Sub-Linear Root Detection for Sparse Polynomials Over Finite Fields

Jingguo Bi

Institute for Advanced Study
Tsinghua University
Beijing, China

October, 2014
Vienna, Austria

This is a joint work with Qi Cheng and J. Maurice Rojas.
Applications of lattice theory

Lattice theory has fruitful applications in Physics and Chemistry, such as the structure of particle systems under a variety of physical constraints, packing problems, etc, but also has applications in Computational Number Theory, Computational Algebra, Coding Theory, Theoretical Computer Science and Cryptography, etc.
The Problem

Let R be a ring. Given any univariate t-nomial

$$f(x) := c_1 + c_2x^{a_2} + c_3x^{a_3} + \cdots + c_tx^{a_t} \in R[x]$$

- (decision version) decide whether there is a root in R
- (search version) find one of the roots in R
- (counting version) count the number of roots in R
Previous work

- Cucker, Koiran, and Smale found a polynomial-time algorithm to find all integer roots of a univariate polynomial \(f \) in \(\mathbb{Z}[x] \) with exactly \(t \) terms.
- H. W. Lenstra, Jr. gave a polynomial-time algorithm to compute all factors of fixed degree over an algebraic extension of \(\mathbb{Q} \) of fixed degree (and thereby all rational roots).
- Independently, Kaltofen and Koiran and Avendano, Krick, and Sombra extended this to finding bounded-degree factors of sparse polynomials in \(\mathbb{Q}[x, y] \) in polynomial-time.
Previous work on finite fields

- NP-hardness over even characteristic for sparse polynomials (Kipnis-Shamir 1999)
- For prime order finite field, detecting rational roots for straight-line program is prove to be NP-hard (Cheng-Hill-Wan 2012)
- Even for trinomials, no nontrivial algorithm is known
Main Results

- Given any univariate t-nomial
 \[f(x) = c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}} \in F_q[x] \]

 We can decide, within $4^t + o(t) q^{\frac{t-2}{t-1}} + o(1)$ deterministic bit operations, whether $f(x)$ has a root in F_q

- Moreover, we also give the structure of the roots of $f(x)$ over F_q

- When t is fix, this is the first sub-linear in q algorithm to solve this problem

- There is an algorithm running in time $q^{1/2 + o(1)}$ to decide whether a trinomial in $F_q[x]$ has a root in F_q
What Is a Lattice?

Given \(n \) linearly independent vectors \(\mathbf{b}_1, \ldots, \mathbf{b}_n \in \mathbb{R}^m \ (n \leq m) \), the lattice generated by them is the set of vectors

\[
L(\mathbf{b}_1, \ldots, \mathbf{b}_n) = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}
\]

The vectors \(\mathbf{b}_1, \ldots, \mathbf{b}_n \) form a basis of the lattice
The Shortest Vector Problem

The most famous computational problem on lattices is the shortest vector problem (SVP): Given a basis of a lattice L, find a vector $u \in L$, such that $\| v \| \geq \| u \|$ for any vector $v \in L \setminus 0$.
The Minkowski Convex Body Theorem

There exists a nonzero lattice vector with length less than \(\sqrt{n} \det(L)^{1/n} \)
The LLL Reduction

There is a polynomial time algorithm to find a base such that the length of the shortest vector in the base $\leq (2/\sqrt{3})^n \lambda_1$, where λ_1 denotes the length of the shortest nonzero vector in the lattice.
Exact algorithm for SVP

There is an algorithm to compute the shortest nonzero vector of a n-dimensional lattice which needs at most $4^{n+o(n)}$ arithmetic operations. (Micciancio-Voulgaris 2010)
Main theorem

Given any univariate t-nomial

$$f(x) = c_0 + c_1x^{a_1} + c_2x^{a_2} + \cdots + c_{t-1}x^{a_{t-1}} \in \mathbb{F}_q[x]$$

We can decide, within $4^{t+o(t)}q^{\frac{t-2}{t-1}+o(1)}$ deterministic bit operations, whether $f(x)$ has a root in \mathbb{F}_q
Observation

- Detecting roots over \mathbb{F}_q is the same as detecting linear factors of polynomials in $\mathbb{F}_q[x]$

- However, to detect roots in \mathbb{F}_q, we don’t need the full power of factoring

- we need only decide whether $\gcd(x^q - x, f(x))$ has positive degree, which takes time $\deg(f)^{1+o(1)}(\log q)^{O(1)}$ (E. Bach and J. Shallit 1996)
Degree reduction

