smaller than 1, then Λ < ∞.

3. If Λ = ∞ then lim infn→∞
l(Xn)

n = 0.

Remark 3.2. The formula for the rate of escape (14) is of rather formal nature, since it is given

in terms of the generating functions F (−i|z). These generating functions are solution of the

infinite system of algebraic equations (11).

Remark 3.3. Theorem 3.8.1 and 3.8.3 hold for locally infinite graphs, too.

The assumption of positive recurrence of Q in Theorem 3.8 is essential. In the following we

give an example, Example 3.4, where Q governs a transient random walk such that the rate of

escape is random. An example, Example 3.6, where Q is positive recurrent is given in Section 3.6.

Example 3.4. Consider G = Z with its usual neighbourhood relation and transition probabilities

given by

pG(i, i + 1) =

{

p, if i ≥ 1

1 − q, if i ≤ −1
, pG(i, i − 1) =

{

1 − p, if i ≥ 1

q, if i ≤ −1
,

and pG(0, 1) = pG(0,−1) = 1/2, where p, q ∈ (1/2; 1), p 6= q. We set i0 := 0. Choose now c1, c2

with

0 < c1 < c2 < min

{

1 − 1

2p
, 1 − 1

2q

}

.

14



Consider the directed cover T of G, where p(−i) := c1 if i ≥ 0, and p(−i) := c2 if i < 0. By

definition of c1 and c2, the random walk on T visits only finitely many vertices of each cone type,

since

p(i, i + 1) = 1 − p(i, i − 1) − p(−i) = 1 −
(

(1 − c1)(1 − p) + c1

)

>
1

2
, if i ≥ 0,

p(i, i − 1) = 1 − p(i, i + 1) − p(−i) = 1 −
(

(1 − c2)(1 − q) + c2

)

>
1

2
, if i ≤ −1.

Thus, τ(Xk) tends either to +∞ or −∞. Considering the speed w.r.t. the natural graph metric

in the tree, in the first case the random walk has speed

E
[

|Xn+1| − |Xn|
∣

∣ τ(Xn) = i > 0
]

= (1 − c1) p + (1 − c1)(1 − p) − c1 = 1 − 2c1,

while in the case τ(Xk) → −∞ the rate of escape is different, namely

E
[

|Xn+1| − |Xn|
∣

∣ τ(Xn) = i < 0
]

= (1 − c2) q + (1 − c2)(1 − q) − c2 = 1 − 2c2.

3.6 Asymptotic Entropy and Hausdorff Dimension

A characteristic of transient random walks that is connected to the rate of escape is the asymp-

totic entropy of the process. Let πn be the distribution of Xn, that is, for x ∈ T the number

πn(x) is the probability of visiting x at time n when starting at o. If there is some non-negative

number h such that

h = lim
n→∞

− 1

n
E
[

log πn(Xn)
]

,

then h is called the asymptotic entropy, introduced in [1]. For the rest of this section we assume

that the transition probabilities are bounded away from 0, that is, p(x, y) ≥ ε0 for some ε0 > 0

and all x, y ∈ T . Under the assumption that (Xn)n∈N0 is transient we obtain the following

theorem that links the asymptotic entropy with the rate of escape.

Theorem 3.9. Assume that Q is positive recurrent with invariant probability measure ν and that

the spectral radius of (Xn)n∈N0 is strictly smaller than 1. Let ℓ0 be the rate of escape w.r.t. the

natural graph metric. Then the entropy rate h exists and satisfies

h = ℓ0

∑

i,j∈G

−ν(i)q(i, j) log q(i, j) > 0.

Remark 3.4. The assumptions of Theorem 3.9 are satisfied for transient random walks on directed

covers of finite graphs, see [20, Sections 4 & 5]. Thus, for the case of covers of finite graphs we get

the completely new result that the entropy exists and is strictly positive whenever the random

walk is transient.

Remark 3.5. The matrix Q as defined by (13) is the transition matrix of the Markov chain
(

τ(Xek
)
)

k∈N
, where ek is a random time as defined in (12). The sum on the right hand side
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of Theorem 3.9 equals the entropy rate (for positive recurrent Markov chains) of
(

τ(Xek
)
)

k∈N

defined by

hQ := lim
n→∞

− 1

n
log π

(

τ(Xe1), . . . , τ(Xen)
)

,

where π(τ1, . . . , τn) is the joint distribution of
(

τ(Xe1), . . . , τ(Xen)
)

. That is, h = ℓ hQ. For

more details we refer to [7, Chapter 4].

Remark 3.6. The proof of Theorem 3.9 shows also that the entropy rate equals the rate of escape

with respect to the Green metric. Recall that the distance of a vertex x ∈ T to o w.r.t. the

Green metric is given by − log P
[

∃n ∈ N0 : Xn = x | X0 = o
]

.

A consequence of the proof of the last theorem is the following corollary that states that one

can compute the entropy also individually:

Corollary 3.10. Under the assumptions of Theorem 3.9,

h = lim inf
n→∞

− log πn(Xn)

n
almost surely.

