Fourier series on fractals

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga, Q. Sun

July, 2009
Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i \lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$.
Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{ \exp(2\pi i \lambda \cdot x) \mid \lambda \in \Lambda \}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called the spectrum of Ω.
Spectral sets

Definition
A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i \lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called the spectrum of Ω.

Conjecture (Fuglede)
A set Ω is spectral if and only if it tiles \mathbb{R}^d by translations.
Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i \lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called the spectrum of Ω.

Conjecture (Fuglede)

A set Ω is spectral if and only if it tiles \mathbb{R}^d by translations.

Tao, Matolcsi et.al.: The Fuglede Conjecture fails in dimension $d \geq 3$.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga: Fourier series on fractals
Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions?
Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions?

Answer: No, there are some fractal measures that admit orthogonal Fourier series.
Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions?

Answer: No, there are some fractal measures that admit orthogonal Fourier series.

Definition

Let $e_\lambda(x) := e^{2\pi i \lambda \cdot x}$. A Borel probability measure μ on \mathbb{R}^d is called **spectral** if there exists a set $\Lambda \subset \mathbb{R}^d$ such that $\{e_\lambda \mid \lambda \in \Lambda\}$ is an orthonormal basis for $L^2(\mu)$. Then Λ is called a **spectrum** for the measure μ.
Example: Cantor set, using division by 4, keep the first and the third quarter. The Hausdorff measure μ_4 on this Cantor set, with dimension $\ln 2 / \ln 4$, is a spectral measure with spectrum

$$\Lambda := \left\{ \sum_{k=0}^{n} 4^k a_k \mid a_k \in \{0, 1\} \right\}.$$
The Jorgensen-Pedersen example

Example: Cantor set, using division by 4, keep the first and the third quarter. The Hausdorff measure μ_4 on this Cantor set, with dimension $\ln 2 / \ln 4$, is a spectral measure with spectrum

$$\Lambda := \left\{ \sum_{k=0}^{n} 4^k a_k \mid a_k \in \{0, 1\} \right\}.$$

The Middle Third Cantor measure is far from spectral: there are no three mutually orthogonal exponential functions.
Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d, $0 \in B$, and let $N := \#B$. Define the affine maps

$$\tau_b(x) = R^{-1}(x + b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b \in B}$ is called an affine iterated function system (IFS).
Affine iterated function systems

Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d, $0 \in B$, and let $N := \#B$. Define the affine maps

$$\tau_b(x) = R^{-1}(x + b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b \in B}$ is called an affine iterated function system (IFS).

Theorem (Hutchinson)

There exists a unique compact set such that

$$X_B = \bigcup_{b \in B} \tau_b(X_B)$$
Affine iterated function systems

Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d, $0 \in B$, and let $N := \#B$. Define the affine maps

$$\tau_b(x) = R^{-1}(x + b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b \in B}$ is called an affine iterated function system (IFS).

Theorem (Hutchinson)

There exists a unique compact set such that

$$X_B = \bigcup_{b \in B} \tau_b(X_B)$$

There is a unique Borel probability measure $\mu = \mu_B$ on \mathbb{R}^d such that

$$\int f \, d\mu = \frac{1}{N} \sum_{b \in B} \int f \circ \tau_b \, d\mu, \quad (f \in C_c(\mathbb{R}^d))$$

The measure μ is supported on X_B.
Theorem (Strichartz)

For the Jorgensen-Pedersen Cantor set, the Fourier series of continuous functions converge uniformly, Fourier series of L^p-functions converge in L^p.
The Fourier transform of μ:

$$\hat{\mu}(x) = \prod_{n=1}^{\infty} \hat{\delta}_B((R^*)^{-n}x), \quad \hat{\delta}_B(x) = \frac{1}{N} \sum_{b \in B} e^{2\pi ib \cdot x}$$
Connections to wavelet theory

The Fourier transform of μ:

$$\hat{\mu}(x) = \prod_{n=1}^{\infty} \hat{\delta}_B \left((R^*)^{-n} x \right), \quad \hat{\delta}_B(x) = \frac{1}{N} \sum_{b \in B} e^{2\pi i b \cdot x}$$

Orthogonality:

$$\sum_{\lambda \in \Lambda} |\hat{\mu}(x + \lambda)|^2 = 1$$
Hadamard pairs

Let L be a subset of \mathbb{Z}^d of the same cardinality as $B, 0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied

1. The matrix

$$\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot l} \right)_{b \in B, l \in L}$$

is unitary.
Hadamard pairs

Let L be a subset of \mathbb{Z}^d of the same cardinality as B, $0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied:

1. The matrix

$$
\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot l} \right)_{b \in B, l \in L}
$$

is unitary.

