Connectivity via Jordan Forms

Eva Curry and Avra Laarakker

Acadia University Wolfville, Nova Scotia, Canada

Workshop on Fractals and Tilings Strobl, Austria July 6, 2009

Definitions

- A *dilation matrix* on a lattice Γ ⊂ ℝ^m is an m × m matrix A : Γ → Γ with all eigenvalues λ of A satisfying |λ| > 1. For us, Γ = ℤ^m, A ∈ M_m(ℤ).
- A *digit set* for A is a complete set of coset representatives of Γ/A(Γ). We use a centered canonical digit set D = A(F) ∩ Z^m, where F = (-1/2, 1/2)^m is a fundamental domain for Γ = Z^m centered at the origin. Eg. A = 4, D = {-1, 0, 1, 2}.
 T(A, D) = {x ∈ ℝ^m : x = ∑_{j=1}[∞] A^{-j}d_j, d_j ∈ D}

Basic Facts

- T(A, D) is the attractor of the IFS $\{f_d(x) = A^{-1}(x+d) : d \in D\}$.
- T(A, D) is self-affine: $T(A, D) = \bigcup_{d \in d} A^{-1} (T(A, D) + d)$.
- (Curry) When A yields a radix representation for Γ with digit set D, T(A, D) is a set of "fractions", congruent to the fundamental domain of Γ.
- (Gröchenig and Haas) T(A, D) tiles ℝ^m under translation by Γ or some sub-lattice of Γ.

Introduction

Connectivity via Jordan Forms

The Skewness Problem Removing Skew Through Jordan Forms The Case for Two Dimensions References

Conjecture

For every dilation matrix $A \in M_m(\mathbb{Z})$, there exists a digit set D for which T(A, D) is a connected set in \mathbb{R}^m .

Eva Curry and Avra Laarakker

Approximates

Set

$$T_0 = F = \left(-\frac{1}{2}, \frac{1}{2}\right]^m, \quad T_n = \bigcup_{d \in D} A^{-1}(T_{n-1} + d).$$

Then $\lim_{n\to\infty} T_n = T(A, D)$ in the Hausdorff metric.

• Define the *level sets* of the digit set D by

$$D_1 = D, \quad D_n = \left\{ k \in \Gamma : \ k = \sum_{j=0}^{n-1} A^j d_j, \ d_j \in D \right\}$$

(as in Gröchenig and Haas).

Multiplying T_n by A^n : $A^nT_n = F + D_n$.

Connectedness and Lattice Connectedness

Lemma

The set T_n is connected if and only if the level set D_n is lattice connected.

Lemma (Kirat and Lau)

Suppose that T_n is a sequence of compact, connected subsets of \mathbb{R}^m , and that in the Hausdorff metric $T = \lim_{n \to \infty} T_n$. Then T is connected.

That is, T(A, D) is connected whenever the approximates T_n are connected for all sufficiently large n, equivalently, whenever the level sets D_n are lattice connected for all sufficiently large n.

Matrix Transformations

Matrices can:

- dilate (or contract) along an axis
- rotate in some plane
- skew along an axis

Dilation and rotation will not affect lattice connectedness of D_n ; skewing might.

Example: Skew Leading to Disconnected D_n

Similar Matrices

Definition

A matrix B is similar to the matrix A if there exists an invertible matrix P such that $A = PBP^{-1}$.

Let *B* be similar to *A*, let D_B be a digit set for *B*, and set $D_A = P(D_B)$. Then $T(A, D_A) = P(T(B, D_B))$ (following Lagarias and Wang).

Lemma

The set $T(A, D_A)$ is connected if and only if $T(B, D_B)$ is connected.

Jordan Form I

Every matrix $A \in M_m$ is similar to a diagonal or almost diagonal matrix $J \in M_m$,

$$J = \left[egin{array}{ccc} J_{\lambda_1} & & 0 \ & \ddots & \ 0 & & J_{\lambda_r} \end{array}
ight]$$

where

- $\lambda_1, \ldots, \lambda_r$ are the eigenvalues of *A* (with multiplicity)
- $J_{\lambda_i} = \lambda_i$ if the corresponding eigenspace is 1-dimensional

Jordan Form II

• if the eigenspace corresponding to λ_i is *s*-dimensional, then

$$J_{\lambda_i} = \left[egin{array}{cccc} \lambda_i & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda_i \end{array}
ight]$$

Real Jordan Form

If $A \in M_m(\mathbb{R})$, then eigenvalues are roots of a polynomial with real coefficients. Thus if $\lambda_+ = a + bi$ is an eigenvalue, then $\lambda_- = a - bi$ is also an eigenvalue.