Moreover, we get the following result:

Theorem 3.11. Under the assumptions of Theorem 3.9,

− 1

n
log πn(Xn)

n→∞−−−→ h in L1,

that is,
∫ ∣

∣− 1
n log πn(Xn) − h

∣

∣dP → 0 for n → ∞.

Another consequence of Theorem 3.9 follows with [15], which gives an estimation (in some

special cases also an explicit formula) for the Hausdorff dimension of the harmonic measure on

the boundary of T . Since almost every random path on T converges to a point on the boundary

∂T one can investigate the image ̺ of the measure P under the mapping onto ∂T . Since we

have a nearest neighbour random walk this image is well-defined and it is called the harmonic

measure of P on T . For ξ1, ξ2 ∈ ∂T let ξ1 ∧ ξ2 be the confluent of the geodesics from o to ξ1 and

from o to ξ2. The Hausdorff dimension of ̺ is defined to be

dim ̺ := ess supξ∈∂T lim inf
k→∞

−
log ̺

(

Bk
ξ

)

k
,

where Bk
ξ :=

{

ζ ∈ ∂T
∣

∣ |ξ ∧ ζ| ≥ k
}

for k ∈ N, ξ ∈ ∂T . The following corollary follows directly

with [15, Theorem 1.4.1 & 1.5.3]:

Corollary 3.12. Under the assumptions of Theorem 3.9, we have:

1. The Hausdorff dimension of ̺ satisfies

∑

i,j∈G

−ν(i)q(i, j) log q(i, j) ≤ dim ̺ ≤ − log ε0

ℓ0
,

where ℓ0 is the rate of escape w.r.t. the natural graph metric.
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2. If the entropy h also satisfies h = limn→∞− 1
n log πn(Xn) almost surely, then the Hausdorff

dimension of ̺ is given by

dim ̺ = −
∑

i,j∈G

ν(i)q(i, j) log q(i, j) =
h

ℓ0
.

Remark 3.7. All the results in this section hold also for locally infinite graphs with finite outde-

grees.

We conclude this section with two examples. While the first, Example 3.5, demonstrates how

the asymptotic entropy may be calculated explicitly in the finite case, the second one, Example

3.6, gives a sufficient condition for positive recurrence of Q in the infinite setting.

Example 3.5. Consider a graph G with vertex set V = {i0, i1, i2}, edge set

E =
{

(i0, i1), (i0, i2), (i1, i0), (i2, i1)
}

and its directed cover T . We define the following transition probabilities on T :

p(i0, i1) := 1
3 , p(i0, i2) := 1

3 , p(i1, i0) := 1
2 , p(i2, i1) := 3

4 ,

p(−i0) := 1
3 , p(−i1) := 1

2 , p(−i2) := 1
4 .

We can solve the system of polynomial equations (11) with the help of Mathematica and

hence obtain a numerical approximation for the asymptotic entropy h ≈ 0.060499.

Example 3.6. Suppose we are given a graph G endowed with transition probabilities such that the

random walk on G is positive recurrent with invariant probability measure νG. Choose the back-

ward probabilities p(−i) in such a way that the following holds for every i, j ∈ G: if there are paths

from i0 to i and from i0 to j in G of the same length, then p(−i) = p(−j). This condition implies

that F
(

−τ(y1)
)

= F
(

−τ(y2)
)

if y−1 = y−2 . Thus, the quotient ci :=
(

1 − F (−j)
)

/
(

1 − F (−i)
)

depends only on i if p(i, j) > 0. This yields that

1 =
∑

j∈G

q(i, j) =
∑

j∈G

cip(i, j)Gi(1) = ciGi(1)
(

1 − p(−i)
)

,

or equivalently, Gi(1) = c−1
i

(

1 − p(−i)
)−1

. But this implies that νG is also the invariant proba-

bility measure of Q.

If we have p(−i) ≤ 1/2 − ε for some ε > 0, then G(o, o|z) has radius of convergence strictly

greater than 1, providing that the rate of escape w.r.t | · | exists and is strictly positive. Further-

more, the asymptotic entropy exists and is strictly positive.

4 Proofs

4.1 Proof of Theorem 3.1

The second statement of the theorem is just the following observation. Since A has non-negative

entries we find

‖An‖∞ = sup
x∈ℓ∞,‖x‖∞=1

‖Anx‖∞ = ‖An1‖∞,
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and hence |Tn| ≤ ‖An‖∞.

The proof of the first statement is divided into two steps:

Step 1: λ+(A) = br(T ). This follows from the results on homesick random walks: Corollary

3.4 together with the fact that a homesick random walk on a tree T is recurrent if λ > br(T )

and transient if λ < br(T ), compare with Theorem 3.5 in [18]. For this purpose, observe that

λ+(M) = λ+(A)/λ.

Step 2: br(T ) = gr(T ). It is convenient to introduce the notation

dim sup∂T := lim
n→∞

max
v∈T

1

n
log |T v

n |

and to follow the argumentation of §14.4 and §14.5 in [18]. We need the following lemma:

Lemma 4.1. Let T be a tree of bounded geometry. Then there exists a sequence of subtrees

T j = T vj such that

dim∂T j ≥
(

1 − 1

j

)

dim sup∂T . (15)

Proof. We use the following fact, which is (14.19) in [18].

