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Let (X, B, µ, T ) be a discrete time measure theoretical

dynamical system (MDS). By Poincaré’s recurrence theorem,

for a set Y ∈ B with µ(Y ) > 0, T -orbits of almost all points in

Y are recurrent.

We can define the induced system: (Y, BY , 1
µ(A)µ, T̂ ) by

putting T̂ (x) = Tm(x)x where m(x) is the first return time.

Induced system is quite different from the original.

MDS is self-inducing if it is affine isomorphic to its induced

system.



In other words, there is an affine isomorphism ϕ such that

X
T−→ X

ϕ

y yϕ

Y −→̂
T

Y

holds for almost all X.

A Pisot number is an algebraic integer > 1 whose

conjugates have modulus less than 1. The scaling constant

(dominant eigenvalue) of the self-inducing structure is a Pisot

number in number of important dynamics related to number

theory:



• Irrational rotation and continued fraction: Legendre and

Gauss

• Jacobi-Perron algorithm:

• Substitutive dynamical system: Pisot conjecture

• Tiling dynamical systems

• Domain exchanges (today’s talk)



Basic question:

Why do Pisot numbers appear in number of self-inducing

structures?



Conjecture 1. For any −2 < λ < 2, the sequence defined by
0 ≤ an+1 + λan + an−1 < 1 is periodic.

In [1] with Brunotte, Pethő and Steiner, we proved a

Theorem 1. The conjecture is valid in the following cases:
λ = ±1±

√
5

2 ,±
√

2,±
√

3

The case 1−
√

5
2 is not new. This was shown by Lowenstein,

Hatjispyros and Vivaldi [3] with heavy computer assistance.

Similar problems (digital filters, rounding off error control) were

studied by dynamical people: Vivaldi, Kouptsov, Lowenstein,

Goetz, Poggiaspalla, Vladimirov, Bosio, Shaidenko, . . . .



Let us fix λ = (1 +
√

5)/2 and ζ = exp(2π
√
−1/5). Our

problem is embedded into a piecewise isometry T acting on a

lozenge L = [0, 1) + (−ζ−1)[0, 1) :

D

Z

THDL

THZL

Our task is to prove that elements of Z[ζ] ∩ L has purely

periodic orbits.
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Figure 1: The orbit of 1/3
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Figure 2: The orbit of 1/3



Self-inducing structure

Consider a region L′ = ω−2L and the first return map

T̂ (x) = Tm(x)(x)

for x ∈ L′ where m(x) is the minimum positive integer such

that Tm(x)(x) ∈ L′. For any x ∈ L′, the value m(x) = 1, 3 or

6. Then

ω2T̂ (ω−2x) = T (x) (1)

for x ∈ L.
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Figure 3: Self Inducing structure



Periodicity

1. Denote by S the composition of 1-st hitting map and

expansion by ω2. The map S decreases the period of

T , if exists.

2. For a point in Z[ζ], we have a clear distinction:

S-orbit is finite ⇐⇒ T -orbit is periodic

S-orbit is periodic ⇐⇒ T -orbit is aperiodic

3. Finite candidates to be examined to the required periodicity.

Further we can show that 1
2Z[ζ] are periodic but 1/3 is

aperiodic.



Pisot scaling conjecture

Are there self-inducing structures in domain exchanges of

other angles?

Yes, for ζn with n = 5, 7, 8, 9, 10, 12. The case n = 7, 9
cubic Pisot numbers appear.



Aperiodic points

Because of the discontinuity of the system, the ‘minimal’ set

is not closed nor open. To study the set A of aperiodic points,

another self-inducing structure plays an important role.
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Figure 4: Induced Rotation T̃ on T (Z)



Α

T
~2
HΑL

T
~3
HΑL

T
~4
HΑL

P0
T
~

HΑL

Β

T
~2
HΒL

T
~

HΒL

T
~3
HΒL

R

THRL

P1

Figure 5: Self-inducing structure of (T (Z), T̃ )



Beta expansion with rotation

Each point x ∈ T (Z) is expanded into:

x1 = dm1 +
ζm1

ω2

(
dm2 +

ζm2

ω2

(
dm3 +

ζm3

ω2

(
dm4 +

ζm4

ω2
. . .