2. The following QMF condition is satisfied:

$$
\frac{1}{N} \sum_{l \in L} \hat{\delta}_B \left((R^*)^{-1}(x + l) \right) = 1, \quad (x \in \mathbb{R}).
$$
Hadamard pairs

Let L be a subset of \mathbb{Z}^d of the same cardinality as B, $0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied:

1. The matrix

 \[\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot l} \right)_{b \in B, l \in L} \]

 is unitary.

2. The following QMF condition is satisfied:

 \[\frac{1}{N} \sum_{l \in L} \hat{\delta}_B \left(((R^*)^{-1}(x + l)) \right) = 1, \quad (x \in \mathbb{R}). \]

3. The measure $\delta_B = \frac{1}{N} \sum_{b \in B} \delta_b$ is spectral with spectrum $(R^*)^{-1}L$.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga; Fourier series on fractals
Suppose \((B, L)\) form a Hadamard pair. Want to get the following spectrum for \(\mu\).

\[
\Lambda := \left\{ \sum_{n=0}^{\infty} R^k l_k \mid l_k \in L \right\}
\]
Suppose \((B, L)\) form a Hadamard pair.
Want to get the following spectrum for \(\mu\).

\[
\Lambda := \left\{ \sum_{n=0}^{\infty} R^k l_k \mid l_k \in L \right\}
\]

Definition

A set \(\{x_0, \ldots, x_{p-1}\}\) is called a \(\delta\)-cycle, if there exist

\(l_0, \ldots, l_{p-1} \in L\) such that \((R^*)^{-1}(x_i + l_i) = x_{i+1}\), where \(x_p := x_0\),

and \(|\hat{\delta}_B(x_i)| = 1\), for all \(i \in \{0, \ldots, p-1\}\)
The Łaba-Wang theorem

Theorem (Łaba-Wang)

In dimension $d = 1$, suppose $R \in \mathbb{Z}$ and $0 \in B$, $L \subset \mathbb{Z}$ form a Hadamard pair. Let μ_B be the invariant measure for the IFS $(\tau_b)_{b \in B}$. Then the set

$$\Lambda := \left\{ \sum_{n=0}^{\infty} R^k l_k \mid l_k \in L \right\}$$

is a spectrum for the measure μ_B if and only if the only δ-cycle is $\{0\}$.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga; Fourier series on fractals
Theorem (D, Jorgensen)

In dimension $d = 1$, suppose $0 \in B$, $L \subset \mathbb{Z}$, (B, L) form a Hadamard pair, and let μ_B be the invariant measure of the IFS $(\tau_b)_{b \in B}$. Then μ_B is a spectral measure.
Theorem (D, Jorgensen)

In dimension $d = 1$, suppose $0 \in B$, $L \subset \mathbb{Z}$, (B, L) form a Hadamard pair, and let μ_B be the invariant measure of the IFS $(\tau_b)_{b \in B}$. Then μ_B is a spectral measure. A spectrum for μ_B is the smallest set that contains $-C$ for all δ-cycles C, and such that

$$R^* \Lambda + L \subset \Lambda.$$
Examples

For the Jorgensen-Pedersen example $R = 4$, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$.
Examples

For the Jorgensen-Pedersen example $R = 4$, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$. Other than the trivial δ-cycle $\{0\}$, there is an additional one $\{1\}$.
For the Jorgensen-Pedersen example $R = 4$, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$. Other than the trivial δ-cycle $\{0\}$, there is an additional one $\{1\}$. $1 = \frac{1}{4}(1 + 3)$, and $|\hat{\delta}_B(1)| = 1$.
Examples

For the Jorgensen-Pedersen example $R = 4$, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$.

Other than the trivial δ-cycle $\{0\}$, there is an additional one $\{1\}$. $1 = \frac{1}{4}(1 + 3)$, and $|\hat{\delta}_B(1)| = 1$.

$$\Lambda(0) = \left\{ \sum_{k=0}^{n} 4^k l_k \mid l_k \in \{0, 3\} \right\}$$

$$\Lambda(1) = \left\{ -1 - \sum_{k=0}^{n} 4^k l_k \mid l_k \in \{0, 3\} \right\}$$

Then $\Lambda(0) \cup \Lambda(1)$ is a spectrum for μ_B.
Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $\left(\tau_b\right)_{b \in B}$ is a spectral measure.
Higher dimensions

Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $(\tau_b)_{b \in B}$ is a spectral measure.

1. True for dimension $d = 1$.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroagă; Fourier series on fractals
Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $(\tau_b)_{b \in B}$ is a spectral measure.