Fact: For j ≥ 1 there is some unit flow θj on some subtree T j = T vj such that

1

|x| − |vj |
log

1

θj(x)
≥
(

1 − 1

j

)

dim sup∂T for all x ∈ T j .

This implies that for every ray ξ = 〈ξ1, ξ2, . . .〉 ∈ ∂T j we have

lim inf
n→∞

1

n
log

1

θj(ξn)
≥
(

1 − 1

j

)

dim sup∂T .

Recall the definition of the Hölder exponent of a unit flow (or of its corresponding Borel proba-

bility measure on the boundary respectively) Hö(θ)(ξ) := lim infn→∞− 1
n log θ(ξn)−1. With this

notation we have that Hö(θj) ≥ (1 − 1/j) dim sup∂T . Those edges where the flow θj is positive

define a subtree U j of T j . Theorem 14.15 of [18] implies that Hö(θj) ≤ dim θj ≤ dim∂U j , and

hence Hö(θj) ≤ dim ∂T j.

Due to Lemma 4.1 there exists a sequence of subtrees T j = T vj such that

dim ∂T j ≥
(

1 − 1

j

)

dim sup∂T .

Furthermore, observe that dim∂T j ≤ dim ∂T and log gr(T ) ≥ dim∂T ; compare with Equation

(1). Hence,

dim ∂T ≥
(

1 − 1

j

)

dim sup∂T

≥
(

1 − 1

j

)

lim inf
n→∞

1

n
log |Tn|

=

(

1 − 1

j

)

log gr(T )

≥
(

1 − 1

j

)

dim∂T ,
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Now, letting j → ∞ yields br(T ) = grT .

�

4.2 Proof of Theorem 3.2 and 3.3

Proof of Theorem 3.2. The idea is to couple a delayed branching process Z∗
t (in continuous time)

to the random walk Xn on T (in discrete time) and to show that the branching process dies out if

and only if the random walk visits the loop (o, o). To this end, observe first that the rates of the

branching process Zt sum up to 1, i.e., p(−i)+
∑

j∈G p(i, j) = 1, and hence can be interpreted as

probabilities. The process Z∗
t starts with one particle of type i0. With rate p(−i0) this particle

dies. Observe that the random walk started in o returns to o at the first step with probability

p(−i0). The particle produces an offspring of type j with rate p(i0, j). Observe that the random

walk on T is in a vertex x ∈ T with |x| = 1 and label j at time 1 with probability p(i0, j).

The delayed (or sleepy) process is defined inductively. As long as one particle of type i has one

offspring alive (awake or sleeping) it is sleeping, i.e., it does neither die nor produce offspring. If

all its offspring have died it wakes up and either dies with rate p(−i) or produces an offspring of

type j with rate p(i, j). If it does the latter it falls asleep again and if it dies its direct ancestor

wakes up. One possibility to define Z∗
t formally is through the following rates on the state space

of non-backtracking paths (including the empty path 〈∅〉) of T . Let x0 = o and

〈x0〉 → 〈x0, x1〉 at rate p(τ(x0), τ(x1)), if x0 = x−
1 ,

〈x0〉 → 〈∅〉 at rate p(−τ(x0)),

〈∅〉 → 〈∅〉 at rate 1,

and for n ≥ 1

〈x0, . . . , xn〉 → 〈x0, . . . , xn−1〉 at rate p(−τ(xn)),

〈x0, . . . , xn〉 → 〈x0, . . . , xn, xn+1〉 at rate p(τ(xn), τ(xn+1)), if xn = x−
n+1.

Observe at this point that the path 〈x0, . . . , xn〉 corresponds to respectively one sleeping particle

of type τ(xi) (i < n) and one particle awake of type τ(xn) in the genealogical order. The empty

path 〈∅〉 corresponds to the extinction of the process. Let Sn be the jump chain of Z∗
t which is

the sequence of values taken by the continuous-time Markov chain Z∗
t . Define the projection φ

from the space of paths to the set of vertices of T as φ(〈x0, . . . , xn〉) = xn and φ(〈∅〉) = ∅. Using

standard arguments we can couple the two processes Sn and Xn such that Sn = ∅ if and only

if Xn−1 = Xn = o. We conclude that Z∗
t = 〈∅〉 for some t > 0 if and only if the random walk

Xn visits the loop (o, o). It remains to prove that Z∗
t = 〈∅〉 is equivalent to the extinction of

the original process Zt. Recall the interpretation of Z∗
t as a delayed version of Zt. Hence, both

processes can be seen as functions on the same probability space and we can conclude with a

standard coupling argument.

�
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Proof of Theorem 3.3. Theorem 3.3 is a consequence of Theorem 3.2 and the following result

of [3]. Consider a branching random walk (BRW) as a continuous-time process where particles

live on a countable set X. Each particle lives on a site and, independently of the others and the

past history of the process, has a exponential lifetime with mean 1. A particle living at a site

x gives birth to a new particle in y with exponential rate k(x, y). Here K =
(

k(x, y)
)

x,y∈X
is a

matrix with non-negative entries. In [3] it is shown that there exists a critical value λw depending

on K such that the process dies out a.s. if λw < 1 and survives with positive probability if λw > 1.

