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Diffraction theory

Structure: translation bounded measure ω

assumed ‘amenable’

Autocorrelation: γ = γω = ω ⊛ ω̃ := lim
R→∞

ω|R ∗ ω̃|R
vol(BR)

Diffraction: γ̂ = γ̂pp + γ̂sc + γ̂ac (relative to λ)

pp: Bragg peaks only (lattices, model sets)

ac: diffuse scattering with density

sc: whatever remains ...
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Thue-Morse chain

Substitution: ̺ :
1 7→ 11̄

1̄ 7→ 1̄1
( 1̄ =̂ −1 )

Iteration and fixed point:

1 7→ 11̄ 7→ 11̄1̄1 7→ 11̄1̄11̄111̄ 7→ . . . −→ v = ̺(v) = v0v1v2v3 . . .

v2i = vi and v2i+1 = v̄i

v is (strongly) cube-free

hull of v is aperiodic and strictly ergodic

vi = (−1)sum of the binary digits of i

Two-sided version: wi =

{
vi, for i ≥ 0

v−i−1, for i < 0
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Autocorrelation
Autocorrelation: γ = lim

n→∞

1
2n+1

(
ω|n ∗ ω̃|n

)

with ω|n =
n∑

i=−n

wi δi

Structure: γ =
∑

m∈Z
η(m) δm

with η(m) = lim
n→∞

1
n

n−1∑

i=0

vi vi+m

and η(−m) = η(m) for m ≥ 0

Recursion: η(0) = 1, η(1) = −1
3 and, for all m ≥ 0,

η(2m) = η(m) and η(2m+ 1) = −1
2

(
η(m) + η(m+ 1)

)
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Diffraction: Absence of pp part

γ̂ = µ ∗ δ
Z

with µ = γ̂
∣∣
[0,1)

and η(m) =
∫ 1
0 e2πimy dµ(y)

(Herglotz-Bochner)

Wiener’s criterion: µpp = 0 ⇐⇒ Σ(N) = o(N)

where Σ(N) =
∑N

m=−N

(
η(m)

)2

Argument: Σ(4N) ≤ 3
2Σ(2N) (by recursion for η)

=⇒ µ = µcont = µsc + µac

Define: F (x) = µ
(
[0, x]

)
for x ∈ [0, 1], where F = Fac + Fsc

Workshop on Fractals and Tilings, Strobl, July 2009 – p.6



Diffraction: Absence of ac part

Functional relation:
dF

(
x
2

)
+dF

(
x+1

2

)
= dF (x)

dF
(
x
2

)
−dF

(
x+1

2

)
= − cos(πx) dF (x)

valid for Fac and Fsc separately (µac ⊥ µsc)

Define: ηac(m) =
∫ 1
0 e2πimx dFac(x)

y same recursion as for η(m), but ηac(0) free

Riemann-Lebesgue lemma: limm→±∞ ηac(m) = 0

=⇒ ηac(0) = 0 =⇒ ηac(m) ≡ 0 =⇒ Fac = 0

(Fourier uniqueness thm)

Theorem: µ = µsc and γ̂ is purely sc.
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Fourier series
Functional equation: F (1 − x) + F (x) = 1 on [0, 1] and

F (x) =
1

2

∫ 2x

0

(
1 − cos(πy)

)
dF (y) for x ∈ [0, 1

2 ]

=⇒ F (x) = x+
∑
m≥1

η(m)
mπ sin(2πmx)

F (x) − x continuous and of bounded variation

Uniformly convergent Fourier series

Unique solution (contraction argument)

F strictly increasing =⇒ supp(µ) = [0, 1]
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Volterra iteration
Define: F0(x) = x and

Fn+1(x) =
1

2

∫ 2x

0

(
1 − cos(πy)

)
F ′
n(y) d(y)

for n ≥ 0 and x ∈ [0, 1

2
],

extension to [0, 1] by symmetry

=⇒ dFn(x) = gn(x) dx

=⇒ gn(x) =
n−1∏

k=0

(
1 − cos(2k+1πx)

)

Riesz product: sequence of ac measures,

vague convergence to µ = µsc
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TM measure
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Generalised Morse sequences

Substitution: ̺ :
1 7→ 1k 1̄ℓ

1̄ 7→ 1̄k 1ℓ
(with k, ℓ ∈ N)

Fixed point: v0 = 1, v
m(k+ℓ)+r =

{
vm, if 0 ≤ r < k

v̄m, if k ≤ r < k + ℓ

Coefficients: η(0) = 1, η(1) = k+ℓ−3
k+ℓ+1 , and

η
(
(k + ℓ)m+ r

)
= 1

k+ℓ

(
αk,ℓ,r η(m) + αk,ℓ,k+ℓ−r η(m+ 1)

)

with m ∈ N0, 0 ≤ r ≤ k + ℓ− 1, and

αk,ℓ,r = k + ℓ− r − 2 min(k, ℓ, r, k + ℓ− r)
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Generalised Morse sequences, ctd

Fourier series: F (x) = γ̂
(
[0, x]

)

= x+
∑

m≥1

η(m)
mπ sin(2πmx)

(uniform convergence)

Riesz product:
∏

n≥0

ϑ
(
(k + ℓ)nx

)
with

ϑ(x) = 1 +
2

k + ℓ

k+ℓ−1∑

r=1

αk,ℓ,r cos(2πrx)

(vague convergence)

Workshop on Fractals and Tilings, Strobl, July 2009 – p.12



Period doubling sequences

Block map: ψ : 11̄, 1̄1 7→ a, 11, 1̄1̄ 7→ b

y gen. period doubling: ̺′ :
a 7→ bk−1abℓ−1b

b 7→ bk−1abℓ−1a

XTM
̺

−−−→ XTM

ψ

y
yψ (2:1)

Xpd
̺′

−−−→ Xpd

π

y
yπ (a.e. 1:1)

Sol × 2
−−−−−→
× (k+ℓ)

Sol

↑

coincidence
=⇒ model set

(Dekking)
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