• dim
$$\lambda_+ = \dim \lambda_-$$

•
$$\begin{bmatrix} J_{\lambda_{+}} & 0 \\ 0 & J_{\lambda_{-}} \end{bmatrix} \sim \begin{bmatrix} J_{\lambda_{*}} & I_{2} & 0 \\ & \ddots & \ddots \\ & & \ddots & I_{2} \\ 0 & & & J_{\lambda_{*}} \end{bmatrix}$$
 with $J_{\lambda_{*}} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

• number of blocks $J_{\lambda_*} = \dim \lambda_{+/-}$

Extension: Rational Jordan Form

If $A \in M_m(\mathbb{Z})$, then eigenvalues are roots of a polynomial with integer coefficients. Thus if $\lambda_+ = a + b\sqrt{c}$ is an eigenvalue, with \sqrt{c} irrational, then $\lambda_- = a - b\sqrt{c}$ is also an eigenvalue.

• dim
$$\lambda_+ = \dim \lambda_-$$

•
$$\begin{bmatrix} J_{\lambda_{+}} & 0 \\ 0 & J_{\lambda_{-}} \end{bmatrix} \sim \begin{bmatrix} J_{\lambda_{*}} & l_{2} & 0 \\ & \ddots & \ddots & \\ & & \ddots & l_{2} \\ 0 & & & J_{\lambda_{*}} \end{bmatrix}$$
 with $J_{\lambda_{*}} = \begin{bmatrix} a & bc \\ b & a \end{bmatrix}$

• number of blocks $J_{\lambda_*} = \dim \lambda_{+/-}$

A Better Rational Form

- J_{λ_i} not very skew in Jordan form
- J_{λ_*} a rotation in real Jordan form, and the Jordan block in this case not very skew
- J_{λ_*} may still be quite skew in rational Jordan form

Prefer: a different similar form as close to a diagonal matrix as possible while still in $M_m(\mathbb{Q})$

Eg., for $k^2 < c < (k + 1)^2$,

$$\mathcal{C}_{\lambda_*} = \left[egin{array}{cc} a+bk & b(c-k^2) \ b & a-bk \end{array}
ight]$$

Jordan Form in 2 Dimensions

Three cases for *J*:

A has two distinct or non-distinct (but with one dimensional eigenspaces) integer (or half-integer) eigenvalues λ₁ and λ₂:

$$J = \begin{bmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{bmatrix}.$$

2 A has a single integer eigenvalue λ with a two dimensional eigenspace:

$$J = \begin{bmatrix} \lambda & \mathbf{1} \\ \mathbf{0} & \lambda \end{bmatrix}.$$

• A has two distinct non-integer eigenvalues λ_+ and λ_- :

$$J = \begin{bmatrix} \lambda_+ & \mathbf{0} \\ \mathbf{0} & \lambda_- \end{bmatrix},$$

where $\lambda_+ = a + b\sqrt{c}$, and $\lambda_- = a - b\sqrt{c}$, with $a, b \in \frac{1}{2}\mathbb{Z}$, $c \in \mathbb{Z}$.

Case 1: Distinct Integer Eigenvalues

Case 2: Integer Eigenvalue with 2-dimensional Eigenspace

c_1 and e_1 , and c_2 and e_2 for $\lambda = 4$

c_1 and e_1 , and c_2 and e_2 for $\lambda = 3$

Values of c_0, c_1, c_2 , and c_n for λ even and odd

	λ even	λ odd
<i>c</i> 0	$\frac{1}{2} \left[\begin{array}{c} -\lambda + 2 \\ \lambda \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda + 1 \\ \lambda - 1 \end{array} \right]$
C1	$\frac{1}{2} \left[\begin{array}{c} -\lambda^2 + 2\lambda + 2 \\ \lambda^2 + \lambda \end{array} \right]$	$\frac{1}{2} \begin{bmatrix} -\lambda^2 - \lambda \\ \lambda^2 - 1 \end{bmatrix}$
<i>C</i> ₂	$\frac{1}{2} \left[\begin{array}{c} -\lambda^3 + 3\lambda^2 + 2\lambda + 2\\ \lambda^3 + \lambda^2 + \lambda \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda^3 + 2\lambda^2 - \lambda \\ \lambda^3 - 1 \end{array} \right]$
:	:	:
Cn	$\frac{1}{2} \left[\begin{array}{c} -\lambda^{n+1} + (n+1)\lambda^n + n\lambda^{n-1} + \dots + 2\lambda + 2\\ \lambda^{n+1} + \lambda^n + \dots + \lambda^2 + \lambda \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda^{n+1} + n\lambda^n - \lambda^{n-1} - \lambda^{n-2} - \dots - \lambda^2 - \lambda \\ \lambda^{n+1} - 1 \end{array} \right]$