Furthermore, there is the following characterization of this critical value, compare with Equation

(4.11) in [3]:

λw = λ+(K). (16)

The statement follows now with the observation that we can scale our process by dividing each

rate (p(−i), p(i, j)) at a vertex i by p(−i) without influencing the survival of the process.

�

4.3 Prof of Theorem 3.5

We consider the infinite Galton-Watson process Zt with first moments Mω := λAω, compare

with the paragraph before Theorem 3.2. Due to Theorem 3.2 it suffices to prove the following:

Claim: The process Zt survives (globally) if and only if λ > 1/2d.

First, observe that ρ(Aω) = lim supn→∞

(

A
(n)
ω (i, j)

)1/n
= 2d. This can be seen with Equation

(3) and the fact that C(ω) contains balls of arbitrary large radius as subgraphs. There are two

types of survival for infinite-type Galton Watson processes. We say that the process survives

globally if Zt > 0 for all t and survives locally if Zt(i) > 0 for infinitely many t and all (⇔ some)

i, compare with [13]. Now, Corollary 2.6 in [19] implies that Zt survives locally if and only if

λ > 1/ρ(Aω) = 1/(2d). Finally, it remains to show that the process survives locally if and only if

it survives globally. But for λ ≤ 1/(2d), observe that
∑

y m
(n)
ω (x, y) ≤ 1 for all x and n. Hence,

the expected number of particles in generation n is bounded by 1. Since Zt either converges to

0 or ∞ we obtain that the process does not survive globally if λ ≤ 1/(2d).

�

4.4 Proof of Proposition 3.7

The non-ergodicity part in the supercritical case λ+(M) > 1 is obvious due to Theorem 3.3.

Nevertheless, we give an alternative proof that uses directly the definition of λ+(M). This method

works also for the critical case λ+(M) = 1 when the supremum is attained. Furthermore, the

proof might be useful in order to understand the behaviour between λ+(M) and r∞(M).

Proof of Proposition 3.7. The first steps are quite standard and use the tree structure of our

process, compare also with [20]. The random walk is positive recurrent if and only if the reversible

(and stationary) measure m defined in (9) is finite, that is, if m(T ) =
∑

x∈T m(x) < ∞. For

each i ∈ G, we construct a tree Ti: it consists of the cone T x of T with x ∈ T and τ(x) = i which
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is connected by a (nondirected) single edge from x to an additional vertex oi. On Ti we consider

the random walk with the same transition probabilities as in T but where the probability from

oi to x is 1 and from x to oi is p(−i). This random walk is obviously reversible with reversible

measure mi, which is defined analogously to Equation (9). We can express m(T ) in terms of the

measures mi of the subtrees Ti:

m(T ) =
∑

x∈T

p(o, x)mτ(x)(Tτ(x)). (17)

We approximate Ti with finite subtrees T n
i of height n. The sequence

(

mi(T n
i )
)

n∈N0
is increasing

with limit mi(Ti). We obtain the inductive formula: mi(T 0
i ) = 1 and for each i ∈ N

mi(T n
i ) − 1 =

1

p(−i)

(

1 +
∑

j∈G

p(i, j)
(

mj(T n−1
j ) − 1

)

)

.

We can write the last equation in vector form using mn :=
(

mi(T n
i )−1

)

i∈G
and p =

(

1/p(−i)
)

i∈G

as mn = p + Mmn−1. Thus,

mn = p + Mp + M2p + · · · + Mn−1p

and the sequence (mn)n∈N0 will converge componentwise to a finite limit if and only if
∑

n≥0 Mnp

converges in each component. If λ+(M) > 1 there is some λ∗ > 1 and 0 < f∗ ∈ ℓ∞ such that

M f∗ ≥ λ∗f∗. Hence, there is some c > 0 such that p = cf∗ + (p − cf∗) and (p − cf∗) > 0. At

this point we need p(−i) < 1 − ε of Assumption (8). Finally,

∑

n≥0

Mnp ≥ c
∑

n≥0

(λ∗)nf∗ = ∞

and non-ergodicity follows. If λ+(M) = 1 and the supremum in the definition of λ+(M) is

attained, non-ergodicity follows analogously.

In order to show that r∞ := r∞(M) < 1 implies ergodicity we have to show that the sum
∑

n≥0 Mnp < ∞ is finite in every component if r∞ < 1. Recall that r∞ = limn→∞
n
√

‖An‖∞.

This provides that for every small ε > 0 there is some Nε ∈ N such that 1 > r∞ + ε ≥ n
√

‖An‖∞
for all n ≥ Nε. Due to Assumption (8) we get for every i ∈ G and for ε small enough and n ≥ Nε





∑

n≥0

Mnp



 (i) ≤

∥

∥

∥

∥

∥

∥

∑

n≥0

Mnp

∥

∥

∥

∥

∥

∥

∞

≤
∑

n≥0

‖Mnp‖∞ ≤
Nε−1
∑

n=0

‖Mnp‖∞ + ‖p‖∞
∑

n≥Nε

(

r∞ + ε
)n

,

which is finite and independent of i.

