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Introduction

Mathematicians do not study objects, but relations between objects. Thus,
they are free to replace some objects by others so long as the relations
remain unchanged. Content to them is irrelevant: they are interested in
form only.
–Henri Poincaré



Introduction

Homotopy

A key notion in this talk will be the notion of homotopy. We say that two
continuous functions f, g : X → Y are homotopic if there is a homotopy
between them, which is a continuous map H : X × [0, 1] → Y with the
property that H(∗, 0) = f and H(∗, 1) = g. We see that the property of
being homotopic maps with the same domain and codomain is an
equivalence relation.



Introduction

Nulhomotopy and homotopy equivalence

A continuous map f : X → Y is nulhomotopic if it is homotopic to a
constant map. Two spaces X, Y are homotopy equivalent if there exist
continuous maps f : X → Y , g : Y → X so that f ◦ g and g ◦ f are
homotopic to the identity map on Y and X respectively. A space is said
to be contractible if it is equivalent to a single point.



The fundamental group

Definition

The fundamental group of the space X based at x0, denoted π1(X, x0), is
the set of homotopy classes of continuous maps from the unit interval
I = [0, 1] into X with the provisions

• All maps send both 0 and 1 to x0

• Two maps are considered equivalent if they are homotopic by a
homotopy that always sends {0, 1} to x0.

Clearly the constant map (x0) is an identity for this group and if
f : I → X then [f(t)]−1 = [f(1− t)].

We say a space is simply connected if it is path connected and has a trivial
fundamental group.
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The fundamental group

A few standard (locally) simple examples: A point, a circle, an n-sphere
(n > 1), a torus, a bouquet of two circles.



The fundamental group graphs and free groups

• The fundamental group of a graph is an example of a free group.

• One way to represent a free group is by words in a free basis. In this
setting we think of the free basis as giving an alphabet in which to
write words. A word is just a string consisting of elements of the
alphabet and their formal inverses. A free group is isomorphic the
group of equivalence classes of words on a free basis with operation
being string concatenation and the the equivalence relation being
generated by deleting or inserting occurrences of aa−1 or a−1a for a
in the alphabet.
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Complicated Constructions The Hawaiian Earring

The art of doing mathematics consists in finding that special case which
contains all the germs of generality.
–David Hilbert



Complicated Constructions The Hawaiian Earring

Higman’s example

In the 1940’s Graham Higman wrote 2 papers which touched on a group
that turned out to be the fundamental group of the Hawaiian earring.

There have been numerous papers discussing this group since then. It has
several interesting properties. It’s uncountable, it’s not a free group, it can
be represented as a group of transfinite words similar to the words in a free
group.
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Complicated Constructions The Hawaiian Earring

The combinatorial structure of the Hawaiian earring

Definition

The fundamental group of the Hawaiian earring, called the Hawaiian
earring group, has, by a theorem of Jim Cannon and myself, an algebraic
structure as a group of words, similar to that of a free group. The
difference is that the word structure Hawaiian earring group is built on the
notion of countable words.



Complicated Constructions The Hawaiian Earring

Definition of a transfinite word

Definition

A countable word w

: d → A such that | w−1(a) |< ∞ ∀ a ∈ A.

• is a function

• from a countable ordered set –the domain or order type of the word

• into countably many symbols and their formal inverses

• with the provision that each symbol can appear only finitely many
times in any word.
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Words

Here are some examples of such words

• x1x2 · · ·

a word whose order type is ω.

• (x1x2x3 · · · )(x2x3 · · · )(x3 · · · ) · · · has order type ω2.

• There are words with any countable order type. For example this
word is based on the order type of the intervals in the complement of
the Cantor set:

((. . . )(x2)(. . . ))(x1)((. . . )(x2)(. . . ))

We call this word a Cantor word since the path it represents goes
through the basepoint on the Cantor set.
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Anomalous Example

Let’s construct a homomorphism from the Hawaiian earring group to Z/2
as follows:

Hawaiian earring group
↓
ZN count the number of signed times you go around each loop
↓
(Z/2)N parity of entries
↓
Z/2 by sending each ei = (0, 0, . . . , 0, 1, 0, . . .) to zero, (1, 1, 1, . . . ) to 1
and then extending to a basis of the vector space (Z/2)N.

• Every basic circle in the Hawaiian earring is mapped trivially but the
map isn’t trivial.

• The homomorphism is not induced by a continuous map.

• Gives a subgroup of the Hawaiian earring group of index two for
which there is no covering space.
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Complicated Constructions Rebuilding spaces from groups

How could one tell the fundamental groups of these spaces apart?

A theorem that I proved with Katsuya Eda shows that you can reconstruct
these spaces as equivalence classes of Hawaiian earring subgroups of their
fundamental groups.
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Complicated Constructions Rebuilding spaces from groups

In 2003, Eda and I discovered a construction:

Construction (C-Eda)

Suppose X is a one-dimensional locally connected compact metric space.

• Let H = {K ≤ π1(X) | K ' uncountable quotient group of H}

• H1 ∼ H2 if ∃H3 ⊇ 〈H1 ∪H2〉 ∈ H (∼ is an equivalence relation).

• Give H/ ∼ the topology induced by Hi → H if ∀i Hi ∩H 6= {e}.
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Complicated Constructions Rebuilding spaces from groups

Bad set is an algebraic invariant in one-dimension

Result from 2005:

Theorem (C-Eda)

If X is a one-dimensional locally connected compact metric space then
H(X)/ ∼, is isomorphic to the subspace B(X) of X consisting of points
which don’t have simply connected neighborhoods, and thus B(X) is an
invariant of the fundamental group of X.



