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Abstract. We prove existence of asymptotic entropy of random walks on regular lan-
guages over a finite alphabet and we give formulas for it. Furthermore, we show that the
entropy varies real-analytically in terms of the probability measures of constant support,
which describe the random walk. This setting applies, in particular, to random walks on
virtually free groups.

1. Introduction

Let A be a finite alphabet and let A∗ be the set of all finite words over the alphabet A,
where o denotes the empty word. Consider a transient Markov chain (Xn)n∈N0 on A∗ with
X0 = o such that the transition probabilities depend only on the last K ∈ N letters of
the current word, in between two steps the word length differs only by at most K letters
and in each step only the last K ∈ N letters of the current word may be modified. Denote
by πn the distribution of Xn. We are interested whether the sequence 1

nE[− log πn(Xn)]
converges, and if so to describe the limit. If it exists, it is called the asymptotic entropy,
which was introduced by Avez [1]. The aim of this paper is to prove existence of the
asymptotic entropy, to describe it as the rate of escape w.r.t. the Greenian distance and
to prove its real-analytic behaviour when varying the transition probabilities of constant
support.

We outline some background on this topic. It is well-known by Kingman’s subadditive
ergodic theorem (see Kingman [11]) that the entropy exists for random walks on groups if
E[− log π1(X1)] < ∞. In contrast to this fact existence of the entropy on general structures
is not known a priori. In our setting we are not able to apply the subadditive ergodic theo-
rem since we neither have subadditivity nor a global composition law of words if we restrict
the random walk to be on a proper subset of A∗. This forces us to use other techniques like
generating functions techniques. These generating functions are power series with probabil-
ities as coefficients, which describe the characteristic behaviour of the underlying random
walks. The technique of our proof of existence of the entropy was motivated by Benjamini
and Peres [2], where it is shown that for random walks on groups the entropy equals the
rate of escape w.r.t. the Greenian distance; compare also with Blachère, Haïssinsky and
Mathieu [3]. In particular, we will also show that the asymptotic entropy h is the rate of
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escape w.r.t. a distance function in terms of Green functions, which in turn yields that h
is also the rate of escape w.r.t. the Greenian distance. Moreover, we prove convergence in
probability and convergence in L1 of the sequence − 1

n log πn(Xn) to h, and we show also
that h can be computed along almost every sample path as the limes inferior of the afore-
mentioned sequence. The question of almost sure convergence of − 1

n log πn(Xn) to some
constant h, however, remains open. Similar results concerning existence and formulas for
the entropy are proved in Gilch and Müller [8] for random walks on directed covers of
graphs and in Gilch [7] for random walks on free products of graphs. Furthermore, we give
formulas for the entropy which allow numerical computations and also exact calculations
in some special cases.

Kaimanovich and Erschler asked whether drift and entropy of random walks vary con-
tinuously (or even analytically) when varying the probabilities of the random walk with
keeping the support of single step transitions constant. In this article we also show that h
is real-analytic in terms of the parameters describing the random walk on A∗. This fact ap-
plies, in particular, to the case of bounded range random walks on virtually free groups. At
this point let us mention that several papers concerning continuity and analyticity of the
drift and entropy have been published recently: e.g., see Ledrappier [13], [14], Haïssinsky,
Mathieu and Müller [9], Gilch [7]. The recent article of Gilch and Ledrappier [5] collects
several results about analyticity of drift and entropy of random walks on groups.

The reasoning of our proofs follows a similar argumentation as in [8] and [7]: we will
show that the entropy equals the rate of escape w.r.t. some special length function, and we
deduce the proposed properties analogously. The plan of the paper is as follows: in Sections
2 and 3 we define the random walk on the regular language and the associated generating
functions. Sections 4 explains the structure of cones in the present context. In Sections 5
and 6 we prove existence of the asymptotic entropy, while in Section 7 we give explicit
formulas for it. Section 8 shows real-analyticity of the entropy.

2. Notation

Let A be a finite alphabet and denote by o the empty word. A random walk on a regular

language is a Markov chain on a subset L ⊆ A∗ :=
⋃

n≥1A
n ∪ {o} of all finite words over

the alphabet A, whose transition probabilities obey the following rules:

(i) Only the last two letters of the current word may be modified.
(ii) Only one letter may be adjoined or deleted at one instant of time.
(iii) Adjunction and deletion may only be done at the end of the current word.
(iv) Probabilities of modification, adjunction or deletion depend only on the last two

letters of the current word.

Compare with Lalley [12] and Gilch [6]. The assumption that transition probabilities de-
pend only on the last two letters of the current word may be weakened to dependence of
the last K ≥ 2 letters by blocking words of length at most K to new letters (compare
with [12, Section 3.3]. In general, a regular language is a subset of A∗ whose words are
accepted by a finite-state automaton. It is necessary that by each modification of a word of
the regular language in one single step a new word of the regular language is created. The
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results below, however, are so general such that w.l.o.g. – for ease and better readability –
we may assume that the regular language L consists of the whole set A∗. We will use the
notation w ∈ L, w ∈ A∗ respectively, to emphasize at some points that we explicitely mean
a word of the language or just a word over the alphabet. Let us note that random walks on
virtually free groups constitute a special case of our setting, and our results directly apply.

We introduce some notation. For a word w ∈ L and k ∈ N, w[k] denotes the k-th letter
of w, and [w] denotes the last two letters of w. The random walk on L is described by
the sequence of random variables (Xn)n∈N0 . Initially, we have X0 := o. If we want to start
the random walk at w ∈ L instead of o, we write for short Pw[ · ] := P[ · | X0 = w]. For
two words w1, w2 ∈ A∗, we write w1w2 for the concatenated word. We use the following
abbreviations for the transition probabilities: for w ∈ L, a1, a2, b1 ∈ A, b2, c ∈ A ∪ {o},
n ∈ N0, we write

P[Xn+1 = wa2b2c | Xn = wa1b1] = p(a1b1, a2b2c),

P[Xn+1 = b2c | Xn = a1] = p(a1, b2c),

P[Xn+1 = b2 | Xn = o] = p(o, b2).

We assume that Pu[X1 = v] > 0 implies Pv[X1 = u] > 0 for all u, v ∈ L. We call this
property weak symmetry. For w1, w2 ∈ L, the n-step transition probabilities are denoted
by p(n)(w1, w2) := Pw1 [Xn = w2]. The natural word length of any w ∈ L is denoted by |w|.
Malyshev [15] proved that the rate of escape w.r.t. the natural word length exists under
some natural assumptions, that is, there is a non-negative constant ℓ such that

lim
n→∞

|Xn|

n
= ℓ almost surely.

Here, ℓ is called the rate of escape. Furthermore, by [15] follows that ℓ is strictly positive
if and only if (Xn)n∈N0 is transient. In [6] there are explicit formulas for the rate of escape
w.r.t. more general length functions.

Another characteristic number of random walks is the asymptotic entropy. Denote by πn
the distribution of Xn. If there is a non-negative constant h such that the limit

h = lim
n→∞

−
1

n
E log πn(Xn)

exists, then h is called the asymptotic entropy. Since we only have a partial composition
law for concatenation of two words (if L ⊂ A∗) and since we have no subadditivity and
transitivity of the random walk, we can not apply – as in the case of random walks on
groups – Kingman’s subadditive ergodic theorem to show existence of h. It is easy to see
that the entropy equals zero if the random walk is recurrent (see Corollary 7.4). Therefore,
we assume from now on transience of (Xn)n∈N0 .

Moreover, we assume that the random walk on L is suffix-irreducible, that is, for all w ∈ L
with P[Xm = w] > 0 for some m ∈ N and for all ab ∈ A2 there is some n ∈ N such that

P
[
∃w1 ∈ A∗ : Xn = ww1ab,∀k < n : |Xk| ≥ |w|

∣∣∣X0 = w
]
> 0.

This assumption excludes degenerate cases and guarantees existence of ℓ; compare with [6,
End of Section 2.1]. At this point let us mention that limn→∞− 1

n log πn(Xn) is not neces-
sarily deterministic: take two homogeneous trees of different degrees d1, d2 ≥ 3 equipped
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with simple random walk; identify their root with one single root which becomes o; then
the limit depends on the fact in which of the two trees the random walks goes to infinity.

3. Generating Functions

For w1, w2 ∈ L, z ∈ C, the Green function is defined as

G(w1, w2|z) :=
∑

n≥0

p(n)(w1, w2) · z
n,

the last visit generating function as

L(w1, w2|z) :=
∑

n≥0

P
[
Xn = w2,∀m ∈ {1, . . . , n} : Xm 6= w1

∣∣X0 = w1

]
· zn

and the first return generating function as

U(w1, w1|z) :=
∑

n≥1

P
[
Xn = w1,∀m ∈ {1, . . . , n− 1} : Xm 6= w1

∣∣X0 = w1

]
· zn.

By conditioning on the last visit to w1, an important relation between these functions is
given by

G(w1, w2|z) = G(w1, w1|z) · L(w1, w2|z).