�

21



4.5 Proof of Theorem 3.8

Proof of Theorem 3.8.1. Since the proof is an adaption of the arguments in [20] we just give a

sketch. If Λ < ∞ then

ek

k

k→∞−−−→ Λ =
∑

i∈G

ν(i)
F ′(−i|1)
F (−i)

almost surely.

With [20] we get ℓ0 := limn→∞ |Xn|/n = limk→∞ k/ek = Λ−1 if Λ < ∞.

By assumption, the process (Wk)k∈N0 is positive recurrent with invariant probability measure ν.

Thus, the process
(

τ(Wk−1), τ(Wk)
)

k∈N
has the invariant probability measure ν1(i, j) = ν(i)q(i, j).

An application of the ergodic theorem for positive recurrent Markov chains yields

1

n

n
∑

k=1

w
(

τ(Wk−1), τ(Wk)
)

=
l(Wn)

n

n→∞−−−→
∫

w(i, j) dν1(i, j) =
∑

i,j∈G

w(i, j)ν1(i, j). (18)

Observe that the sum on the right hand side is finite, since w(·, ·) is bounded. In the case Λ < ∞
we obtain, analogously to [20], with k(n) := max{k ∈ N0|ek ≤ n}

lim
n→∞

l(Xn)

n
= lim

n→∞

l(Wk(n))

k(n)

k(n)

ek(n)

ek(n)

n
= ℓ0 lim

k→∞

l(Wk)

k
almost surely,

since ek(n)/n converges to 1. The claim follows now with (18).

Proof of Theorem 3.8.2. Denote by R the radius of convergence of G(o, o|z). We have R > 1,

since the spectral radius of (Xn)n∈N0 is strictly smaller than 1 by assumption. Define for x ∈ T
and z ∈ C:

U(x, x|z) :=
∑

n≥1

P
[

Xn = x,∀m ∈ {1, . . . , n − 1} : Xm 6= x
∣

∣X0 = x
]

zn

=
∑

j∈G

p(i, j) z F (−j|z) + p(−i) z F (x−, x|z).

The proof splits up into the two following lemmas.

Lemma 4.2. For r ∈ [1, R) and all x ∈ T we have G(x, x|r) ≤ 1/(1 − r/R).

Proof. For every x ∈ T with τ(x) = i, we have

∞ > G(x, x|r) =
∑

n≥0

U(x, x|r)n =
1

1 − U(x, x|r) for all r ∈ [1, R), (19)

that is, U(x, x|r) < 1 for all r ∈ [1, R). Since U(x, x|0) = 0 and U(x, x|z) is continuous, increasing

and convex we have

U(x, x|r) ≤ r

R
,

that is, G(x, x|r) ≤ 1/(1 − r/R).
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Lemma 4.3. There is a constant CF such that F ′(−i|1) ≤ CF for all i ∈ G.

Proof. With Equation (19) we get

U ′(x, x|z) =
G′(x, x|z)

G2(x, x|z)
≤ G′(x, x|z).

Choose any ε ∈ (0, R − 1) and define

h(z) :=
1

ε

R(z − 1)

R − 1 − ε
.

We have h(1) = 0 and h(1 + ε) = 1/(1 − (1 + ε)/R). Since G(x, x|z) is increasing and convex in

[0, R) we get with Lemma 4.2 the inequality G′(x, x|1) ≤ h′(1), and thus U ′(x, x|1) ≤ h′(1).

Let be i ∈ G and choose any x ∈ T such that p(τ(x), i) > 0. Then:

U(x, x|z) = p
(

−τ(x)
)

zF (x−, x|z) +
∑

j∈G

p
(

τ(x), j
)

zF (−j|z).

Differentiating yields

U ′(x, x|z) = p
(

−τ(x)
)(

F (x−, x|z) + zF ′(x−, x|z)
)

+
∑

j∈G

p
(

τ(x), j
)(

F (−j|z) + zF ′(−j|z)
)

.

Thus,

U ′(x, x|1) ≥ p
(

τ(x), i
)

F ′(−i|1),
or equivalently,

F ′(−i|1) ≤ ε−1
0 h′(1).

Finally, F (−i|1) ≥ ε0 together with the last lemma imply that Λ < ∞ if R > 1.

Proof of Theorem 3.8.3. We now turn to the case Λ = ∞. Define for N ∈ N the function

gN : G × N → N by gN (i, n) := n ∧ N . Then obviously

1

k

k
∑

l=1

gN

(

τ(Wl), el − el−1

)

≤ ek − e0

k
=

ek

k
. (20)

This inequality holds for every N ∈ N. The process
(

τ(Wl), el − el−1

)

l∈N
is also a positive

recurrent Markov chain; compare with [20]. For each N there is a constant CN such that the left

side of (20) converges to CN for almost every realisation of (Xn)n∈N0 . The sequence (CN )N∈N

is strictly increasing and diverges to ∞, since Λ = ∞ and gN (i, n) → g(i, n) for N → ∞ with

g(i, n) := n. Thus, ek/k tends to infinity. This yields lim infn→∞ |Xn|/n = 0 almost surely since

0 ≤ lim inf
n→∞

|Xn|
n

≤ lim inf
n→∞

|Xek(n)
|

ek(n)
≤ lim inf

n→∞

|Xek(n)
|

k(n)

k(n)

ek(n)
= 0 almost surely.
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4.6 Proof of Theorems 3.9 and Corollary 3.10

Proof of Theorem 3.9. Define for x, y ∈ T and z ∈ C

L(x, y|z) :=
∑

n≥0

P
[

Xn = y,∀m ∈ {1, . . . , n} : Xm 6= x | X0 = x
]

zn.