Complicated Constructions Rebuilding spaces from groups

Homomorphisms into planar sets are continuous

New Result

Theorem (Curt Kent’s Master’s Thesis 2008)

Every homomorphism from the fundamental group of the Hawaiian earring
group into the fundamental group of a connected compact subset of the
Euclidean plane is induced by a continuous map.

Open Question: Is every homomorphism between fundamental groups of
one-dimensional or planar Peano continua conjugate to one which is
induced by a continuous function?



Complicated Constructions Rebuilding spaces from groups

Bad set is an algebraic invariant of planar sets

Using Curt Kent’s 2008 masters thesis, a construction from a 2007 paper
of Cannon-C , and a new construction of Eda we obtain

New Result

Theorem (C-Kent)

If X is a connected, locally connected compact subset of the Euclidean
plane then H(X)/ ∼, is isomorphic to the subspace B(X) of X consisting
of points which don’t have simply connected neighborhoods, and thus
B(X) is an invariant of the fundamental group of X.



Shelah’s theorem and generalizations

A beautiful theorem of Shelah, and a new tool

In 1989 Shelah proved a wonderful

Theorem (Shelah ‘89)

The fundamental group, π1, of a connected, locally connected, compact,
metric space is either finitely generated or uncountable.

Recently, Sam Corson and I have proven the following generalization of
Shelah’s theorem:

Theorem (New Result: C-Corson )

The n-th homotopy group, πn, of an (n− 1)-connected, compact, metric
space is either finitely presented or uncountable.
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Shelah’s theorem and generalizations

A local version of Shelah’s theorem

Definition

If X is a topological space, x0 ∈ X, and U ⊇ V then πU
1 (V, x0) denotes

the natural image of π1(V, x0) in π(U, x0). Also, π1(X, x0) is locally
trivial (also known as semilocally simply-connected) if for every U there
exists a V such that πU

1 (V, x0) is trivial and is locally countable if for every
U there exists a V such that πU

1 (V, x0) is countable.

The following is a restatement of Shelah’s theorem in this new notation

Theorem (Shelah ‘89)

If the fundamental group, π1, of a connected, locally connected, compact,
metric space is countable then it is locally trivial.

Theorem (New Result: C-Eda ‘09)

If the fundamental group, π1, of a first countable topological space is
locally countable then it is locally trivial.
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Techincal Tools

Terminology

Definition

If x is an element of the path connected space X, we say that x is bad if
every self-homotopy of X fixes x. B(X) will denote the collection of bad
points in X. Clearly B(X) is a closed homotopy invariant subset of X.
We say that X is wild if B(X) = X.

If X is a one-dimensional or planar Peano continuum, we will use the
following equivalent formulations:

• x ∈ B(X) if every neighborhood of x contains a curve which cannot
be freely homotoped out of that neighborhood.

• x ∈ B(X) if every neighborhood of x contains a curve which is
essential (non-nullhomotopic).



Techincal Tools

Exercise

Show that no two are homotopy equivalent:

The Sierpinski curve

Zastrow’s space



Techincal Tools

An Artinian property of fundamental groups

Theorem (Cannon-C)

Let X be a topological space, let f : π(X, x0) −→ L be a homomorphism
to the group L, U1 ⊇ U2 ⊇ · · · be a countable local basis for X at x0, and
Gi be the image of the natural map of π(Ui, x0) into π(X, x0). Then

• If L is countable then the sequence f(G1) ⊇ f(G2) ⊇ · · · is
eventually constant.

• If L is Abelian with no infinitely divisible elements then⋂
i∈N f(Gi) = {0L}.

• If X is a one-dimensional Peano continuum and L is a “nice” group
then im(f) is finitely generated and f(Gi) = {0L} for some i ∈ N.

What does “nice” mean?
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A Useful Invariant

Definition

If X is Peano continuum which is either planar or one-dimensional, we
define Q(X) to be the set of points of X for which every neighborhood
contains a simple closed curve that cannnot be freely homotoped into
B(X). Clearly Q(X) ⊆ ∂B(X). If X is wild, Q(X) must be empty.

It is not difficult to show that Q(X) is a homotopy invariant of X. You
should now be able to solve some of the previous exercise.
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Techincal Tools

Another Exercise

Exercise: Show that Zastrow’s example above cannot be homotopy
equivalent to any one-dimensional Peano continuum. Hint:
What would happen to the boundary of the disk under a
homotopy equivalence to a one dimensional space?



Recent work in the planar setting

Open Question

If the fundamental group of a planar set is isomorpic to the fundamental
group of a one-dimensional space, must the planar set be homotopic to a
one-dimensional subset of the plane?



Recent work in the planar setting

Homotopy dimension

Theorem (Cannon-C)

A planar Peano continuum,M ,is homotopy equivalent to a one-dimensional
Peano continuum if and only if the following two conditions are satisfied:

• No component of M −B(M) is equal to component of R2 −B(M).
In other words, every component of M −B(M) is “missing a point of
R2”.

• For every closed disk D in the plane, the set of components of
D ∩ (M −B(M)) which are components of D −B(M) form a null
set. In other words, the collection of components of of M −B(M)
which do not “miss a point from D” forms a null sequence.
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Example

Schematic: Can’t be homotoped to be 1-dim.
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A nicer example

This schematic represents a space which is homotopically

one–dimensional.



Recent work in the planar setting

Related topics

Theorem (Cannon-C)

The fundamental group of any planar Peano continuum embeds in that of
a one-dimensional planar Peano continuum, and thus into that of the
Sierpinski curve.

Conjecture A planar Peano continuum has a fundamental group which
embeds in the Hawaiian earring group if and only if its bad
set contains no simple closed curves.
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