Denote by Rw the radius of convergence of G(w,w|z), w ∈ L. If Rw > 1 then

G(w,w|1) ≤
1

1− 1
Rw

; (3.1)

indeed, since G(w,w|z) =
(
1 − U(w,w|z)

)−1
it must be that U(w,w|z) < 1 for all

0 < z < Rw; moreover, U(w,w|0) = 0, U(w,w|z) is continuous, strictly increasing and
strictly convex for 0 < z < Rw, so we must have U(w,w|1) ≤ 1/Rw which yields (3.1).

In the following we introduce further generating functions, which also have been used in
[6]. Define for a, b, c, d, e ∈ A and real z > 0

H(ab, c|z) :=
∑

n≥1

P
[
Xn = c,∀m < n : |Xm| > 1

∣∣X0 = ab
]
· zn

and

L̄(ab, cde|z) :=
∑

n≥1

P
[
Xn = cde,∀m ∈ {1, . . . , n} : |Xm| ≥ 3

∣∣X0 = ab
]
· zn,

Ḡ(ab, cd|z) :=
∑

n≥0

P
[
Xn = cd,∀m ∈ {1, . . . , n} : |Xm| ≥ 2

∣∣X0 = ab
]
· zn.

We write L̄(ab, cde) := L̄(ab, cde|1). These generating functions can be computed in two
steps: first, one solves the following system of equations:

H(ab, c|z) = p(ab, c) · z +
∑

de∈A2

p(ab, de) · z ·H(de, c|z)

+
∑

def∈A3

p(ab, def) · z ·
∑

g∈A

H(ef, g|z) ·H(dg, c|z); (3.2)
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compare with [12] and [6]. The system (3.2) consists of equations of quadratic order, and
therefore the functions H(·, ·|z) are algebraic, if the transition probabilities are algebraic.
We now get the functions Ḡ(ab, cd|z) by solving the following linear system of equations:

G(ab, cd|z) = δab(cd) +
∑

c1d1∈A2

p(ab, c1d1) · z ·G(c1d1, cd|z) +

+
∑

c1d1e1∈A3

p(ab, c1d1e1) · z ·
∑

f∈A

H(d1e1, f |z) ·G(c1f, cd|z).

Finally, we get

L̄(ab, cde|z) =
∑

d1e1∈A2

p(ab, cd1e1) · z · Ḡ(d1e1, ef |z).

We remark that we implicitely took into account the assumption L = A∗; if L ⊂ A∗ one
has to restrict these definitions and systems of equations to the terms which may occur.
Moreover, one can compute the Green functions of the form G(o, abc|z) by solving

G(w1, w2|z) = δw1(w2) +
∑

w3∈L:|w3|≤3

p(w1, w3) · z ·G(w3, w2|z) +

+13(w1) ·
∑

cde∈A3

p(w1[2]w1[3], cde) · z ·
∑

f∈A

H(de, f |z) ·G(w1[1]cf, w2|z),

where w1, w2 ∈ L with |w1|, |w2| ≤ 3 and 13(w1) = 1, if |w1| = 3, and 13(w1) = 0
otherwise.

We also define for ab ∈ A2:

ξ(ab) :=
∑

cde∈A3

p(ab, cde) ·
(
1−

∑

f∈A

H(de, f |1)
)
.

This is the probability of starting at a word wab ∈ L, where w ∈ A∗, such that the first
step goes to a word of length |wab| + 1 with no further future visits of words of length
|wab| or smaller. We define a “length function” on L by

l(x1 . . . xn) := − logL(o, x1 . . . xn) for x1x2 . . . xn ∈ L. (3.3)

For n ≥ 5, the terms L(o, x1 . . . xn) can be rewritten as

∑

b1c1∈A2

L(o, x1b1c1|1)
∑

b2,...,bn−3∈A,
c2,...,cn−3∈A

n−3∏

i=2

L̄(bi−1ci−1, xibici) · L̄(bn−3cn−3, xn−2xn−1xn); (3.4)

each path from o to x1 . . . xn is decomposed to the last times when the sets A3,A4, . . . ,An−1

are visited.

4. Cones

In this section we introduce the structure of cones in our setting. A path in L is a sequence
of words [w0, w1, . . . , wm] in L such that Pwi−1 [X1 = wi] > 0 for all 1 ≤ i ≤ m. For n ∈ N,
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define L≥n := {w ∈ L | |w| ≥ n}. For any w ∈ L with |w| ≥ 2, we define the cone rooted
at w as

C(w) :=
{
w̄ ∈ L≥|w| | ∃ path [w,w1, . . . , wm−1, w̄] with m ∈ N, w1, . . . , wm−1 ∈ L≥|w|

}
.

By the above made weak symmetry assumption, for w1, w2 ∈ L with |w1| = |w2|, we have
C(w1) = C(w2) whenever there is a positive probability path from w1 to w2 in L≥|w1|.

By suffix-irreducibility, for all cd ∈ A2, each cone C(wab), where w ∈ A∗ and ab ∈ A2,
has a subcone C(wxcd) ⊆ C(w) with a suitable choice of x ∈ A∗ \ {o}. We say that two
cones C(w1 . . . wm) and C(y1 . . . yn) are isomorphic if C(wm−1wm) = C(yn−1yn), that is,
two isomorphic cones differ only by different prefixes. In particular, there is a natural 1-to-
1 correspondence of paths inside C(w1 . . . wm) and paths in C(y1 . . . yn) where obviously
each pair of corresponding paths has the same probability. Since the transition probabilities
depend only on the last two letters of the current word, there are only finitely many different
cone types up to isomorphisms. We identify the different cone types by two-lettered words
ab ∈ A2, and write τ(C(w)) = ab for its cone type, where ab are the last two letters of w.
For each isomorphism class of cone types we fix some ab representing its cone type. Let
J ⊆ A2 be the set of different cone types. The boundary ∂C(w) of C(w) is given by all
words w0 ∈ C(w) with |w0| = |w|. An important property is the following one: if C(w1)
and C(w2) are two isomorphic cones with w0ab ∈ ∂C(w1), then there is w̄0 ∈ A∗ such that
w̄0ab ∈ ∂C(w2).

Now we make the non-singular covering assumption that each cone C(wa0b0), w ∈ A∗,
a0b0 ∈ A2, contains two proper disjoint subcones, that is, we assume that there are subcones
of the form C(ww1a1b1), C(ww2a2b2) ( C(wa0b0) with wi ∈ A∗ \ {o}, aibi ∈ A2 and
C(ww1a1b1) ∩ C(ww2a2b2) = ∅. We refer to the remarks at the end of this section if this
property does not hold. The next task is to cover (up to a finite complement) any cone
C(w) by a finite number of pairwise disjoint subcones C1, . . . , Cr(w) such that

r(w)⋃

i=1

τ(Ci) = J and
∣∣∣C \

r(w)⋃

i=1

Ci

∣∣∣ < ∞,

that is, among these subcones every cone type appears. We now show how to construct this
covering. Suppose we are given a cone C(wa0b0) with w ∈ A∗ and a0b0 ∈ A2. Inside this
cone we find subcones of the form C(ww0ab) for each ab ∈ A2 with suitable w0 ∈ A∗ \{o}.
Furthermore, we can choose these subcones in a way such that they are not contained in
each other, that is, C(ww1a1b1) 6⊆ C(ww2a2b2) for all these chosen cones of all different
types: indeed, since we assume existence of a non-singular covering of C(w) by subcones
one can walk from w inside L≥|w| to words ww1a1b1 and ww2a2b2, where w1, w2 ∈ A∗,

aibi ∈ A2 and C(ww1a1b1) ∩ C(ww2a2b2) = ∅. Then we have found a subcone of type
τ(C(a1b1)), and we search for other cone types in the subcone C(ww2a2b2). Obviously, a
subcone in C(ww2a2b2) does not intersect C(ww1a1b1). Iterating this step leads to subcones
in C(w) of all different types which do not intersect each other. After we have found non-
intersecting subcones of all types in C(w) we cover this cone by further subcones, which
are not intersecting the above chosen subcones, such that the difference of C(w) and the
union of subcones is finite. This is, for instance, done by taking all cones rooted at words
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v ∈ C(w), where v is at the same distance (that is, minimal length of a path)to ∂C(w) as
the subcone of maximal distance to w and where v is not contained in any of the above
chosen subcones yet. See Figure 1.

��

1

2

3

1

3
4
1

w

C(w)

4

Figure 1. Covering of cones by subcones: the numbers represent the dif-
ferent cone types; the cones with entire boundary lines belong to the cov-
ering.

Let us remark that, for each cone type, we fix such a covering, such that the covering of
C(w) does not depend on the choice of the specific root w on the boundary of C(w): fix a
covering for C(ab), ab ∈ A2; if w = w0a1b1 ∈ L with τ(C(w)) = ab then we fix the covering
of C(w) = C(w0ab) which is inherits the covering from C(ab). This is well-defined since
the covering of a cone depends only on the relative location of its subcones in its interior.

We can also cover L (up to a finite set) by a finite number of non-self-containing subcones,
where each cone type appears. To this end, we just apply the algorithm explained above

and take cones of the form C(w) with |w| ≥ 2. We denote by C
(0)
1 , . . . , C

(0)
n0 the covering

of L, which contains all types and whose complement is finite.