- Replace x by y^e in f.

$$f(y^e) := c_0 + c_1 y^{ea_1} + c_2 y^{ea_2} + \cdots + c_{t-1} y^{ea_{t-1}}$$
Degree reduction

- Replace x by y^e in f.

$$f(y^e) := c_0 + c_1y^{ea_1} + c_2y^{ea_2} + \cdots + c_{t-1}y^{ea_{t-1}}$$

- If $\gcd(e, q - 1) = 1$, then the map from \mathbb{F}_q to \mathbb{F}_q given by y^e is one-to-one, thus it will not change the solvability of f.
Degree reduction

- Replace x by y^e in f.

$$f(y^e) := c_0 + c_1y^{ea_1} + c_2y^{ea_2} + \cdots + c_{t-1}y^{ea_{t-1}}$$

- If $\gcd(e, q - 1) = 1$, then the map from \mathbb{F}_q to \mathbb{F}_q given by y^e is one-to-one, thus it will not change the solvability of f.

- A new polynomial

$$c_0 + c_1y^{ea_1} \pmod{q-1} + c_2y^{ea_2} \pmod{q-1} + \cdots + c_{t-1}y^{ea_{t-1}} \pmod{q-1}$$
Degree reduction

- Replace x by y^e in f.

$$f(y^e) := c_0 + c_1 y^{ea_1} + c_2 y^{ea_2} + \cdots + c_{t-1} y^{ea_{t-1}}$$

- If $\gcd(e, q - 1) = 1$, then the map from \mathbb{F}_q to \mathbb{F}_q given by y^e is one-to-one, thus it will not change the solvability of f

- A new polynomial

$$c_0 + c_1 y^{ea_1} \pmod{q-1} + c_2 y^{ea_2} \pmod{q-1} + \cdots + c_{t-1} y^{ea_{t-1}} \pmod{q-1}$$

- Find a suitable e to reduce the degree.
Lemma (Find e)

Given integers a_1, \ldots, a_{t-1}, N satisfying $0 < a_1 < \cdots < a_{t-1} < N$ and $\gcd(N, a_1, \cdots, a_{t-1}) = 1$, one can find, within $4^t o(t)$ bit operations, an integer e with the following property for all $i \in \{1, \ldots, t-1\}$:

$m_1 \equiv ea_1 \mod N, m_2 \equiv ea_2 \mod N, \ldots, m_{t-1} \equiv ea_{t-1} \mod N$

if $m_i \in [-N/2, N/2]$, then $|m_i| \leq \sqrt{t - 1}N^{t-2}$
Find e

Consider the lattice L generated by the row vectors of the matrix:

$$B = \begin{bmatrix} a_1 & a_2 & \cdots & a_{t-1} \\ N & 0 & \cdots & 0 \\ 0 & N & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & N \end{bmatrix}$$
Find e

Consider the lattice L generated by the row vectors of the matrix:

$$B = \begin{bmatrix} a_1 & a_2 & \cdots & a_{t-1} \\ N & 0 & \cdots & 0 \\ 0 & N & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & N \end{bmatrix}$$

$\det(L) | N^{t-2}$
Find e

Consider the lattice L generated by the row vectors of the matrix:

$$
\mathbf{B} = \begin{bmatrix}
 a_1 & a_2 & \cdots & a_{t-1} \\
 N & 0 & \cdots & 0 \\
 0 & N & \cdots & 0 \\
 \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \cdots & N
\end{bmatrix}
$$

- $\det(L)|N^{t-2}$
- From Minkowski’s Theorem, let $\mathbf{m} = (m_1, m_2, \cdots, m_{t-1})$ be the shortest vector of lattice L, then, $\| \mathbf{m} \| \leq \sqrt{t - 1}N^{\frac{t-2}{t-1}}$
Find e

Consider the lattice L generated by the row vectors of the matrix:

$$
\mathbf{B} = \begin{bmatrix}
 a_1 & a_2 & \cdots & a_{t-1} \\
 N & 0 & \cdots & 0 \\
 0 & N & \cdots & 0 \\
 \vdots & \vdots & \ddots & 0 \\
 0 & 0 & \cdots & N
\end{bmatrix}
$$