(2)

with digits

{d0, d2, d3, d5} =
{

0, ζ,
ζ

ω
, − 1

ωζ

}
.

Therefore A ∩ T (Z) must be contained in the attractor of an



IFS:

Y ′ =
(

1
ω2

Y ′ + d0

)
∪

(
ζ2

ω2
Y ′ + d2

)
∪

(
ζ3

ω2
Y ′ + d3

)
∪

(
ζ5

ω2
Y ′ + d5

)
(3)
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Figure 6: Attractor containing A ∩ T (Z)



The first return map is coded by a substitution σ0:

a → aaba, b → baba.

on {a, b}∗. One can confirm that

d̃
(

ζm

ω2
x + dm

)
=


σ0(d̃(x)) m = 0

a ⊕ σ0(d̃(T̃ (x))) m = 2

ba ⊕ σ0(d̃(T̃ 2(x))) m = 3

aba ⊕ σ0(d̃(T̃ 3(x))) m = 5

(4)

where ⊕ is the concatenation of letters.



Using conjugate substitutions:

σ0(a) = aaba, σ0(b) = baba

σ1(a) = aaab, σ1(b) = abab

σ2(a) = baaa, σ2(b) = baba

σ3(a) = abaa, σ3(b) = abab

d̃
(

ζm

ω2
x + dm

)
=


σ0(d̃(x)) m = 0

σ1(d̃(T̃ (x))) m = 2

σ2(d̃(T̃ 2(x))) m = 3

σ3(d̃(T̃ 3(x))) m = 5.



Each element x ∈ T (Z) ∩ A is written as:

d̃(x) = σm1(σm2(σm3(. . . σℓ(d̃(xℓ)) . . . ))).

This shows that d̃(x) is an S-adic limit of σi (i = 0, 1, 2, 3).



Theorem 2. Within Y ′, the addresses of A ∩ T (Z) are
recognized by a Büchi automaton.
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Figure 7: Tails of periodic expansions in Y ′



The substitution σ0:

a → aaba, b → baba

satisfies the coincidence condition in the sense of Dekking [2, 4].

The substitutive dynamical system has pure discrete spectrum.

Its equicontinuous factor is conjugate to the odometer on Z2.

Our coding makes explicit this connection in the following:



Theorem 3. (Y ′, BY ′, ν, T̃ ) is isomorphic to the 2-adic
odometer (Z2, x 7→ x + 1):

Z2
+1−−→ Z2

ϕ

y ϕ

y
Y ′ T̃−→ Y ′

(5)

Moreover the division map

ρ : x 7→ x − (x mod 4)
4

from Z2 to itself gives an isomorphism of multiplicative



dynamics:
Z2

ρ−→ Z2

ϕ

y ϕ

y
Y ′ S−→ Y ′.

(6)

Corollary 4. Each aperiodic point x ∈ A∩ T (Z), the T̃ -orbit
of x is uniformly distributed in Y ′ with respect to the self
similar measure ν.



It is possible to construct a natural extension of the

multiplicative system by using the dual numeration system.

We use a conjugate map ϕ : ζ → ζ2 in Gal(Q(ζ)/Q). We

confirm ϕ(ω) = −1/ω. Let us denote by ui = ϕ(vi). Each

point is written as

ζ−2i1

ω2

(
ζ−2i2

ω2

(
ζ−2i3

ω2
((. . . ) − ui3)

)
− ui2

)
− ui1

Combining dual number system with the original one, we can

construct a natural bi-infinite extension of this multiplicative

system. The dynamics on the dual is described as base 4 adding

machine on the fractal simple arc:
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Figure 8: Dual of the aperiodic points
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