Now we explain how to proceed if every cone contains no two disjoint subcones. This case
may, in particular, occur if L is a proper subset of A∗. For ab, cd ∈ A2, observe that
cd ∈ C(ab) if and only if ab ∈ C(cd). This implies that C(w) = {v ∈ L | |v| ≥ |w|} and, in
particular, that there is only just one cone type. We can then cover C(w) by the subcone
C(w1) for any w1 ∈ L with |w1| = |w| + 1 and p(w,w1) > 0. One can show that in this
case the random walk converges almost surely to a deterministic infinite word and that the
support of the random walk is a proper subset of A∗. In order to see this, assume that the
random walk tends with some positive probabilities to some infinite words with prefixes
wabc and wdef , where w ∈ A∗, a, b, c, d, e, f ∈ A with a 6= d. Since C(wabc)∩C(wdef) = ∅
it must be that the random walk enters either C(wabc) or C(wdef) on its way to infinity
due to the assumption of singular covering. That is, the letter a is deterministic, and by
induction the infinite limiting word is deterministic
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We call the random walk expanding if each cone contains two disjoint subcones. The results
below depend not on the fact if the random walk is expanding or not. At the end, however,
we will see that the non-expanding case leads to zero entropy.

5. Exit Times

In this section we prove a law of large numbers, which turns out to be the asymptotic
entropy in the later section. For this purpose, we define exit times (compare with [6]), for
which we derive a law of large numbers. Throughout this section, we use the following
notations: w0, w1, w2 ∈ A∗ \ {o} and a, b, c, d, a1, b1, a2, b2, · · · ∈ A.

5.1. Exit Time Process. We define the following exit times. Let e0 be the last time

at which the random walk visits
⋃n0

i=1 ∂C
(0)
i and stays in one of the cones C

(0)
1 , . . . , C

(0)
n0

afterwards forever, that is,

e0 := sup
{
m ∈ N0

∣∣Xm ∈ ∂C
(0)
i ,∀n > m : Xn ∈ C

(0)
i \ ∂C

(0)
i for any i ∈ {1, . . . , n0}

}
.

Inductively, if Xek
= w and C(w) has a covering (determined only by the type of C(w))

consisting of subcones C
(k)
1 , . . . , C

(k)
r(w) as explained in Section 4, then

ek+1 := sup
{
m > ek

∣∣Xm ∈ ∂C
(k)
i ,∀n > m : Xn ∈ C

(k)
i \∂C

(k)
i for any i ∈ {1, . . . , r(w)}

}
.

Observe that Xn, n ≥ ek, has the prefix w0 if Xek
= w0ab. Define the relative increment

between two exit times as follows: set W0 := Xe0 ; for k ≥ 1: if Xek−1
= w0ab and

Xek
= w0w1cd, then Wk := w1cd for k ≥ 1. Since we have only finitely many different

cone types and the subcones of coverings of any cone C are nested at uniformly bounded
distance (w.r.t. minimal path lengths) to ∂C, the random variables Wk can take only
finitely many different values.

For x ∈ L, define

S(x) :=

r(x)⋃

i=1

∂Ci,

where C1, . . . , Cr(x) is a covering of C(x). Furthermore, define for x = x1 . . . xn ∈ L and
y = x1 . . . xn−2x

′
n−1x

′
n . . . x

′
n+d ∈ C(x) with d = d(x, y) := |y| − |x|

L(x, y) :=
∑

n≥0

P
[
Xn = y,∀m ∈ {1, . . . , n} : Xm ∈ C(x) \ ∂C(x)

∣∣∣X0 = x
]

=
∑

y1,...,yd−1:yi∈A
3:

yi[1]=x′

n−2+i

L̄(xn−1xn, y1) · L̄(y1[2]y1[3], y2) · . . . · L̄(yd−1, x
′
n+d−2x

′
n+d−1x

′
n+d).

Obviously, L(x, y) depends on x only by its last two letters.

Proposition 5.1. The process
(
Wk

)
k≥1

is a positiv recurrent Markov chain with transition

probabilities

q(x, y) :=

{
ξ([y])
ξ([x])L(x, y), if y ∈ S(x),

0, otherwise.



ASYMPTOTIC ENTROPY OF RANDOM WALKS ON REGULAR LANGUAGES 9

Proof. Let be w0, . . . , wk+1 ∈ A∗ \ {o} such that wi+1 ∈ S(wi) for all i ∈ {0, . . . , k} and

w0 ∈
⋃n0

j=1 ∂C
(0)
j . We set x0 := w0 and inductively: if xk−1 = yk−1ak−1bk−1 with yk−1 ∈ A∗

and ak−1bk−1 ∈ A2 then set xk := yk−1wk. Then:

P
[
W0 = w0, . . . ,Wk = wk

]
= P

[
Xe0 = x0, . . . ,Xek

= xk
]

= G(o,w0|1) · L(w0, w1)L(w1, w2) · . . . · L(wk−1, wk) · ξ([wk]).

Consider

P
[
Wk+1 = wk+1 | W0 = w0, . . . ,Wk = wk

]

=
P
[
W0 = w0, . . . ,Wk = wk,Wk+1 = wk+1

]

P
[
W0 = w0, . . . ,Wk = wk

]

=
G(o,w0|1) · L(w0, w1)L(w1, w2) · . . . · L(wk−1, wk) · L(wk, wk+1) · ξ([wk+1])

G(o,w0|1) · L(w0, w1)L(w1, w2) · . . . · L(wk−1, wk) · ξ([wk])
= q(x, y).

Since there are only finitely many different values for Wk positive recurrence follows due
to suffix-irreducibility, which implies irreducibility of the process

(
Wk

)
k≥1

. �

The random variables Wk, k ≥ 1, can take values in

W0 :=
{
w ∈ A∗

∣∣P[W2 = w | W1 = w0ab] > 0 for any w0 ∈ A∗, ab ∈ A2
}
.

Observe that the transition probabilities depend on x only by its last two letters.

Lemma 5.2. We have supp(P[W1 = ·]) = W0.

Proof. Let y = a1b1wya2b2 ∈ W0 with wy ∈ A∗ (we omit the special case y = a1a2b2 which
follows analogously). Then there is ā1b̄1 ∈ A2 with L(ā1b̄1, y) > 0 and ξ(a2b2) > 0. By

construction of our coverings there is some w0 ∈ A∗ with w0ā1b̄1 ∈
⋃n0

i=1 ∂C
(0)
i . Choose

m ∈ N such that p(m)(o,w0ā1b̄1) > 0. Then:

P[W1 = y] ≥ p(m)(o,w0ā1b̄1) · L(ā1b̄1, y) · ξ(a2b2) > 0.

�

For sake of better identification of the cones, we now switch to a more suitable repre-
sentation of cones and coverings. We identify the different cone types by numbers I :=
{1, . . . , r} ⊂ N. If C(w) is a cone of type i, then the covering of C(w) has nj subcones
of type j. We denote these subcones by Cji,1 = Cji,1(w), . . . , Cji,nj

= Cji,nj
(w) or identify

them just by ji,1, . . . , ji,nj
, which correspond to the cones of type j with different locations

inside C(w). We will sometimes omit the root w in the notation of the subcones when it
will be clear from the context and only the relative positon of a subcone in some given
cone will be important. If τ(C(Xek−1

)) = i and Xek
∈ ∂Cji,l(Xek−1

), then we set ik := ji,l.

At this point we recall the relation between Wk and Xek
: if Xe0 = w0a0b0 and W1 =

w1a1b1 then Xe1 = w0w1a1b1; in general, if Xek−1
= wak−1bk−1 and Wk = wkakbk then

Xek
= wwkakbk. That is, there is a natural bijection of trajectories of (Wk)k∈N and

(Xek
)k∈N. In particular, the value of Wk determines the value of ik uniquely. For a better

visualization of the values ik := ji,l, see Figure 2. In other words, the random variables
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11,1

21,1

1

1

1

2

2

1

1

m,n

21,1

1,1

2,1

2,2

2,3

2,1

2,2

Figure 2. Numbering of subcones

ik collect the different cones which are entered successively by the random walk (Xn)n∈N0

on its way to infinity, while the Wk’s keep, in addition, the information where the single
subcones are finally entered.

For s, t ∈ I , let n(s, t) denote the number of different cones of type t in the covering of a
cone of type s. Define

W :=

{
(jm,n, x)

∣∣∣∣
j,m ∈ I, τ(C(x[1]x[2]) = m, τ(C(x)) = j,
1 ≤ n ≤ n(m, j), x ∈ ∂Cjm,n(x[1]x[2]) ∩W0

}
.

In other words, (jm,n, x) ∈ W if x = a0b0w0ab ∈ W0 with τ(C(a0b0)) = m and C(x) is the
n-th cone of type j inside C(a0b0). Furthermore, define

Wπ :=
{
(s, tn)

∣∣s, t ∈ I, 1 ≤ n ≤ n(s, t)
}
.

That is, tn corresponds to the n-th cone of type t in a covering of a cone of type s.

