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Definitions

A dilation matrix on a lattice Γ ⊂ Rm is an m×m matrix A : Γ→ Γ
with all eigenvalues λ of A satisfying |λ| > 1. For us, Γ = Zm,
A ∈ Mm(Z).
A digit set for A is a complete set of coset representatives of
Γ/A(Γ). We use a centered canonical digit set D = A(F ) ∩ Zm,

where F =

(
−1

2
,

1
2

]m

is a fundamental domain for Γ = Zm

centered at the origin. Eg. A = 4, D = {−1,0,1,2}.

T (A,D) =

x ∈ Rm : x =
∞∑
j=1

A−jdj , dj ∈ D
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Basic Facts

T (A,D) is the attractor of the IFS
{

fd (x) = A−1(x + d) : d ∈ D
}

.

T (A,D) is self-affine: T (A,D) =
⋃
d∈d

A−1 (T (A,D) + d).

(Curry) When A yields a radix representation for Γ with digit set
D, T (A,D) is a set of “fractions”, congruent to the fundamental
domain of Γ.
(Gröchenig and Haas) T (A,D) tiles Rm under translation by Γ or
some sub-lattice of Γ.
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Goal

Conjecture

For every dilation matrix A ∈ Mm(Z), there exists a digit set D for
which T (A,D) is a connected set in Rm.
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Approximates

Set

T0 = F =

(
−1

2
,

1
2

]m

, Tn =
⋃

d∈D

A−1(Tn−1 + d).

Then lim
n→∞

Tn = T (A,D) in the Hausdorff metric.

Define the level sets of the digit set D by

D1 = D, Dn =

k ∈ Γ : k =
n−1∑
j=0

Ajdj , dj ∈ D


(as in Gröchenig and Haas).

Multiplying Tn by An: AnTn = F + Dn.
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Connectedness and Lattice Connectedness

Lemma
The set Tn is connected if and only if the level set Dn is lattice
connected.

Lemma (Kirat and Lau)

Suppose that Tn is a sequence of compact, connected subsets of Rm,
and that in the Hausdorff metric T = lim

n→∞
Tn. Then T is connected.

That is, T (A,D) is connected whenever the approximates Tn are
connected for all sufficiently large n, equivalently, whenever the level
sets Dn are lattice connected for all sufficiently large n.
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Matrix Transformations

Matrices can:
dilate (or contract) along an axis
rotate in some plane
skew along an axis

Dilation and rotation will not affect lattice connectedness of Dn;
skewing might.
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Example: Skew Leading to Disconnected Dn

Figure: D2 for A =

»
3 10
0 3

–
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Similar Matrices

Definition
A matrix B is similar to the matrix A if there exists an invertible matrix
P such that A = PBP−1.

Let B be similar to A, let DB be a digit set for B, and set DA = P(DB).
Then T (A,DA) = P(T (B,DB)) (following Lagarias and Wang).

Lemma
The set T (A,DA) is connected if and only if T (B,DB) is connected.
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Jordan Form I

Every matrix A ∈ Mm is similar to a diagonal or almost diagonal
matrix J ∈ Mm,

J =

 Jλ1 0
. . .

0 Jλr


where

λ1, . . . , λr are the eigenvalues of A (with multiplicity)

Jλi = λi if the corresponding eigenspace is 1-dimensional
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Jordan Form II

if the eigenspace corresponding to λi is s-dimensional, then

Jλi =


λi 1 0

. . . . . .
. . . 1

0 λi
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Real Jordan Form

If A ∈ Mm(R), then eigenvalues are roots of a polynomial with real
coefficients. Thus if λ+ = a + bi is an eigenvalue, then λ− = a− bi is
also an eigenvalue.

dimλ+ = dimλ−

[
Jλ+ 0
0 Jλ−

]
∼


Jλ∗ I2 0

. . . . . .
. . . I2

0 Jλ∗

 with Jλ∗ =

[
a −b
b a

]

number of blocks Jλ∗ = dimλ+/−

Eva Curry and Avra Laarakker Connectivity via Jordan Forms



Introduction
The Skewness Problem

Removing Skew Through Jordan Forms
The Case for Two Dimensions

References

Extension: Rational Jordan Form

If A ∈ Mm(Z), then eigenvalues are roots of a polynomial with integer
coefficients. Thus if λ+ = a + b