1. True for dimension $d = 1$.
2. True for higher dimensions under the assumption that (B, L) is “reducible”.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga; Fourier series on fractals
Examples

Figure: The Eiffel Tower. \(R = 2I_3, \ B = \{0, e_1, e_2, e_3\} \)
Let μ be a spectral measure with spectrum Λ. The Fourier transform $\mathcal{F} : L^2(\mu) \to l^2(\Lambda)$ is defined by

$$(\mathcal{F}f)(\lambda) = \langle f, e_\lambda \rangle, \quad (f \in L^2(\mu), \lambda \in \Lambda).$$
The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_{\lambda} = (e^{2\pi i t \cdot \lambda} a_\lambda)_{\lambda}.$$
The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_{\lambda})_{\lambda} = (e^{2\pi i t \cdot \lambda} a_{\lambda})_{\lambda}.$$

The group of local translations U_λ is defined by

$$U_\Lambda(t) = F^{-1} M_{e_t} F, \quad (t \in \mathbb{R}^d).$$
Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_{\lambda} = (e^{2\pi i t \cdot \lambda} a_\lambda)_{\lambda}.$$

The group of local translations U_λ is defined by

$$U_\Lambda(t) = \mathcal{F}^{-1} M_{e_t} \mathcal{F}, \quad (t \in \mathbb{R}^d).$$

Theorem

Suppose $O, O + t$ is contained in supp(μ). Then

$$(U_\Lambda(t)f(x) = f(x + t), \quad (x \in O)$$
The group of local translations

Define the multiplication operator \(M_{e^t} \) on \(l^2(\Lambda) \)

\[
M_{e^t}(a_{\lambda})_{\lambda} = (e^{2\pi i t \cdot \lambda} a_{\lambda})_{\lambda}.
\]

The group of local translations \(U_{\lambda} \) is defined by

\[
U_{\lambda}(t) = F^{-1} M_{e^t} F, \quad (t \in \mathbb{R}^d).
\]

Theorem

Suppose \(O, O + t \) is contained in \(\text{supp}(\mu) \). Then

\[
(U_{\lambda}(t)f(x) = f(x + t), \quad (x \in O)
\]

Corollary

If \(\mu \) is a spectral measure and \(O, O + t \subset \text{supp}(\mu) \) then

\[
\mu(O) = \mu(O + t).
\]
Finite spectral sets

Theorem

Let A be a finite subset of \mathbb{R}^n. The following affirmations are equivalent:

1. The set A is spectral.

2. There exists a continuous group of unitary operators $(U(t))_{t \in \mathbb{R}^n}$ on $L^2(A)$, i.e., $U(t + s) = U(t)U(s)$, $t, s \in \mathbb{R}^n$ such that

$$U(a - a')\chi_a = \chi_a' \quad (a, a' \in A), \quad (3.1)$$

where

$$\chi_a(x) = \begin{cases}
1, & x = a \\
0, & x \in A \setminus \{a\}.
\end{cases}$$
Frames

Definition

A family of vectors \((v_i)_{i \in I}\) in a Hilbert space \(H\) is called a frame if there exist \(A, B > 0\) such that

\[
A \|f\|^2 \leq \sum_{i \in I} |\langle f, v_i \rangle|^2 \leq B \|f\|^2, \quad (f \in H).
\]
Consider the Middle Third Cantor set with its invariant measure μ_3, i.e., $R = 3, B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.
Consider the Middle Third Cantor set with its invariant measure μ_3, i.e., $R = 3$, $B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.

Definition

Let μ be a finite Borel measure on \mathbb{R}^d. A set Λ in \mathbb{R}^d is called a frame spectrum if $\{e^\lambda \mid \lambda \in \Lambda\}$ is a frame for $L^2(\mu)$.
Consider the Middle Third Cantor set with its invariant measure μ_3, i.e., $R = 3$, $B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.

Definition

Let μ be a finite Borel measure on \mathbb{R}^d. A set Λ in \mathbb{R}^d is called a **frame spectrum** if $\{e^\lambda \mid \lambda \in \Lambda\}$ is a frame for $L^2(\mu)$.

Question

Construct a frame spectrum for the Middle Third Cantor set.
Frame spectrum and geometry

Question (Mark Kac)

Can one hear the shape of a drum?
Frame spectrum and geometry

Question (Mark Kac)

Can one hear the shape of a drum?

Question

What geometric properties of the measure \(\mu \) can be deduced if we know a spectrum/frame spectrum of \(\mu \)?
Beurling dimension

Definition

Let $Q = [0, 1]^d$ be the unit cube. Let Λ be a discrete subset of \mathbb{R}^d, and let $\alpha > 0$. Then the α-upper Beurling density is

$$D_{\alpha}(\Lambda) := \limsup_{h \to \infty} \sup_{x \in \mathbb{R}^d} \frac{\#(\Lambda \cap (x + hQ))}{h^\alpha}.$$

Then $D_{\alpha}(\Lambda)$ is constant ∞ then 0, with discontinuity at exactly one point. This point is called the upper Beurling dimension of Λ.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga; Fourier series on fractals
Hausdorff meets Beurling

Theorem

Let μ_B be the invariant measure for an affine IFS, with no overlap. Suppose Λ is a frame spectrum for μ_B, and Λ is “not too sparse”. Then the Beurling dimension of Λ is equal to the Hausdorff dimension of the attractor $X_B (= \text{supp}(\mu))$.

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroag; Fourier series on fractals