The process
(
(ik,Wk)

)
k∈N

with state space W is also a positive recurrent Markov chain

since the values of ik are uniquely determined by the values of Wk and the process (Wk)k∈N
is a Markov chain. Moreover, for (ik,l, wk−1), (jm,n, wk) ∈ W, the transition probabilities
are given by

P
[
(ik,Wk) = (jm,n, wk)

∣∣∣(ik−1,Wk−1) = (ik,l, wk−1)
]
=

{
q(wk−1, wk), if m = i,

0, if m 6= i.

In particular, the transition matrix of
(
(ik,Wk)

)
k∈N

has zero entries. In order to apply the

result of [10, Theorem 1.1] for getting the analytic behaviour of the entropy later we have
to adapt the Markov chain in order to obtain a transition matrix without zeroes.

The process (ik)k∈N is, in general, not a Markov chain because it can be seen as a projection
of the process (Wk)k∈N.
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Define the following projection for (ik,l, w1), (jm,n, w2) ∈ W:

π
(
(ik,l, w1), (jm,n, w2)

)
:=

{
(i, ji,n) =: (i, jn), if m = i,

(i, ji,1) = (i, j1), if m 6= i.

Here, jl represents the l-th cone of type j in a cone of type i, namely the cone represented
by ji,l. We now define the hidden Markov chain (Yk)k∈N by

Yk := π
(
(ik,Wk), (ik+1,Wk+1)

)
.

In other words, (Yk)k∈N traces the way to infinity in terms of which subcones are entered
successively without distinguishing which of the hit boundary points are the exit time
points Xek

.

Morever, observe that supp(P[Y1 = ·]) = Wπ since – by construction of the coverings

– for any (s, tn) ∈ Wπ there is w0ab ∈
⋃n0

i=1 ∂C
(0)
i and x ∈ W0 with τ(C(x)) = s and

P[Xe1 = w0x | Xe0 = w0ab] > 0 and there is y ∈ ∂Cts,n([x]) with q(x, y) > 0 such that

P[Y1 = (s, tn)] ≥ P
[
Xe0 = w0ab,Xe1 = w0x,W2 = y

]

≥ P[Xe0 = w0ab] · P[Xe1 = w0x | Xe0 = w0ab] · q(x, y) > 0.

5.2. Modified Exit Time Process. The aim of this subsection is the construction of a
Markov chain related to the exit time process (ik,Wk)k∈N such that the transition matrix
has strictly positive entries and the modified process leads under π to the same hidden
Markov chain for almost every trajectory.

Consider the two subcones Cji,1 ⊂ C(a1b1) and Cjk,l ⊂ C(a2b2) belonging to coverings of
the bigger cones with τ(C(a1b1)) = i and τ(C(a2b2)) = k. Assume that y0ab ∈ ∂Cjk,n .

Since both cones are isomorphic, there is unique ȳ0 = ȳ
[i,j,ab]
0 ∈ A∗ such that ȳ0ab ∈ ∂Cji,1 ;

see Figure 3. In the following we will use this notation ȳ0 = ȳ
[i,j,ab]
0 for describing this

j
i,1

C

j
k,n

C

i 

 k

0

y ab

y ab

0

Figure 3. Prefix replacement

replacement.

For i, j ∈ I and ab ∈ A2 with τ(C(ab)) = j we write

#{js,t | s 6= i} =
∣∣{(js,t, xab) ∈ W

∣∣s ∈ I \ {i}, 1 ≤ t ≤ n(s, j)
}∣∣,
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which is independent from the specific choice of ab. Let (ik,l, x), (jm,n, y0ab) ∈ W. Define
the following transition probabilities on W:

q̂
(
(ik,l, x), (jm,n, y0ab)

)
:=





1
#{js,t|s 6=i}+1

ξ(ab)
ξ([x])L(x, y0ab), if m = i ∧ n = 1,

ξ(ab)
ξ([x])L(x, y0ab), if m = i ∧ n ≥ 2,

1
#{js,t|s 6=i}+1

ξ(ab)
ξ([x])L(x, ȳ

[i,j,ab]
0 ab), if m 6= i.

Observe that the transitions depend on x only by its last two letters. It is easy to see that
these transition probabilities define a Markov chain (inherited from the process (ik,Wk)k∈N):
each step from (ik,l, x) to (jm,n, y0ab) either behaves according to q(·, ·) (case m = i and
n ≥ 2) or steps from (ik,l, x) to (ji,1, y0ab) (when seen as a step of the process (ik,Wk)k∈N))
are split up into different equally likely paths (ik,l, x) to (jm,n, y0ab) with m 6= i or
m = i∧ n = 1; since q̂(·, ·) depends on its first argument only by i (and not by k and l), it
follows from q(·, ·) that q̂(·, ·) describes also a random walk. Moreover, the corresponding
transition matrix has strictly positive entries. By suffix-irreducibility and Proposition 5.1,

the matrix Q̂ =
(
q̂((ik,l, x), (jm,n, y))

)
is stochastic, and governs a positiv recurrent Markov

chain (̂ik,xk)k∈N with invariant probability measure ν. The initial distribution of (̂i1,x1)
is given by µ̂1, defined as

µ̂1(im,n, x) := P[(i1,W1) = (im,n, x)] = P[τ(C(Xe0)) = m,W1 = x] > 0

for (im,n, x) ∈ W. If we equip the process with the invariant probability measure ν as

initial distribution we write
(̂
i
(ν)
k ,x

(ν)
k

)
k∈N

.

Then the process
(
(̂ik,xk), (̂ik+1,xk+1)

)
k∈N

is again a positiv recurrent Markov chain with

transition matrix Q̂2 (arising from Q̂) and invariant probability measure denoted by ν2.
Once again, if we equip this process with the initial distribution ν2, which arises in a

natural way from ν, then we write
(
(̂i
(ν)
k ,x

(ν)
k ), (̂i

(ν)
k+1,x

(ν)
k+1)

)
k≥1

.

We now define two hidden Markov chains (Z
(ν)
k )k∈N and (Ŷk)k∈N by

Z
(ν)
k := π

(
(̂i
(ν)
k ,x

(ν)
k ), (̂i

(ν)
k+1,x

(ν)
k+1)

)
, Ŷk := π

(
(̂ik,xk), (̂ik+1,xk+1)

)
.

That is, (Z
(ν)
k )k∈N and (Ŷk)k∈N differ in their evolution only in their inital distributions.

The crucial point now is the following proposition:

Proposition 5.3. For all (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ,

P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n))

]
= P

[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (s(n), t(n))

]
.

Proof. We prove the claim by induction on n. First, let j, s ∈ I and t(1) = jm with
2 ≤ m ≤ n(s, j), and let a0b0, ab ∈ A2 with τ(C(a0b0)) = s and τ(C(ab)) = j. If Cj,m is

the m-th cone of type j in the covering of C(a0b0) then there is unique x0 = x
[s,j,m,ab]
0 ∈ A∗
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with x0ab ∈ ∂Cj,m. With this notation we get:

P
[
Y1 = (s, jm), [W2] = ab

]
=

∑

(uk,l,x)∈W :u=s

P[(i1,W1) = (sk,l, x)] · q(x, x0ab)

=
∑

(uk,l,x)∈W :u=s

µ̂1(sk,l, x)q̂
(
(sk,l, x), (js,m, x0ab)

)

= P
[
Ŷ1 = (s, jm), [x2] = ab

]
.

Now we turn to the case t(1) = j1. Once again, if Cj,1 is the first cone of type j in the

covering of C(a0b0) then there is unique x0 = x
[s,j,1,ab]
0 ∈ A∗ with x0ab ∈ ∂Cj,1. We get:

P
[
Ŷ1 = (s, j1), [x2] = ab

]

=
∑

(uk,l,x)∈W :u=s

µ̂1(sk,l, x)
[
q̂
(
(sk,l, x), (ts,1, x0ab)

)
+

∑

(tp,q ,ya1b1)∈W :
p 6=s,a1b1=ab

q̂
(
(sk,l, x), (tp,q, yab)

)]

=
∑

(uk,l,x)∈W :u=s

µ̂1(sk,l, x)

[
q
(
(sk,l, x), (ts,1, x0ab)

)

#{tk,l | k 6= s}+ 1
+

∑

(tp,q ,ya1b1)∈W :
p 6=s,a1b1=ab

q
(
(sk,l, x), (ts,1, x0ab)

)

#{tk,l | k 6= s}+ 1

]

=
∑

(uk,l,x)∈W :u=s

P
[
(i1,W1) = (sk,l, x)

]
· q(x, x0ab) = P

[
Y1 = (s, j1), [W2] = ab

]
.

Now,

P
[
Ŷ1 = (s, t(1))

]
=

∑

ab∈A2

P
[
Ŷ1 = (s, t(1)), [x2] = ab

]

=
∑

ab∈A2

P
[
Y1 = (s(1), t(1)), [W2] = ab

]
= P

[
Y1 = (s(1), t(1))

]
.