√
c is an eigenvalue, with

√
c

irrational, then λ− = a− b
√

c is also an eigenvalue.
dimλ+ = dimλ−

[
Jλ+ 0
0 Jλ−

]
∼


Jλ∗ I2 0

. . . . . .
. . . I2

0 Jλ∗

 with Jλ∗ =

[
a bc
b a

]

number of blocks Jλ∗ = dimλ+/−
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A Better Rational Form

Jλi not very skew in Jordan form
Jλ∗ a rotation in real Jordan form, and the Jordan block in this
case not very skew
Jλ∗ may still be quite skew in rational Jordan form

Prefer: a different similar form as close to a diagonal matrix as
possible while still in Mm(Q)

Eg., for k2 < c < (k + 1)2,

Cλ∗ =

[
a + bk b(c − k2)

b a− bk

]

Eva Curry and Avra Laarakker Connectivity via Jordan Forms



Introduction
The Skewness Problem

Removing Skew Through Jordan Forms
The Case for Two Dimensions

References

Jordan Form in 2 Dimensions
Three cases for J:

1 A has two distinct or non-distinct (but with one dimensional
eigenspaces) integer (or half-integer) eigenvalues λ1 and λ2:

J =

[
λ1 0
0 λ2

]
.

2 A has a single integer eigenvalue λ with a two dimensional
eigenspace:

J =

[
λ 1
0 λ

]
.

3 A has two distinct non-integer eigenvalues λ+ and λ−:

J =

[
λ+ 0
0 λ−

]
,

where λ+ = a + b
√

c, and λ− = a− b
√

c, with a,b ∈ 1
2Z, c ∈ Z.
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Case 1: Distinct Integer Eigenvalues

(a) Dn (b) Tn
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Case 2: Integer Eigenvalue with 2-dimensional
Eigenspace

d 0

a 0

b 0

c 0

e 0

(c) λ = 4.

a 0

b 0

c 0

d 0

e 0 =

(d) λ = 3.
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c1 and e1, and c2 and e2 for λ = 4
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c1 and e1, and c2 and e2 for λ = 3
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Values of c0, c1, c2, and cn for λ even and odd

λ even λ odd

c0
1
2

 −λ+ 2

λ

 1
2

 −λ+ 1

λ− 1



c1
1
2

 −λ2 + 2λ+ 2

λ2 + λ

 1
2

 −λ2 − λ

λ2 − 1



c2
1
2

 −λ3 + 3λ2 + 2λ+ 2

λ3 + λ2 + λ

 1
2

 −λ3 + 2λ2 − λ

λ3 − 1



...
...

...

cn
1
2

 −λn+1 + (n + 1)λn + nλn−1 + ...+ 2λ+ 2

λn+1 + λn + ...+ λ2 + λ

 1
2

 −λn+1 + nλn − λn−1 − λn−2 − ...− λ2 − λ

λn+1 − 1
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Values of e0,e1,e2, and en for λ even and odd

λ even λ odd

e0
1
2

 −λ+ 2

1

 1
2

 −λ+ 1

1



e1
1
2

 −λ2 + λ+ 4

λ+ 2

 1
2

 −λ2 + 3

λ+ 1



e2
1
2

 −λ3 + λ2 + 4λ+ 4

λ2 + λ+ 2

 1
2

 −λ3 + 3λ+ 2

λ2 + 1



...
...

...

en
1
2

 −λn+1 + λn + (n + 2)λn−1 + (n + 1)λn−2 + ...+ 4λ+ 4

λn + λn−1 + ...+ λ+ 2

 1
2

 −λn+1 + (n + 1)λn−1 + λn−2 + ...+ λ+ 2

λn + 1
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Connectedness of T (J,DJ)

Lemma

For the Jordan matrices of the form J =

[
λ 1
0 λ

]
, where λ ≥ 3 is an

integer, each DJ,n is lattice connected.

Theorem

For matrices of the form J =

[
λ 1
0 λ

]
, such that λ ≥ 3 an integer, we

have that T (J,DJ) is connected.
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Case 3: Complex Conjugate Eigenvalues

Figure: Digit set D for Jλ∗ =

»
3 −3
3 3

–
(λ+ = 3 + 3i , λ− = 3− 3i)

Note that Jλ∗ is a real Jordan form, and can be decomposed as the
product of a dilation matrix and a rotation matrix

Jλ∗ =

[
3
√

2 0
0 3

√
2

] [
cos (π4 ) − sin (π4 )
sin (π4 ) cos (π4 )

]
.
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Real Conjugate Eigenvalues and Higher Dimensions

Experimental evidence suggests our alternate rational form will
generate connected attractors.
Calculations to extend results to higher dimensions will be similar
to Case 2 calculations.
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