$\det(L) | N^{t-2}$

From Minkowski’s Theorem, let $\mathbf{m} = (m_1, m_2, \cdots, m_{t-1})$ be the shortest vector of lattice L, then, $\| \mathbf{m} \| \leq \sqrt{t - 1} N^{\frac{t-2}{t-1}}$

One can find \mathbf{m} by using the Micciancio-Voulgaris algorithm
Find e

- From $\mathbf{m} = (m_1, m_2, \cdots, m_{t-1}) \in \mathcal{L}$, then there exists an integer e such that $m_1 = ea_1 \pmod{N}$, $m_2 = ea_2 \pmod{N}$, \cdots, $m_{t-1} = ea_{t-1} \pmod{N}$

- Because $\gcd(a_1, a_2, \cdots, a_{t-1}, N) = 1$, one can find integers x_1, x_2, \cdots, x_t s.t.,

$$\sum_{i=1}^{t-1} x_i a_i + x_t N = 1$$

- Let

$$e = \sum_{i=1}^{t-1} x_i m_i \pmod{N}$$

Therefore, for $i, 1 \leq i \leq t - 1$, we have $ea_i \equiv m_i \pmod{N}$ and

$$|m_i| \leq \|\mathbf{m}\| \leq \sqrt{t - 1}N^{\frac{t-2}{t-1}}$$
Main theorem

Given any univariate t-nomial

$$f(x) = c_0 + c_1x^{a_1} + c_2x^{a_2} + \cdots + c_{t-1}x^{a_{t-1}} \in \mathbb{F}_q[x]$$

We can decide, within $4^{t+o(t)}q^{\frac{t-2}{t-1}+o(1)}$ deterministic bit operations, whether $f(x)$ has a root in \mathbb{F}_q
The case of $\gcd(a_1, a_2, \cdots a_{t-1}, q - 1) > 1$.

Let $\delta = \gcd(a_1, a_2, \cdots a_{t-1}, q - 1)$. The \mathbb{F}_q-solvability of

$$f(x) := c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}}$$

is equivalent to the solvability of the following system of equations:

$$c_0 + c_1 y^{a_1/\delta} + \cdots + c_{t-1} y^{a_{t-1}/\delta} = 0$$
$$y^{\frac{q-1}{\delta}} = 1$$
The main lemma

Given a finite field \mathbb{F}_q and the polynomials
\[(\star \star \star) \quad x^N - 1 \text{ and } c_0 + c_1 x^{a_1} + \cdots + c_{t-1} x^{a_{t-1}},\]
in $\mathbb{F}_q[x]$ with $0 < a_1 < \cdots < a_{t-1} < N$, $\gcd(N, a_1, \cdots, a_{t-1}) = 1$, $c_i \neq 0$ for all i, and $N \mid (q - 1)$, there exists a deterministic
\[q^{1/4} (\log q)^O(1) + 4^t (t \log N)^O(1) + t^{1/2 + o(1)} N^{t-2} + o(1)(\log q)^{2+o(1)}\]
algorithm to decide whether these two polynomials share a root in \mathbb{F}_q. Remark: One can find a generator g of \mathbb{F}_q^* within $q^{1/4} (\log q)^O(1)$ bit operations. (Shparlinski, 1996)
Proof of the main lemma

we can find an integer \(e \) in time \(4^{t+o(t)} \) by reducing the lattice

\[
B = \begin{bmatrix}
a_1 & a_2 & \cdots & a_{t-1} \\
N & 0 & \cdots & 0 \\
0 & N & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & N \\
\end{bmatrix}
\]

such that if \(m_1, \ldots, m_{t-1} \) are the unique integers in the range \([-\lfloor N/2 \rfloor, \lceil N/2 \rceil]\) respectively congruent to \(ea_1, \ldots, ea_{t-1} \), then

\[
|m_i| < \sqrt{t-1}N^{\frac{t-2}{t-1}}
\]

for each \(i \in \{1, \ldots, t-1\} \).
Since $N|(q - 1)$, we have $x^N - 1 | x^q - x$, then the roots of $x^N - 1 = 0$ the same as $x \in \langle g^{\frac{q-1}{N}} \rangle$, let $\zeta_N = g^{\frac{q-1}{N}}$, and $k = \gcd(e, N)$.

If $k = 1$, the map

$$\varphi : \langle \zeta_N \rangle \rightarrow \langle \zeta_N \rangle$$

$$x \mapsto x^e$$

is one-to-one.