We now perform the induction step where we will use the equations from the initial step
as induction assumptions. First, consider the case t(n+1) = jm with m ≥ 2; then for all
a0b0, ab ∈ A2 with τ(C(a0b0)) = s(n+1) =: s and τ(C(ab)) = j there is unique x0 =

x
[s,j,m,ab]
0 ∈ A∗ with x0ab ∈ ∂Cjs,m(a0b0). Since we have an underlying Markov chain we

obtain:

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn+1 = (s(n+1), t(n+1)), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

(u,vk)∈Wπ :
v=s

∑

w0∈A∗

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (u, sk), [xn+1] = w0a0b0

]

·q̂
(
(sk, w0a0b0), (js,m, x0ab)

)

= P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+1] = a0b0, [Wn+2] = ab

]
.
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Now we turn to the case t(n+1) = j1. Once again, if Cj,1 is the first cone of type j in the

covering of C(a0b0) (of type s) then there is unique x0 = x
[s,j,1,ab]
0 ∈ A∗ with x0ab ∈ ∂Cj,1.

We get by distinguishing whether t(n+1) = j1 arises from in+2 = js,1 or in+2 = jk,l with
k 6= s:

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn+1 = (s(n+1), j1), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

(up,q ,w)∈W :[w]=a0b0

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (s(n), t(n)), în+1 = up,q,xn+1 = w

]

·
(
q̂
(
(up,q, w), (js,1, x0ab)

)
+

∑

(tk,l,y)∈W :
t=j,k 6=s,[y]=ab

q̂
(
(up,q, w), (jk,l, y)

))

= P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (s(n), t(n)), [xn+1] = a0b0

]

·

[
ξ(ab)

ξ(a0b0)

L(a0b0, x0ab)

#{jk,l | k 6= s}+ 1
+

∑

(tp,q ,y)∈W :
t=j,p 6=s,[y]=ab

ξ(ab)

ξ(a0b0)

L(a0b0, x0ab)

#{jk,l | k 6= s}+ 1

]

= P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)

ξ(a0b0)
L(a0b0, x0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), j1), [Wn+1] = a0b0, [Wn+2] = ab

]
.

Finally, we obtain:

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn+1 = (s(n+1), t(n+1))

]

=
∑

a0b0,ab∈A2

P
[
Ŷ1 = (s(1), t(1)), . . . , Ŷn+1 = (s(n+1), t(n+1)), [xn+1] = a0b0, [xn+2] = ab

]

=
∑

a0b0,ab∈A2

P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+1] = a0b0, [Wn+2] = ab

]

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1))

]
.

This finishes the proof. �

The statement of the lemma can be said in other words: the process governed by Q̂ can be
seen as a exit time process, where one has more subcones to enter (namely, the subcones of
indices jk,l, k 6= i, when being currently in a cone of type i), but under the projection π folds
the process down to the same hidden Markov chain (Yk)k∈N, and it does not distinguish

if îk = ji,1 or îk = jm,n, m 6= i.

Hence, the Markov chains
(
(ik,Wk), (ik+1,Wk+1)

)
k∈N

and
(
(̂ik,xk), (̂ik+1,xk+1)

)
k∈N

lead
to the same hidden Markov chain in terms of probability. The important difference is

that the transition matrix Q̂ has strictly positive entries, while this must not hold for the
transition matrix of the chain

(
(ik,Wk), (ik+1,Wk+1)

)
k∈N

.
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5.3. Entropy of the Hidden Markov Chain related to the Exit Time Process. In
this subsection we derive existence of the asymptotic entropy of the hidden Markov chains

(Ŷk)k∈N and (Yk)k∈N.

First, consider the hidden markov chain (Zk)k∈N: this process is stationary and ergodic

since the underlying Markov chain
(
i
(ν)
k ,x

(ν)
k

)
k∈N

is stationary and ergodic. Hence, there

is a constant H(Z) ≥ 0 such that

lim
k→∞

−
1

k
logP[Z1 = s1, . . . ,Zk = sk] = H(Z)

for almost every realisation (s1, s2, . . . ) ∈ WN
π of (Zk)k∈N; see e.g. Cover and Thomas [4,

Theorem 16.8.1]. We now deduce the same property for the process (Ŷk)k∈N.

Proposition 5.4. For almost every realisation (s1, s2, . . . ) ∈ WN
π of (Ŷk)k∈N,

lim
k→∞

−
1

k
log P

[
Ŷ1 = s1, . . . , Ŷk = sk

]
= H(Z).

Proof. The processes (Zk)k∈N and (Ŷk)k∈N differ only in the inital distribution. Moreover,
there are constants c, C > 0 such that

c · µ̂1(im,n, x) ≤ ν(im,n, x) ≤ C · µ̂1(im,n, x)

for all (im,n, x) ∈ W. We now get for almost every trajectory (s1, s2, . . . ) ∈ WN
π of (Ŷk)k∈N:

lim
k→∞

−
1

k
log P

[
Ŷ1 = s1, . . . , Ŷk = sk

]

= lim
k→∞

−
1

k
log

∑

y
1
,...,y

k+1
∈W :

π(y
j
,y

j+1
)=sj

P
[
(̂i1,x1) = y

1
, . . . , (̂ik+1,xk+1) = y

k+1

]

= lim
k→∞

−
1

k
log

∑

y
1
,...,y

k+1
∈W :

π(y
j
,y

j+1
)=sj

µ̂1(y1) · q̂(y1, y2) · . . . · q̂(yk, yk+1
)

= lim
k→∞

−
1

k
log

∑

y
1
,...,y

k+1
∈W :

π(y
j
,y

j+1
)=sj

ν(y
1
)q̂(y

1
, y

2
) · . . . · q̂(y

k
, y

k+1
)

= lim
k→∞

−
1

k
log P

[
Z1 = s1, . . . ,Zk = sk

]
= H(Z).

�

As a consequence we obtain the next statement:

Corollary 5.5.

lim
k→∞

−
1

k

∫
logP

[
Ŷ1 = s1, . . . , Ŷk = sk

]
dP(s1, s2, . . . ) = H(Z).
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Proof. Since |W| < ∞ by construction, there is ε0 > 0 such that

1 ≥ q̂(y
1
, y

2
) ≥ ε0 for all y

1
, y

2
∈ W.

Hence,

0 ≤ −
1

k
log P

[
Ŷ1 = s1, . . . , Ŷk = sk

]
≤ −

1

k
log c− log ε0,

where c = min
{
µ̂1(y) | y ∈ W

}
. Therefore, we may exchange integral and limit, which

yields the claim. �

Let x = x1 . . . xn ∈ L, n = |x| ≥ 2, be on the boundary of some cone C. Define

l̂(x1 . . . xn) := − log
∑

bc∈A2:x1...xn−2bc∈∂C

L(o, x1 . . . xn−2bc).

Proposition 5.6.

lim
k→∞

l̂(Xek
)

k
= H(Z) almost surely.

Proof. Assume that Wj = yjajbj , where yj ∈ A∗ and ajbj ∈ A2 with 0 ≤ j ≤ k. That
is, Xej

= y1y2 . . . yjajbj . By definition, Xej
is on the boundary of some cone, which we

denote by Cj.

Let j ∈ I . Recall that the covering of L consists of n0 subcones. Each of these subcones

C
(0)
i has again a covering consisting of ni subcones of type j. Write Nj :=

∑n0
i=1 ni, and we

denote by C
(1)
j,k these different subcones with 1 ≤ k ≤ Nj . Furthermore, we write w ∼ yab

if w = ycd ∈ ∂C(yab) for y ∈ A∗ and ab, cd ∈ A2, that is, w ∼ yab if w lies on the same
boundary of a cone as yab (namely the cone C(yab)).

Moreover, we have for all j ∈ I and w1ab,w2ab ∈
⋃Nj

i=1 ∂C
(1)
j,k that P[Xe1 = w1ab] > 0 if

and only if P[Xe1 = w2ab] > 0. Therefore, there are c, C > 0 such that

c · P[Xe1 = w2ab] ≤ P[Xe1 = w1ab] ≤ C · P[Xe1 = w2ab]

for all w1ab,w2ab ∈
⋃Nj

i=1 ∂C
(1)
j,k . Assume now that τ(C(a1b1)) = j ∈ I . Observe that

∂C(y0y1a1b1) = {y0y1c1d1, . . . , y0y1cκdκ} implies that C
(1)
j,k has the form {wc1d1, . . . , wcκdκ}

for some suitable w ∈ A∗. We have:

Nj ·
∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]q(y1[w1], w2) · q(w2, w3) · . . . · q(wk−1, wk)

=

Nj∑

k=1

∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]q(y1[w1], w2) · q(w2, w3) · . . . · q(wk−1, wk)

≤ C ·

Nj∑

k=1

∑

w1∈∂C
(1)
j,k

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]
ξ([w2])

ξ([w1])
L(w1, w2) · q(w2, w3) · . . . · q(wk−1, wk)

= C · P
[
Y1 = (j, t(1)), . . . ,Yk−1 = (sk−1, t

(k−1))
]
, (5.1)
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where the values of s2, . . . , sk−1 and t(1), . . . , t(k−1) are determined by the values of Wj =
yjajbj. Analogously,

Nj ·
∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]q(y1[w1], w2) · q(w2, w3) · . . . · q(wk−1, wk)