If y is a successor of x in T , then

L(x, y|z) = p(x, y)zGτ(y)(z). (21)

We have the following important equations, which follow by conditioning on the last visit of o,

the first visit of x respectively:

G(o, x|z) = G(o, o|z)L(o, x|z) = F (o, x|z)G(x, x|z). (22)

If y ∈ T lies on the unique geodesic from x ∈ T to w ∈ T , then

L(x,w|z) = L(x, y|z)L(y,w|z).

Observe that the generating functions L(·, ·|z), Gi(z), G(·, ·|z) have radii of convergence of at

least R > 1, since the spectral radius of the random walk is strictly smaller than 1. Define for

x ∈ T

l(x) := − log L(o, x|1) = −
|x|
∑

i=1

log L(xi−1, xi|1),

where xi is the unique element on the geodesic from o to x at distance i from o. This length

function arises from the weight function on the edges of G defined by w(i, j) := − log L(x, y|1),
where x ∈ T with τ(x) = i and y is a successor of x of type j. This weight function is well-defined,

since all subtrees T x1 and T x2 with τ(x1) = τ(x2) are isomorphic as rooted trees. We claim

that the rate of escape w.r.t. the length function l exists and equals the asymptotic entropy.

The technique of the proof which we will give was motivated by [2], where it is shown that the

asymptotic entropy of random walks on finitely generated groups equals the rate of escape w.r.t.

the Green metric.

The proof of Theorem 3.9 is split up into the following lemmas.

Lemma 4.4. h := limn→∞ l(Xn)/n exists and is non-negative.

Proof. Observe that L(x, y) ≥ p(x, y) ≥ ε0 whenever p(x, y) > 0. If y ∈ T is a successor of

x ∈ T , then we obtain with Equation (21) and Lemma 4.2

L(x, y|1) = p(x, y)Gτ(y)(1) ≤ p(x, y)/(1 − 1/R) ≤ (1 − ε0)/(1 − 1/R).

Hence, the functions L(x−, x|1) are uniformly bounded in x ∈ T \ {o}. Theorem 3.8 provides

that the rate of escape h with respect to l exists. By (22), we get also

h = lim
n→∞

− 1

n
log F (o,Xn|1) −

1

n
log G(Xn,Xn|1) +

1

n
log G(o, o|1).
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With Lemma 4.2 we have 1 ≤ G(x, x|1) ≤ 1/(1 − 1/R) for every x ∈ T . Since F (o,Xn|1) ≤ 1

we get

h = lim
n→∞

− 1

n
log F (o,Xn|1) ≥ 0.

By (22), we can rewrite h as

h = lim
n→∞

− 1

n
log L(o,Xn|1) = lim

n→∞
− 1

n
log

G(o,Xn|1)
G(o, o|1) = lim

n→∞
− 1

n
log G(o,Xn|1). (23)

Since

G(o,Xn|1) =
∑

m≥0

p(m)(o,Xn) ≥ p(n)(o,Xn) = πn(Xn),

we have

lim inf
n→∞

− 1

n
log πn(Xn) ≥ h. (24)

The next aim is to prove lim supn→∞− 1
nE
[

log πn(Xn)
]

≤ h. For this purpose, we need the

following lemma:

Lemma 4.5. For every r ∈ (1, R), x ∈ T and m ∈ N we have p(m)(o, x) ≤ G(o, x|r)r−m.

Proof. Denote by Cr the circle with radius r in the complex plane centered at 0. A straightfor-

ward computation shows that
1

2πi

∮

Cr

zm dz

z
= δm,0.

An application of Fubini’s Theorem yields

1

2πi

∮

Cr

G(o, x|z) z−m dz

z
=

1

2πi

∮

Cr

∑

n≥0

p(n)(o, x)zn z−m dz

z

=
1

2πi

∑

n≥0

p(n)(o, x)

∮

Cr

zn−m dz

z
= p(m)(o, x).

Since G(o, x|z) is analytic on Cr, |G(o, x|z)| ≤ G(o, x|r) for all |z| = r. Thus,

p(m)(o, x) ≤ 1

2π
r−m−1G(o, x|r)2πr = G(o, x|r)r−m.
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Let be x ∈ T and let xi be the unique element on the geodesic from o to x at distance i

from o. For r < R, iterated applications of equations (21) and (22) provide

G(o, x|r) = G(o, o|r)
|x|
∏

i=1

L(xi−1, xi|r)

= G(o, o|r)
|x|
∏

i=1

p(xi−1, xi) r Gτ(xi)(r)

≤ G(o, o|r)
(

r/(1 − r/R)
)|x|

.