Finding a solution for ($\star \star \star$) is equivalent to finding $x \in \langle \zeta_N \rangle$ such that

$$c_0 + c_1 x^{e a_1} + \cdots + c_{t-1} x^{e a_{t-1}} = 0$$

The last equation can be rewritten as the lower degree equation

$$c_0 + c_1 x^{m_1} + \cdots + c_{t-1} x^{m_{t-1}} = 0$$

Time complexity: $(\sqrt{t - 1}N^{t-1})^{1+o(1)}(\log q)^{2+o(1)}$
if $k > 1$, the map from $\langle \zeta_N \rangle$ to $\langle \zeta_N \rangle$ given by $x \mapsto x^e$ is no longer one-to-one. Instead, it sends $\langle \zeta_N \rangle$ to a smaller subgroup $\langle \zeta_N^k \rangle$ of order N/k.

Any element $x \in \langle \zeta_N \rangle$ can be written as $\zeta_N^i z$ for some $i \in \{0, \ldots, k - 1\}$ and $z \in \langle \zeta_N^k \rangle$.

Now, $\gcd(e/k, N/k) = 1$, so the map φ_1

$$\varphi_1 : \langle \zeta_N^k \rangle \to \langle \zeta_N^k \rangle$$

$$y \mapsto y^{e/k}$$

is one-to-one.
\[x^N - 1 = 0 \text{ and } c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}} = 0 \]
\[\iff x \in \langle \zeta_N \rangle \text{ and } c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}} = 0 \]
\[\iff \exists i, 1 \leq i \leq k, x = (\zeta_N)^i y, y \in \langle \zeta_N^k \rangle \]
\[\text{and } c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}} = 0 \]
\[\iff \exists i, 1 \leq i \leq k, y \in \langle \zeta_N^k \rangle \text{ and } \]
\[c_0 + c_1 ((\zeta_N)^i y)^{a_1} + \cdots + c_{t-1} ((\zeta_N)^i y)^{a_{t-1}} = 0 \]
\[\iff \exists i, 1 \leq i \leq k, y \in \langle \zeta_N^k \rangle \text{ and } \]
\[c_0 + c_1 ((\zeta_N)^i y^{e/k})^{a_1} + \cdots + c_{t-1} ((\zeta_N)^i y^{e/k})^{a_{t-1}} = 0 \]
\[\iff \exists i, 1 \leq i \leq k, y^{N/k} - 1 = 0 \text{ and } \]
\[c_0 + c_1 (\zeta_N)^{a_1 i y^{m_1/k}} + \cdots + c_{t-1} (\zeta_N)^{a_{t-1} i y^{m_{t-1}/k}} = 0 \]

Let
\[f_i(y) = c_0 + c_1 (\zeta_N)^{a_1 i y^{m_1/k}} + \cdots + c_{t-1} (\zeta_N)^{a_{t-1} i y^{m_{t-1}/k}} \]
If \(f_i \) is identically zero then we have found a whole set of solutions for
\[
\begin{align*}
x^N - 1 &= 0 \\
c_0 + c_1 x^{a_1} + c_2 x^{a_2} + \cdots + c_{t-1} x^{a_{t-1}} &= 0
\end{align*}
\]
the coset \(\zeta_i^N \langle \zeta_k \rangle \).

If \(f_i \) is not identically zero then let
\[
\ell := \min \min_i (m_i/k, 0)
\]

The polynomial \(z^{-\ell} f_i(z) \) then has degree bounded from above by
\[
2\sqrt{t - 1}N^{t-2}/k.
\]
Deciding whether the pair of equations
\[
\begin{align*}
y^{N/k} - 1 &= 0 \\
y^{-\ell} f_i(y) &= 0
\end{align*}
\]
has a solution for some \(i \) takes deterministic time
\[
k \left(\sqrt{t - 1}N^{t-2}/k \right)^{1+o(1)} (\log q)^{2+o(1)}
\]
Roots structure

Let γ be the number of $f_i \neq 0$, then the solutions of equations

$$\begin{cases} x^N - 1 = 0 \\ c_0 + c_1x^{a_1} + c_2x^{a_2} + \cdots + c_{t-1}x^{a_{t-1}} = 0 \end{cases}$$

has two parts over F_q. The first part contains at most $2\gamma\sqrt{t - 1N^{t-2}/k}$ isolated roots, the other part includes $k - \gamma$ subgroup of F_q^* with order N/k.
Thank you!