≥ c · P
[
Y1 = (j, t(1)), . . . ,Yk−1 = (sk−1, t

(k−1))
]
. (5.2)

Recall that G(o,w) = G(o, o)L(o,w) for all w ∈ L and that ξ(·) can only take finitely
many values. Writing Xe1 = x1 . . . xn and j = τ(C(Xe1)), we now can conclude as follows:

lim
k→∞

l̂(Xek
)

k

= lim
k→∞

−
1

k
log

∑

bc∈A2:x1...xn−2bc∈∂Ck

L(o, x1 . . . xk−2bc)

= lim
k→∞

−
1

k
log

[ ∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

L(o,w1)L(w1, w2) · . . . · L(wk−1, wk)

]

= lim
k→∞

−
1

k
log

[ ∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

G(o,w1)ξ([w1]) ·
ξ([w2])

ξ([w1])
L(w1, w2) · . . . ·

·
ξ([wk])

ξ([wk−1])
L(wk−1, wk)

]

= lim
k→∞

−
1

k
log

[ ∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]q(y1[w1], w2) · . . . · q(wk−1, wk)

]

= lim
k→∞

−
1

k
log

[
Nj

∑

w1∈L:
w1∼y0y1a1b1

∑

w2,...,wk∈W0:
wi∼yiaibi

P[Xe1 = w1]q(y1[w1], w2) · . . . · q(wk−1, wk)

]

= lim
k→∞

−
1

k
logP

[
Y1 = (j, t(1)), . . . ,Yk−1 = (sk−1, t

(k−1)
]
= H(Z).

The last equation follows from (5.1) and (5.2). We need those important estimates since
the first coordinate of Y1 describes only the cone type of Xe1 but there may be several
cones of the same type j = τ(C(Xe1)).

�

Recall the definition of l(x1 . . . xn) = − logL(o, x1 . . . xn) for x = x1 . . . xn ∈ L.

Corollary 5.7.

lim
n→∞

l(Xek
)

k
= H(Z) almost surely.

Proof. It suffices to compare l̂(Xek
) with l(Xek

). Assume for a moment that Xek
= x1 . . . xn

and that Xek
is on the boundary of the cone C. Then, the probability of walking inside
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C from x1 . . . xn ∈ ∂C to any x1 . . . xn−2ab ∈ ∂C can be bounded from below by some
constant ε0, because the probabilities depend only on xn−1xn and ab ∈ A2. Therefore,

L(o,Xek
) · ε0 ≤

∑

bc∈A2:x1...xn−2ab∈∂C

L(x1 . . . xm−2ab),

∑

ab∈A2:x1...xn−2ab∈∂C

L(o, x1 . . . xn−2ab) · ε0 ≤ |A2| · L(o,Xek
).

Taking logarithms, dividing by k and letting k tend to infinity yields the claim. �

Now we come to an important law of large numbers. For this purpose, define d(x, y) =
|y| − |x| for x, y ∈ L with |x| ≤ |y|, where | · | is the natural word length. Denote by ν0 the
invariant probabilty measure of (Wk)k∈N and define

λ :=
∑

x,y∈W0

ν0(x) · q(x, y) · d(x, y). (5.3)

Then:

Proposition 5.8.

lim
k→∞

l(Xn)

n
= ℓ · λ−1 ·H(Z) almost surely.

Proof. Define

êk := sup
{
m ∈ N

∣∣|Xm| = k
}
.

Transience yields êk < ∞ almost surely for all k ∈ N. Define the maximal exit times at
time n ∈ N as

k(n) := max{k ∈ N | êk ≤ n},

t(n) := max{k ∈ N | ek ≤ n}.

Obviously, k(n) ≥ t(n) and each exit time ek corresponds to exactly one êl with l ≥ k.
First, we rewrite

l(Xn)

n
=

l(Xn)− l(Xet(n)
)

n
+

l(Xet(n)
)

t(n)
·
t(n)

k(n)
·
k(n)

êk(n)
·
êk(n)

n
. (5.4)

Let ε1 be the minimal occuring positive single-step transition probability. Since the sub-
cones of coverings of bigger cones are nested at bounded distance we have êk(n) ≥ et(n) ≥
êk(n)−D for some suitable D ∈ N. The first quotient on the right hand side of (5.4) tends
to zero since

L(o,Xn) · ε
n−et(n)

1 ≤ L(o,Xet(n)
) (due to weak symmetry),

L(o,Xet(n)
)ε

n−et(n)

1 ≤ L(o,Xn)

and due to (follows completely analogously as in [16, Proof of Theorem D])

et(n)

n
≤

êk(n)

n

n→∞
−−−→ 1,

et(n)

n
≥

êk(n)−D

n

n→∞
−−−→ 1,

which in turn yields (n− et(n))/n → 0 as n → ∞.
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By Corollary 5.7, l(Xet(n)
)/t(n) tends to H(Z). On the other hand side, êk/k tends almost

surely to 1/ℓ and êk(n)/n tends to 1 almost surely; see [6, Proposition 2.3]. It remains to
prove that the limit limk→∞ k(n)/t(n) exists. Clearly,

k(n)

t(n)
=

1

t(n)

(
d(o,Xet1

) +

t(n)−1∑

i=1

d(Xei
,Xei+1) + d(Xet(n)

,Xêk(n)
)
)
.

Note that

d(o,Xet1
) ≤ D1, d(Xet(n)

,Xêk(n)
) ≤ D2

for a suitable constants D1 and D2. Thus, it is sufficient to consider

1

k

k∑

i=1

d(Xei
,Xei+1).

Since d(Xei
,Xei+1) can be computed from Wi and Wi+1, we may apply the ergodic

theorem for positive recurrent Markov chains on the process
(
(Wj ,Wj+1)

)
j∈N

which yields

almost surely

lim
k→∞

1

k

k∑

i=1

d(Xe
i
,Xei+1) =

∑

x,y)∈W0

ν0(x)q(x, y)d(x, y) = λ.

This finishes the proof and gives the proposed formula. �

6. Existence of Entropy

We follow the reasoning of [7] for the proof of existence of the entropy. First, we need the
following lemma:

Lemma 6.1. There is R > 1 such that G(o,w|R) < ∞ for all w ∈ L.

Proof. A simple adaption of the proof of [12, Proposition 8.2] shows that G(v,w|z) has
radius of convergence R(v,w) > 1. At this point we need suffix-irreducibility. With the
help of this fact we are able to prove the lemma in several steps:

(1) There is R0 > 1 such that L(o, abc|R0) < ∞ for all abc ∈ A3: this follows from the
inequality G(o,w|z) ≥ L(o,w|z).

(2) There is R1 > 1 such that Ḡ(ab, cd|R1) < ∞ for all ab, cd ∈ A2: this follows from
the inequality G(ab, cd|z) ≥ Ḡ(ab, cd|z).

(3) Since for a, b, c, d, e ∈ A

L̄(ab, cde|z) =
∑

d1e1∈A2

p(ab, cd1e1) · z · Ḡ(d1e1, de|z),

we have L̄(ab, cde|R1) < ∞.
(4) By G(o,w|z) = G(o, o|z)L(o,w|z) and Equation (3.4), we get G(o,w|R) < ∞ for

all w ∈ L, where R = min{R(o, o), R0, R1} > 1.

This finishes the proof. �



20 LORENZ A. GILCH

In the following let ̺ ∈ [1, R).

Lemma 6.2. There are constants D1 and D2 > 0 such that for all m,n ∈ N0

p(m)(o,Xn) ≤ D1 ·D
n
2 · ̺−m.

Proof. Denote by C̺ the circle with radius ̺ in the complex plane centered at 0. A straight-
forward computation shows for m ∈ N0:

1

2πi

∮

C̺

zm
dz

z
=

{
1, if m = 0,

0, if m 6= 0.

Let w = w1 . . . wt ∈ L. An application of Fubini’s Theorem yields

1

2πi

∮

C̺

G(o,w|z) z−m dz

z
=

1

2πi

∮

C̺

∑

k≥0

p(k)(o,w)zk z−m dz

z

=
1

2πi

∑

k≥0

p(k)(o,w)

∮

C̺

zk−mdz

z
= p(m)(o,w).

Since G(o,w|z) is analytic on C̺, we have |G(o,w|z)| ≤ G(o,w|̺) for all |z| = ̺. Thus,

p(m)(o,w) ≤
1

2π
· ̺−m−1 ·G(o,w|̺) · 2π̺ = G(o,w|̺) · ̺−m.

Set L := 1∨max
{
L̄
(
ab, cde|̺

)
| a, b, c, d, e ∈ A

}
and D0 := G(o, o|̺) ·

∑
abc∈A3 L(o, abc|̺).

An application of Equation (3.4) provides for t ≥ 3

G(o,w|̺) = G(o, o|̺) · L(o,w1 . . . wt) ≤ D0 · |A|2(t−3) · Lt−3.

Set D1 := D0 ∨ max{G(o,w|̺)|w ∈ L, |w| ≤ 2}. Since |Xn| ≤ n, we obtain by setting
D2 := |A|2 · L

p(m)(o,Xn) ≤ D1 · |A|2tLt · ̺−m ≤ D1 · |A|2nLn · ̺−m = D1 ·D
n
2 · ̺−m.