Thus,

p(m)(o,Xn) ≤ G(o, o|r)
( r

1 − r/R

)n
r−m. (25)

We now need the following technical lemma:

Lemma 4.6. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of positive numbers with An = an+bn.

Assume that limn→∞− 1
n log An = c ∈ [0,∞) and that limn→∞ bn/qn = 0 for all q ∈ (0, 1). Then

limn→∞− 1
n log an = c.

Proof. Clearly, there is some N ∈ N such that bn < an for all n ≥ N . We get for all n ≥ N :

− 1

n
log(an + bn) ≤ − 1

n
log(an) = − 1

n
log
(1

2
an +

1

2
an

)

≤ − 1

n
log
(1

2
an +

1

2
bn

)

≤ − 1

n
log

(

1

2

)

− 1

n
log(an + bn).

Letting n → ∞ yields that − 1
n log(an) tends to c.

In order to apply the last lemma let An :=
∑

m≥0 p(m)(o,Xn), an :=
∑n2−1

m=0 p(m)(o,Xn) and

bn :=
∑

m≥n2 p(m)(o,Xn). Thus, for r ∈ (1, R) we get with (25)

bn ≤
∑

m≥n2

G(o, o|r)
( r

1 − r/R

)n
· r−m = G(o, o|r)

( r

1 − r/R

)n r−n2

1 − 1/r
.

Thus, bn decays faster than any geometric sequence. Lemma 4.6 together with (23) yields

h = lim
n→∞

− 1

n
log

n2−1
∑

m=0

p(m)(o,Xn).

Since G(o,Xn) ≤ 1/(1− 1/R) and G(o,Xn) ≥ F (o,Xn) ≥ εn
0 we get by an application of the
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Dominated Convergence Theorem:

h =

∫

lim
n→∞

− 1

n
log

n2−1
∑

m=0

p(m)(o,Xn) dP

= lim
n→∞

∫

− 1

n
log

n2−1
∑

m=0

p(m)(o,Xn) dP

= lim
n→∞

− 1

n

∑

x∈T

p(n)(o, x) log
n2−1
∑

m=0

p(m)(o, x).

Recall that Shannon’s Inequality gives

∑

x∈T

p(n)(o, x) log µ(x) ≤
∑

x∈T

p(n)(o, x) log p(n)(o, x)

for every finitely supported probability measure µ on T . Setting µ(x) := n−2
∑n2−1

m=0 p(m)(o, x)

we get

h ≥ lim sup
n→∞

(

− 1

n

∑

x∈T

p(n)(o, x) log n2 − 1

n

∑

x∈T

p(n)(o, x) log p(n)(o, x)

)

= lim sup
n→∞

− 1

n
E
[

log πn(Xn)
]

.

Now we can conclude from Fatou’s Lemma and (24) :

h ≤
∫

lim inf
n→∞

− log πn(Xn)

n
dP ≤ lim inf

n→∞

∫ − log πn(Xn)

n
dP

≤ lim sup
n→∞

− 1

n
E
[

log πn(Xn)
]

≤ h. (26)

Thus, limn→∞− 1
nE
[

log πn(Xn)
]

exists and equals h. It remains to show:

Lemma 4.7.

h = ℓ0

∑

i,j∈G

−ν(i) q(i, j) log q(i, j).

Proof. For a moment let be x ∈ T with |x| = n and let xj be the element on the geodesic from
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o to x at distance j from o. Then:

l(x) = − log
n
∏

j=1

L(xj−1, xj |1)

= − log

n
∏

j=1

p
(

τ(xj−1), τ(xj)
)

Gτ(xj−1)(1)
1 − F

(

−τ(xj)
)

1 − F
(

−τ(xj−1)
) +

+ log
1 − F

(

−τ(xn)
)

1 − F (−i0)
+ log

Gi0(1)

Gτ(xn)(1)

= − log

n
∏

j=1

q
(

τ(xj−1), τ(xj)
)

+ log
1 − F

(

−τ(xn)
)

1 − F (−i0)
+ log

Gi0(1)

Gτ(xn)(1)
. (27)

As l(Xn)/n tends to h almost surely, the subsequence
(

l(Xek
)/ek

)

k∈N
converges also to h. Since

1 ≤ Gi(1) ≤ 1/(1 − 1/R) by Lemma 4.2, it follows with x = Xek
in (27) that

1

ek
log

G0(1)

Gτ(Xek
)(1)

k→∞−−−→ 0 almost surely.

By positive recurrence of
(

τ(Xek
)
)

k∈N
, an application of the ergodic theorem yields

−1

k
log

k
∏

j=1

q
(

τ(Xej−1), τ(Xej
)
) n→∞−−−→ h′ := −

∑

i,j∈G

ν(i) q(i, j) log q(i, j) almost surely,

whenever h′ < ∞. In the latter case, since limk→∞ k/ek = ℓ0 (see proof of Theorem 3.8) and

lim infn→∞− 1
ek

(

1 − F (−τ(Xek
))
)

= 0 by ergodicity of
(

τ(Xek
)
)

k∈N
, we have

h = lim
k→∞

l
(

Xek

)

ek
= lim

k→∞

l
(

Xek

)

k

k

ek
= h′ℓ0.

