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Let (X,B,u,T) be a discrete time measure theoretical
dynamical system (MDS). By Poincaré’s recurrence theorem,
foraset Y € B with u(Y) > 0, T-orbits of almost all points in
Y are recurrent.

We can define the induced system: (Y, By,ﬁu,TA) by

putting T'(z) = T™@) 2 where m(z) is the first return time.
Induced system is quite different from the original.

MDS is self-inducing if it is affine isomorphic to its induced
system.



In other words, there is an affine isomorphism ¢ such that
X 5 X
T

- Y

Y —
T

holds for almost all X.

A Pisot number is an algebraic integer > 1 whose
conjugates have modulus less than 1. The scaling constant
(dominant eigenvalue) of the self-inducing structure is a Pisot
number in number of important dynamics related to number
theory:



e Irrational rotation and continued fraction: Legendre and
Gauss

e Jacobi-Perron algorithm:
e Substitutive dynamical system: Pisot conjecture
e Tiling dynamical systems

e Domain exchanges (today’s talk)



Basic question:

Why do Pisot numbers appear in number of self-inducing
structures?



Conjecture 1. For any —2 < A < 2, the sequence defined by
0<ani1+ Aa, +a,_1 <1 is periodic.

In [1] with Brunotte, Pethé and Steiner, we proved a

Theorem 1. The conjecture is valid in the following cases:
)\:ili\/gjj:\/i7:|:\/§

2
The case %5 iIs not new. This was shown by Lowenstein,
Hatjispyros and Vivaldi [3] with heavy computer assistance.
Similar problems (digital filters, rounding off error control) were
studied by dynamical people: Vivaldi, Kouptsov, Lowenstein,
Goetz, Poggiaspalla, Vladimirov, Bosio, Shaidenko, . . ..




Let us fix A = (1 +/5)/2 and ¢ = exp(2mv/—1/5). Our

problem is embedded into a piecewise isometry 1" acting on a
lozenge L = [0,1) + (—=¢~1)[0,1) :

Our task is to prove that elements of Z|(] N L has purely
periodic orbits.



Figure 1: The orbit of 1/3
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Figure 2



Self-inducing structure

Consider a region L' = w™ 2L and the first return map

A

T(x) =T™)(g)

for £ € L’ where m(x) is the minimum positive integer such
that 7(*)(z) € L'. For any = € L', the value m(x) = 1,3 or
6. Then

W (w2z) =T (x) (1)

for x € L.



Figure 3: Self Inducing structure



Periodicity

1. Denote by S the composition of 1-st hitting map and
expansion by w?. The map S decreases the period of
T, If exists.

2. For a point in Z|[(], we have a clear distinction:
S-orbit is finite <= T-orbit is periodic
S-orbit is periodic <= T-orbit is aperiodic

3. Finite candidates to be examined to the required periodicity.
Further we can show that 1Z[(] are periodic but 1/3 is
aperiodic.



Pisot scaling conjecture

Are there self-inducing structures in domain exchanges of
other angles?

Yes, for (,, with n = 5,7,8,9,10,12. The case n = 7,9
cubic Pisot numbers appear.



Aperiodic points

Because of the discontinuity of the system, the ‘'minimal’ set
Is not closed nor open. To study the set A of aperiodic points,
another self-inducing structure plays an important role.

Figure 4: Induced Rotation T on T'(Z)
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Figure 5: Self-inducing structure of (T'(Z),T)



Beta expansion with rotation
Each point x € T'(Z) is expanded into:

le Cmg ms3 my
L1 :dml (de_I_ (dm3—|—7 (dm4—|—F

(2)

with digits

{d07d27d37d5} — {O C? f} (,jC}

Therefore A NT(Z) must be contained in the attractor of an
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Figure 6: Attractor containing ANT(Z2)



The first return map is coded by a substitution oy:

a — aaba, b — baba.

on {a,b}*. One can confirm that

f ~

oo(d(z))
(<" a ® ao(d(T(z)))
(w2 * > <ba@00( (T (7))
Laba @ ao(d(T?(x)))

where @ i1s the concatenation of letters.

(4)

S 3 3 3
|
L BNJUR R



Using conjugate substitutions:

oo(b) = baba
01 (b)

0'2([))
Og(b)

= aaba,

O'Q(CL)
Ul(a)

abab

aaab,

baba

= baaa,

O'Q(CL)
O'3(CL)

abab

= abaa,

O N M o

S §E & E




Each element x € T(Z) N A is written as:

~ ~

A(2) = Oy (O (Oms . 0e(d(22)) ... ).

This shows that d(z) is an S-adic limit of o; (i = 0,1, 2, 3).



Theorem 2. Within Y', the addresses of A NT(Z) are
recognized by a Buchi automaton.

Figure 7: Tails of periodic expansions in Y’



The substitution og:
a — aaba, b — baba

satisfies the coincidence condition in the sense of Dekking [2, 4].
The substitutive dynamical system has pure discrete spectrum.
Its equicontinuous factor is conjugate to the odometer on Zs.
Our coding makes explicit this connection in the following:



Theorem 3. (Y’,]B%y/,y,f) s 1somorphic to the 2-adic
odometer (Za,x +— x + 1):

7o -5 7,

o| el (5)

Y’iY’

Moreover the division map

7z — (z mod 4)
’ 4

p:T

from Zo to itself gives an isomorphism of multiplicative



dynamaics:
Ty £ 7o

o] o (6)

Yy 2y
Corollary 4. Each aperiodic point t € ANT(Z), the T-orbit
of x is uniformly distributed in Y’ with respect to the self
similar measure v.



It is possible to construct a natural extension of the
multiplicative system by using the dual numeration system.
We use a conjugate map ¢ : { — (% in Gal(Q(¢)/Q). We
confirm ¢(w) = —1/w. Let us denote by u; = ¢(v;). Each
point Is written as

—2iy [, —2iy / —2is
() )

Combining dual number system with the original one, we can
construct a natural bi-infinite extension of this multiplicative
system. The dynamics on the dual is described as base 4 adding
machine on the fractal simple arc:
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Figure 8: Dual of the aperiodic points
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