�

The following technical lemma will be used in the proof of the next theorem:

Lemma 6.3. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of strictly positive numbers with

An = an + bn. Assume that limn→∞− 1
n logAn = c ∈ [0,∞) and that limn→∞ bn/q

n = 0

for all q ∈ (0, 1). Then limn→∞− 1
n log an = c.

Proof. A proof can be found in [7, Lemma 3.5]. �

Lemma 6.4. For n ∈ N, consider the function fn : L → R defined by

fn(w) :=

{
− 1

n log
∑n2

m=0 p
(m)(o,w), if p(n)(o,w) > 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(w) ≤ D for all n ∈ N and w ∈ L.
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Proof. Let w ∈ L and n ∈ N with p(n)(o,w) > 0. Denote by R the radius of convergence
of G(w,w|z). By Inequality (3.1), we get

n2∑

m=0

p(m)(o,w) ≤ G(o,w|1) = F (o,w|1) ·G(w,w|1) ≤
1

1− 1
R

,

that is,

fn(w) ≥ −
1

n
log

1

1− 1
R

≥ − log
1

1− 1
R

.

For the upper bound, observe that w ∈ L with p(n)(o,w) > 0 can be reached from o in n
steps with a probability of at least εn0 , where

ε0 := min{p(w1, w2) | w1, w2 ∈ A∗, p(w1, w2) > 0} > 0

is independent from w. Thus, the sum
∑n2

m=0 p
(m)(o,w) has a value greater or equal to εn0 .

Hence, fn(x) ≤ − log ε0. �

Now we can finally prove:

Theorem 6.5. The asymptotic entropy h of (Xn)n∈N0 exists and equals h = ℓ ·λ−1 ·H(Z).

Proof. We can rewrite ℓ · λ−1 ·H(Z) as

ℓ · λ−1 ·H(Z) =

∫
ℓ · λ−1 ·H(Z) dP =

∫
lim
n→∞

−
1

n
l(Xn) dP

=

∫
lim
n→∞

−
1

n
logL

(
o,Xn(ω)

∣∣1
)
dP(ω)

=

∫
lim
n→∞

−
1

n
log

G
(
o,Xn(ω)

∣∣1
)

G(o, o|1)
dP(ω) =

∫
lim
n→∞

−
1

n
logG

(
o,Xn(ω)|1

)
dP(ω).

Since

G(o,Xn|1) =
∑

m≥0

p(m)(o,Xn) ≥ p(n)(o,Xn) = πn(Xn),

we have

ℓ · λ−1 ·H(Z) ≤

∫
lim inf
n→∞

−
1

n
log πn

(
Xn(ω)

)
dP(ω). (6.1)

The next aim is to prove lim supn→∞− 1
nE

[
log πn(Xn)

]
≤ h. We now apply Lemma 6.3 by

setting

An :=
∑

m≥0

p(m)(o,Xn), an :=

n2∑

m=0

p(m)(o,Xn) and bn :=
∑

m≥n2+1

p(m)(o,Xn).

By Lemma 6.2,

bn ≤
∑

m≥n2+1

D1 ·D
n
2 · ̺−m = D1 ·D

n
2 ·

̺−n2−1

1− ̺−1
.
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Therefore, bn decays faster than any geometric sequence. Applying Lemma 6.3 yields

ℓ · λ−1 · h(Z) = lim
n→∞

−
1

n
log

n2∑

m=0

p(m)
(
o,Xn

)
.

By Lemma 6.4, we may apply the Dominated Convergence Theorem and get:

ℓ · λ−1 ·H(Z) =

∫
ℓ · λ−1 ·H(Z) dP =

∫
lim
n→∞

−
1

n
log

n2∑

m=0

p(m)(o,Xn) dP

= lim
n→∞

∫
−
1

n
log

n2∑

m=0

p(m)(o,Xn) dP

= lim
n→∞

−
1

n

∑

w∈L

p(n)(o,w) log

n2∑

m=0

p(m)(o,w).

For w ∈ L, set

µ0(w) =
1

n2 + 1

n2∑

m=0

p(m)(o,w).

Recall that Shannon’s Inequality gives

−
∑

w∈L

p(n)(o,w) log µ(w) ≥ −
∑

w∈L

p(n)(o,w) log p(n)(o,w)

for every finitely supported probability measure µ on L. We apply now this inequality on
µ0:

ℓ · λ−1 ·H(Z) ≥ lim sup
n→∞

1

n

∑

w∈L

p(n)(o,w) log(n2 + 1)−
1

n

∑

w∈L

p(n)(o,w) log p(n)(o,w)

= lim sup
n→∞

−
1

n

∫
log πn(Xn) dP.

Now we can conclude with Fatou’s Lemma:

h = ℓ · λ−1 ·H(Z) ≤

∫
lim inf
n→∞

− log πn(Xn)

n
dP ≤ lim inf

n→∞

∫
− log πn(Xn)

n
dP

≤ lim sup
n→∞

∫
− log πn(Xn)

n
dP ≤ ℓ · λ−1 ·H(Z) = h. (6.2)

Thus, h = limn→∞− 1
nE

[
log πn(Xn)

]
exists and the limit equals ℓ · λ−1 ·H(Z). �

We get the following types of convergence:

Corollary 6.6. (1) For almost every path of the random walk (Xn)n∈N0 ,

h = lim inf
n→∞

−
log πn(Xn)

n
.
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(2) Convergence in probability:

−
1

n
log πn(Xn)

P
−→ h.

(3) Convergence in L1:

−
1

n
log πn(Xn)

L1−→ h.

Proof. The proofs are completely analogous to the proofs in [7, Corollary 3.9, Lemma 3.10],
where [7, Lemma 3.10] holds also in the case h = 0. �

Corollary 6.7. The entropy is the rate of escape with respect to the Greenian distance,

that is,

h = lim
n→∞

−
1

n
logG(o,Xn|1) dP.

Proof. This follows from the simple fact G(o,Xn|1) = G(o, o|1)L(o,Xn |1) and Proposition
5.8. �

7. Calculation of the Entropy

In order to compute h = ℓ · λ−1 ·H(Z) we have to calculate the three factors: while there
is a formula for ℓ (given in [6, Theorem 2.4]) and there is also a formula for λ (given in
(5.3)), it remains to explain how to calculate H(Z). For this purpose, define

H(Z1, . . . ,Zn) := −
∑

s1,...,sn∈Wπ

P
[
Z1 = s1, . . . ,Zn = sn

]
logP

[
Z1 = s1, . . . ,Zn = sn

]
,

and let the conditional entropy H(Zn|Z1, . . . ,Zn−1) be defined as

−
∑

s1,...,sn∈Wπ

P
[
Z1 = s1, . . . ,Zn = sn

]
logP

[
Zn = sn

∣∣Z1 = s1, . . . ,Zn−1 = sn−1

]
.

By [4, Theorem 4.2.1], H(Z) = limn→∞
1
nH(Z1, . . . ,Zn). In general, the computation of

H(Z) is a hard task. But there is a simple way in order to calculate H(Z) numerically,
which is due to the inequalities

H
(
Zn

∣∣((̂i(ν)1 ,x
(ν)
1 ), (̂i

(ν)
2 ,x

(ν)
2 )

)
,Z1, . . . ,Zn−1

)
≤ H(Z) ≤ H(Zn | Z1, . . . ,Zn−1) (7.1)

for all n ∈ N; see [4, Theorem 4.5.1]. In particular, it is even shown that

H(Zn | Z1, . . . ,Zn−1)−H
(
Zn

∣∣((̂i(ν)1 ,x
(ν)
1 ), (̂i

(ν)
2 ,x

(ν)
2 )

)
,Z1, . . . ,Zn−1

) n→∞
−−−→ 0.

Hence, one can calculate H(Z) numerically up to an arbitrarily small error. Furthermore:

Corollary 7.1. If the random walk is expanding, then h > 0. Otherwise, h = 0.

Proof. In the expanding case, the random walk has at least two possibilities for entering a
subcone decsribed by Xe3 for every given value of Xe2 . Thus,

H(Z) ≥ H
(
Z2

∣∣((̂i(ν)1 ,x
(ν)
1 ), (̂i

(ν)
2 ,x

(ν)
2 )

)
,Z1

)
> 0,
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which yields h > 0 due to (7.1). On the other hand side, if the random walk on L is not
expanding, then each cone has a covering consisting of of only one single cone. Then the
projections Zn become deterministic and this implies

0 ≤ H(Z) ≤ H(Zn | Z1, . . . ,Zn−1) = H(Zn) = 0.

