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Diffraction theory

Setting: ω y γ = ω ⊛ ω̃ y γ̂ 6y ω

Dirac comb on Z:

ω =
∑

n∈Z

w(n) δn y γ =
∑

m∈Z

η(m) δm

Autocorrelation coefficients:

η(m) = lim
N→∞

1

2N+1

N∑

n=−N

w(n) w(n + m)
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Homometry

Problem: distinct structures with identical autocorrelation

Example 1: δ
6Z

∗

5∑

j=0

cj δj

j 0 1 2 3 4 5

cj 11 25 42 45 31 14

cj 10 21 39 46 35 17

same correlations up to order 5 (Grünbaum & Moore)

Example 2: homometric models sets with distinct windows

windows covariogram
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Coin tossing sequence

Sequence: i.i.d. random variables Wn ∈ {±1}

with probabilities p and 1−p

Metric entropy: H(p) = −p log(p) − (1−p) log(1−p)

Autocorrelation: γ
B

=
∑

m∈Z
η
B
(m)δm with

ηB(m) := lim
N→∞

1

2N+1

N∑

n=−N

WnWn+m
(a.s.)
=

{
1, m = 0

(2p−1)2, m 6= 0

(strong law of large numbers)

Diffraction measure: γ̂
B

(a.s.)
= (2p − 1)2δ

Z
+ 4p(1 − p) λ

Workshop on Fractals and Tilings, Strobl, July 2009 – p.5



Rudin-Shapiro sequence

Substitution: ̺ : a 7→ ac, b 7→ dc, c 7→ ab, d 7→ db

Fixed point: b|a
̺2

−−→ dbab|acab
̺2

−−→ . . . −→ u = ̺2(u)

Reduction: ϕ : a, c 7→ 1, b, d 7→ −1, w := ϕ(u)

Alternative description: w(−1) = −1, w(0) = 1, with

w(4n + ℓ) =

{
w(n), for ℓ ∈ {0, 1}

(−1)n+ℓ w(n), for ℓ ∈ {2, 3}

Autocorrelation: γ
RS

=
∑

m∈Z
η(m)δm
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Rudin-Shapiro autocorrelation

Define:
η(m)

ϑ(m)

}
:= lim

N→∞

1

2N+1

N∑

n=−N

w(n) w(n + m)

{
1

(−1)n

(all limits exist by Birkhoff’s ergodic theorem)

Recursion: η(0) = 1, ϑ(0) = 0, and

η(4m) =
1+(−1)m

2
η(m), η(4m+2) = 0,

η(4m+1) =
1−(−1)m

4
η(m) +

(−1)m

4
ϑ(m) − 1

4
ϑ(m+1),

η(4m+3) =
1+(−1)m

4
η(m+1) −

(−1)m

4
ϑ(m) + 1

4
ϑ(m+1),

ϑ(4m) = 0, ϑ(4m+2) =
(−1)m

2
ϑ(m) + 1

2
ϑ(m+1),

ϑ(4m+1) =
1−(−1)m

4
η(m) −

(−1)m

4
ϑ(m) + 1

4
ϑ(m+1),

ϑ(4m+3) = −

1+(−1)m

4
η(m+1) −

(−1)m

4
ϑ(m) + 1

4
ϑ(m+1).
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Rudin-Shapiro diffraction

Unique solution: ϑ(1) = 0 y ϑ(m) = 0 for all m ∈ Z

and η(m) = 0 for all m 6= 0

Theorem: γ
RS

= δ0 and γ̂
RS

= λ

=⇒ homometric with coin tossing for p = 1
2
,

but zero entropy !

General weights: h± instead of ±1:

γ̂h =
∣∣h++h

−

2

∣∣2δ
Z

+
∣∣h+−h

−

2

∣∣2λ
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Bernoullisation
Sequence: S ∈ {±1}Z (assumed ergodic)

with Dirac comb ωS =
∑

n∈Z
Sn δn

and autocorrelation γS

Bernoullisation: ω :=
∑

n∈Z
SnWn δn

(
Wn ∈ {±1}

)

Autocorrelation: γ
(a.s.)
= (2p − 1)2 γS + 4p(1 − p) δ0

(strong law of large numbers)

Application: Rudin-Shapiro, with γS = γ
RS

= δ0

y γ = δ0 independently of p

y diffraction γ̂ ≡ λ

y homometric, irrespective of entropy
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Outlook

Diffraction as useful tool

Continuous spectra accessible

Homometry more difficult

Insensitivity to entropy

Generalisation beyond lattice systems

Extension to higher dimension

Lower rank entropy (Ledrappier)

Randomness with interaction
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