In particular, h > 0 since ℓ0 > 0 by Theorem 3.8.2.

It remains to show that it cannot be that h′ = ∞. For this purpose, assume h′ = ∞. Let

N ∈ N and define hN : G × G → R by hN (i, j) := N ∧
(

− log q(i, j)
)

. Then

−1

k

k
∑

j=1

log hN

(

τ(Xej−1), τ(Xej
)
) k→∞−−−→ h′

N := −
∑

i,j∈G

ν(i) q(i, j) log hN (i, j) almost surely.

Since hN (i, j) ≤ − log q(i, j) and h′ = ∞ by assumption, there is for every M ∈ R and almost

every trajectory of
(

τ(Xek
)
)

k∈N0
an almost surely finite random time Tq ∈ N such that for all

k ≥ Tq

−1

k

k
∑

j=1

log q
(

τ(Xej−1), τ(Xej
)
)

> M.
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On the other hand there is for every M > 0, every small ε > 0 and almost every trajectory an

almost surely finite random time TL such that for all k ≥ TL

− 1

ek

k
∑

j=1

log L
(

Xej−1 ,Xej
|1
)

∈ (h − ε, h + ε) and

− 1

ek

k
∑

j=1

log q
(

τ(Xej−1), τ(Xej
)
)

= − k

ek

1

k

k
∑

j=1

log q
(

τ(Xej−1), τ(Xej
)
)

> ℓ0M − ε.

Furthermore, by positive recurrence of
(

τ(Xek
)
)

k∈N0
there is an almost surely finite random time

T ≥ TL such that

− 1

eT

log
1 − F (−τ(XeT

))

1 − F (−0)
∈ (−ε, ε) and

1

eT

log
G0(1)

Gτ(XeT
)(1)

∈ (−ε, ε).

Choose now M > (h+4ε)/ℓ0. We obtain the desired contradiction when we substitute in equality

(27) the vertex x by XeT
, divide by eT on both sides and see that the left side is in (h− ε, h+ ε)

and the rightmost side is larger than h + ε.

This finishes the proof of Theorem 3.9.

Proof of Corollary 3.10. Recall Inequality (24). Integrating both sides of this inequality yields

together with the inequality chain (26) that

∫

lim inf
n→∞

− log πn(Xn)

n
− hdP = 0,

providing that h = lim infn→∞− 1
n log πn(Xn) almost surely.

4.7 Proof of Theorem 3.11

To prove the theorem we need the following lemma:

Lemma 4.8. Under the assumptions of Theorem 3.9,

− 1

n
log πn(Xn)

P−→ h,

that is, − 1
n log πn(Xn) converges in probability to the asymptotic entropy.

Proof. For every δ1 > 0 there is some index Nδ1 such that for all n ≥ Nδ1

∫

− 1

n
log πn(Xn) dP ∈ (h − δ1, h + δ1).

Furthermore, due to Corollary 3.10 there is for every δ2 > 0 some index Nδ2 such that for all

n ≥ Nδ2

P

[

− 1

n
log πn(Xn) > h − δ1

]

> 1 − δ2. (28)
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Since h = limn→∞

∫

− 1
n log πn(Xn) dP it must be that for every arbitrary but fixed ε > δ1 and

for n large enough

P

[

− 1

n
log πn(Xn) > h − δ1

]

· (h − δ1) + P

[

− 1

n
log πn(Xn) > h + ε

]

· (ε + δ1) ≤ h + δ1,

or equivalently,

P

[

− 1

n
log πn(Xn) > h + ε

]

≤
h + δ1 − P

[

− 1
n log πn(Xn) > h − δ1

]

· (h − δ1)

ε + δ1
.

If we let δ2 → 0, we get

lim sup
n→∞

P

[

− 1

n
log πn(Xn) > h + ε

]

≤ 2δ1

ε + δ1
.

Since we can choose δ1 arbitrarily small we get

P

[

− 1

n
log πn(Xn) > h + ε

]

n→∞−−−→ 0 for all ε > 0.

But this yields convergence in probability of − 1
n log πn(Xn) to h together with (28).

For any small ε > 0 and n ∈ N, we define the events

An,ε :=

[

∣

∣

∣
− 1

n
log πn(Xn) − h

∣

∣

∣
≤ ε

]

and Bn,ε :=

[

∣

∣

∣
− 1

n
log πn(Xn) − h

∣

∣

∣
> ε

]

.

There is some Nε ∈ N such that P[Bn,ε] < ε for all n ≥ Nε. Since 0 ≤ − 1
n log πn(Xn) ≤ log ε0

we can conclude from Lemma 4.8 for n ≥ Nε:
∫

∣

∣

∣
− 1

n
log πn(Xn) − h

∣

∣

∣
dP

=

∫

An,ε

∣

∣

∣
− 1

n
log πn(Xn) − h

∣

∣

∣
dP +

∫

Bn,ε

∣

∣

∣
− 1

n
log πn(Xn) − h

∣

∣

∣
dP

≤ ε + ε log ε0
ε→0−−−→ 0.

Thus, we have proved the theorem.
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