Values of e_0 , e_1 , e_2 , and e_n for λ even and odd

	λ even	λ odd
e ₀	$\frac{1}{2} \begin{bmatrix} -\lambda + 2 \\ 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} -\lambda + 1 \\ 1 \end{bmatrix}$
e ₁	$\frac{1}{2} \left[\begin{array}{c} -\lambda^2 + \lambda + 4 \\ \lambda + 2 \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda^2 + 3 \\ \lambda + 1 \end{array} \right]$
θ2	$\frac{1}{2} \left[\begin{array}{c} -\lambda^3 + \lambda^2 + 4\lambda + 4 \\ \lambda^2 + \lambda + 2 \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda^3 + 3\lambda + 2\\ \lambda^2 + 1 \end{array} \right]$
:	:	:
en	$\frac{1}{2} \left[\begin{array}{c} -\lambda^{n+1} + \lambda^n + (n+2)\lambda^{n-1} + (n+1)\lambda^{n-2} + \dots + 4\lambda + 4 \\ \lambda^n + \lambda^{n-1} + \dots + \lambda + 2 \end{array} \right]$	$\frac{1}{2} \left[\begin{array}{c} -\lambda^{n+1} + (n+1)\lambda^{n-1} + \lambda^{n-2} + \dots + \lambda + 2 \\ \lambda^{n} + 1 \end{array} \right]$

Connectedness of $T(J, D_J)$

Lemma

For the Jordan matrices of the form $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, where $\lambda \ge 3$ is an integer, each $D_{J,n}$ is lattice connected.

Theorem

For matrices of the form $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, such that $\lambda \ge 3$ an integer, we have that $T(J, D_J)$ is connected.

Case 3: Complex Conjugate Eigenvalues

Figure: Digit set *D* for
$$J_{\lambda_*} = \begin{bmatrix} 3 & -3 \\ 3 & 3 \end{bmatrix} (\lambda_+ = 3 + 3i, \lambda_- = 3 - 3i)$$

Note that J_{λ_*} is a real Jordan form, and can be decomposed as the product of a dilation matrix and a rotation matrix

$$J_{\lambda_*} = \begin{bmatrix} 3\sqrt{2} & 0\\ 0 & 3\sqrt{2} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\pi}{4}\right) & -\sin\left(\frac{\pi}{4}\right)\\ \sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{bmatrix}.$$

Real Conjugate Eigenvalues and Higher Dimensions

- Experimental evidence suggests our alternate rational form will generate connected attractors.
- Calculations to extend results to higher dimensions will be similar to Case 2 calculations.

Acknowledgments

Special Thanks:

- NSERC (Discovery Grant Program and PGS-M)
- SAGE Development Team [SAGE] SAGE Mathematical Software, Version 3.3, http://www.sagemath.org

References I

Curry, E.

Radix and Pseudodigit Representations in \mathbb{Z}^n . preprint.

Gröchenig, K. and Haas, A. Self-similar lattice tilings. J. Fourier Anal. Appl. 1 (1994), 131-170.

Kirat, I. and Lau, K.-S.J. On the connectedness of self-affine tiles. J. London Math. Soc. (2) 62 (2000), 291-304.

Lagarias, J. and Wang, Y.

Haar Bases for $L^2(\mathbb{R}^n)$ and Algebraic Number Theory. J. Num. Thy. 57 (1996), 181-197.

References II

Lancaster, P. and Tismenetsky, M. The Theory of Matrices. *Academic Press, Boston* (1985).

W. A. Stein et al., Sage Mathematics Software (Version 3.3),

The Sage Development Team (specific package authors include: Robert Bradshaw, Emily Kirkman, Robert Miller, Networkx, William Stein), (2009), http://www.sagemath.org.