�

We call ab ∈ A2 unambiguous if ∂C(ab) = {ab}. In other words, whenever the random walk
enters a subcone of type C(wab), w ∈ A∗, it must enter it through its single boundary
point wab. This allows us to “cut” the random walk into pieces and to obtain another
formula for the entropy H(Z). For n ∈ N, x2, . . . , xn ∈ W0 and ab ∈ A2 define

w(ab, x2, . . . , xn, x) := P
[
W2 = x2, . . . ,Wn = x, [Wn] = ab

∣∣W1 = ab
]
,

w̃(ab, x2, . . . , xn) :=
∑

y2,...,yn∈W0:
yi∼xi

P
[
W2 = y2, . . . ,Wn = yn, [Wn] = ab

∣∣W1 = ab
]
,

where ∼ is the relation introduced in the proof of Proposition 5.6. In particular, ỹ(ab, x2) =
P
[
W2 = x2, [W2] = ab

∣∣W1 = ab
]
. Denote by ν1 the invariant probability measure of the

process (ik,Wk)k∈N and set, for unambiguous ab ∈ A2,

νW(ab) :=
∑

(im,n,x)∈W :[x]=ab

ν1(im,n, x).

Then:

Proposition 7.2. If ab ∈ A2 is unambiguous, then

h(Z) = −νW(ab)
∑

n≥1

∑

x2,...xn−1∈W0:
[xi] 6=ab

∑

xn∈W0:[xn]=ab

w(ab, x2, . . . , xn) log w̃(ab, x2, . . . , xn).

Proof. By Propositions 5.3 and 5.4, we have that

−
1

n
logP[Y1 = s1, . . . ,Yn = sn]

n→∞
−−−→ H(Z)

for almost every realisation (s1, s2, . . . ) ∈ WN
π . Observe that τ(Wn+1) = ab is equivalent

to Yn = (tn, αtn,m) for some cone type tn ∈ I , where α denotes the cone type of C(ab)
and 1 ≤ m ≤ n(tn, α). For any such trajectory, we define

N0 := min
{
m ∈ N

∣∣τ(Wm+1) = α
}

and Nk := min
{
m ∈ N

∣∣m > Nk−1, τ(Wm+1) = α
}
.

For any realisation (s1, s2, . . . ) ∈ WN
π and n ∈ N, denote by d(n) the maximal index k

with Nk ≤ n. Since [WNk+1] = ab for all k ∈ N we can use the strong Markov property as
follows when Nj < n:

P
[
YNj+1 = sNj+1, . . . ,Yn = sn | Y1 = s1, . . . ,YNj

= sNj

]

= P
[
YNj+1 = sNj+1, . . . ,Yn = sn | [WNj+1] = ab

]

= P
[
YNj+1 = sNj+1, . . . ,Yn = sn | YNj

= sNj

]
.
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Therefore, we can rewrite the following probability:

P
[
Y1 = s1, . . . ,Yd(n) = sd(n)

]

= P
[
Y1 = s1, . . . ,YN0 = sN0

]
P
[
YN0+1 = sN0+1, . . . ,YN1 = sN1

| YN0 = sN0

]
· . . . ·

·P
[
YNd(n)−1+1 = sNd(n)−1+1, . . . ,YNd(n)

= sNd(n)
| YNd(n)−1

= sNd(n)−1

]
.

Obviously, d(n)/n tends almost surely to νW(ab). Hence, if we consider only the subse-
quence where n equals one of the Nk’s we obtain the following almost sure convergence:

−
1

n
log P

[
Y1 = s1, . . . ,Yd(n) = sd(n)

]

= −
d(n)

n

1

d(n)

[
log P

[
Y1 = s1, . . . ,YN0 = sN0

]

+ log P
[
YN0+1 = sN0+1, . . . ,YN1 = sN1

∣∣YN0 = sN0

]
+ . . .+

+ log P
[
YNd(n)−1+1 = sNd(n)−1+1, . . . ,YNd(n)

= sNd(n)

∣∣YNd(n)−1
= sNd(n)−1

]]

n→∞
−−−→ −νW(ab)

∑

k≥1

∑

x2,...,xk−1∈W0:
[xi] 6=ab

∑

x∈W0:
[x]=ab

w(ab, x2, . . . , xk−1, x) log w̃(ab, x2, . . . , xk−1, x).

This proves the claim. �

We now state an inequality which connects entropy, drift and growth. For this purpose,
define the growth of A∗ as g := log |A|. Then we get:

Proposition 7.3. h ≤ ℓ · g.

Proof. Let ε > 0. By Corollary 6.6 (1), there is some Nε ∈ N such that for all n ≥ Nε:

1− ε ≤ P
[
− log πn(Xn) ≥ (h− ε)n, |Xn| ≤ (ℓ+ ε)n

]
≤ e−(h−ε)n · |A|(ℓ+ε)n.

Taking logarithms and dividing by n gives

(h− ε) +
1

n
log(1− ε) ≤ (ℓ+ ε) · log |A|.

Making ε arbirtraily small yields the proposed claim. �

Finally, we remark that the entropy is zero for recurrent random walks:

Corollary 7.4. If (Xn)n∈N0 is recurrent then h = 0.

Proof. Clearly, − 1
nE

[
log πn(Xn)

]
≥ 0. Assume now that lim supn→∞− 1

nE
[
log πn(Xn)

]
=

c > 0. Then there is a deterministic sequence (nk)k∈N such that, for any small ε1 > 0,

−
1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1 > 0 (7.2)

for all sufficiently large k. Denote by p0 the minimal occuring positive single-step transition
probability. Then − 1

nk
log πnk

(Xnk
) ≤ − log p0. Moreover, choose N ∈ N with 1/N < c−ε1.

Then there is some δ > 0 with

P
[
−

1

nk
log πnk

(Xnk
) ≥

1

N

]
≥ δ ∀k ∈ N large enough.
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To see this, assume that δ = δk depends on k with lim infk→∞ δk = 0 which leads to a
contradiction to (7.2) since

(− log p0) · δk + (1− δk)
1

N
≥ −

1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1.

If δk tends to zero then we get a contradiction to the choice of N .

Choose now ε > 0 arbitrarily small with ε < δ. In the recurrent case we have ℓ = 0. Then
there is some index K ∈ N such that for all k ≥ K:

δ − ε ≤ P
[
− log πnk

(Xnk
) ≥ nk/N, |Xn| ≤ εnk

]
≤ e−nk/N · |A|εnk

which yields the inequality

1

N
+

1

nk
log(δ − ε) ≤ ε log |A|.

But this gives a contradiction if we make ε sufficiently small since the right hand side tends
to zero, but the left hand side to 1

N . Thus, lim supn→∞− 1
nE

[
log πn(Xn)

]
= 0, yielding

h = 0. �

8. Analyticity of Entropy

The random walk on L depends on finitely many parameters which are described by the
transition probabilities p(w1, w2), w1, w2 ∈ A∗ with |w1| ≤ 2 and |w2| ≤ 3. That is, each

random walk on L can be defined via a vector p ∈ R|B2×B3|, where Bi := ∪i
n=1A

n ∪ {o}.
The support of p is the set of indices in B2 × B3 corresponding to non-zero entries of p.
Fix now any subset B ⊆ B2 × B3, which allows at least one well-defined random walk
on A∗, and consider in the following only vectors p with support B, which give rise to a
well-defined random walk on A∗. We ask whether the entropy mapping p 7→ h = hp varies
real-analytically. The crucial point will be the following lemma:

Lemma 8.1. The transition probabilities q(w1, w2), w1, w2 ∈ W0, vary real-analytically

w.r.t. p.

Proof. Observe that analyticity of q(w1, w2) follows from analyticity of ξ(ab), H(ab, c),
ab ∈ A2, c ∈ A and L̄(ab, cde), de ∈ A2. Hence, we prove real-analyticity of these generating
functions. The function z 7→ H(ab, c|z) has radius of convergence bigger than 1, which can
be easily deduced from Lemma 6.1. Thus, for δ > 0 small enough, we have

∞ > H(ab, c|1 + δ) =
∑

n≥1

Pab[Xn = c,∀m < n : |Xm| ≥ 2](1 + δ)n.

The probability Pab[Xn = c,∀m < n : |Xm| ≥ 2] can be rewritten as
∑

n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)p
n1
1 · . . . · pnd

d ,
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where p1, . . . , pd correspond to the non-zero entries of the vector p. Therefore,

H(ab, c|1 + δ) =
∑

n≥1

∑

n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)(p1(1 + δ))n1 · . . . · (pd(1 + δ))nd < ∞.

Hence, p lies in the interior of the domain of convergence of H(ab, c|1) if seen as a multi-
variate power series in terms of p. This yields real-analyticity of H(ab, c|1) in p. The same

holds for ξ(ab) and L̄(ab, cde), which is proven completely analogously since L̄(ab, cde|z)
has also radius of convergence bigger than 1, see proof of Lemma 6.1. �

Now we can prove:

Theorem 8.2. The entropy h varies real-analytically under all probability measures of

constant support.

Proof. The claim follows now easily via the equation h = ℓ · λ−1 · H(Z). By Lemma 8.1,
ν0 (as the solution of a linear system of equations in terms of q(·, ·) is real-analytic, so λ
is analytic. Moreover, by Han and Marcus [10, Theorem 1.1], H(Z) is also real-analytic.
Real-analyticity of ℓ can be shown completely analogously to the proof of Lemma 8.1 with
the help of the formula for ℓ given in [6, Theorem 2.4]. This finishes the proof. �
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