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Diffraction theory

Structure: translation bounded measure w
assumed ‘amenable’

—~——

: w X W
Autocorrelation: ~ =5, = w®® := lim r*wlg

R—oo VOI(BR)

Diffraction: = :y\pp + :V\sc + :V\ac (relative to \)

® pp. Bragg peaks only (lattices, model sets)
#® ac. diffuse scattering with density
#® sc. Wwhatever remains ...
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Substitution:

Thue-Morse chain

0 :

1+— 11

_ 1= -1
1— 11 ( )

lteration and fixed point:

1— 11+ 1111 — 11111111 +— ... — v = p(v) = Yyv V505 . . .

7

]
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Two-sided version:  w; = {

and

Ugir1 = Y;

v IS (strongly) cube-free

hull of v Is aperiodic and strictly ergodic

v; = (_1)sum of the binary digits of ¢

(e for t > 0
v_i—1, for 1 <O
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Autocorreation

P _ 1 1 e
Autocorrelation: v = lim 5t (wln *wln)
n
with w\n — Z w; 0;
1=—"n

Structure: v = ) .7 n(m)om

Recursion:

n—1
with n(m) = nh_)rg@%sz Vitm
1=0

and n(—m) = n(m) form >0

and, for all m > 0,

W=

n0) =1, n(l) = —

n(2m) = n(m)

and  [n(2m +1) = —3(n(m) +n(m + 1))

Workshop on Fractals and Tilings, Strobl, July 2009

-p5



Diffraction: Absence of pp part

= . N 1
Y =pxo,| with p= 7|[071) and n(m)= [, e e2™my du(y)

(Herglotz-Bochner)

Wiener's criterion:  ppp =0 <= X(N) =o(N)

where X(N) = Zﬁ:_N(n(m)f

Argument: Y (4N) <

][OV

Z(QN) (by recursion for 7)

—> b = [bcont = Msc T Mac

Define:  F(xz) = p([0,2]) forz € [0,1], where F = F,, + Fy
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Diffraction: Absence of ac part

Functional relation:

valid for F,. and F. separately (ttac L fsc)

Define:  nac(m) = [; ™™ dFyo(x)
M same recursion as for n(m), but 7,c(0) free
Riemann-Lebesgue lemma:  limy, 1o Nac(m) =0

— 72c(0)=0 = 1Mac(m)=0 = F,=0

(Fourier uniqueness thm)

Theorem: |u=psc| and 7 Is purely sc.
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Fourier series

Functional equation: F(1 —x)+ F(z) =1 on [0, 1] and

27
F(x) = %/0 (1 — cos(my)) dF (y) forx € [0, 3]
— Flx)=x+ > nT(M) sin(27wmax)
m>1

F(x) — x continuous and of bounded variation
Uniformly convergent Fourier series

Unigue solution (contraction argument)

© o o @

F strictly increasing =  |supp(u) = [0, 1]
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Volterra iteration

Define:  Fy(z) =2 and

2x
Funala) =5 [ (1= cos(m) Fo(w) d(w

forn > 0and z € [0, 3],

extension to [0, 1] by symmetry

—> dF,(z) = gp(x) dx

n—1

— gn(z) = H (1 — cos(28rz))
k=0

Riesz product: sequence of ac measures,

vague convergence to i = Usc
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TM measure
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Generalised M or se sequences

1 1k ié
Substitution: SR ith k,/ € N
0% 5 Tkl (with &, ¢ € N)
Fixed point: 1 Uy If 0 <1 <k
" v — ] U p—
: IO by, k< < k40

Coefficients: 7(0) =1, n(1) = ££=3, and

n((k+Om+r) =135 (g (M) + g gygp n(m 4 1))

withm € Ny, 0<r<k+/¢—-1, and
. =k+L€—r—2min(k,l,r,k+{—1)
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Generalised M or se sequences, ctd

Fourier series:  F(z) = 5([0, z])

= T+ Z mm) gin (2mrma)
m>1

(uniform convergence)

Riesz product: | [9((k + ¢)"z)  with

n>0
9 k+0—1
I(x) =1+ ] ; g, COS(2Mr )

(vague convergence)
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Period doubling sequences

Block map: ¢: 11,11+~

~ gen. period doubling:

Xt —— Xoum

0| [v @

/

o
Xpa —— Xpg

wl lw (a.e. 1:1)

Sol X2 > Sol
X (k+¢)

Workshop on Fractal

a, 11,11—b

)

,  a— bE—Lapt=1p
O s b lghtlg

I

coincidence
— model set
(Dekking)
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