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Reisz s energy

The Riesz s-energy of ωN = {x1, x2, ..., xN} ⊂ Rp is, for s > 0,

Es(ωN) :=
NX

i=1

X
j 6=i

ks(xi , xj )

where

ks(x , y) :=

(
|x − y |−s, s > 0

− log (|x − y |) , s = 0

Note:
|x − y |−s − 1

s
→ − log |x − y | as s → 0.
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Constrained optimization problem:

Given a compact set A ⊂ Rp.

Minimize the objective function

Es(ωN) :=
NX

i=1

X
j 6=i

ks(xi , xj )

subject to the constraint ωN = {x1, . . . , xN} ⊂ A.

Let ω∗N := {x1,N , . . . , xN,N} denote an optimal configuration and let
Es(A,N) := E(ω∗N).



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

Constrained optimization problem:

Given a compact set A ⊂ Rp.

Minimize the objective function

Es(ωN) :=
NX

i=1

X
j 6=i

ks(xi , xj )

subject to the constraint ωN = {x1, . . . , xN} ⊂ A.

Let ω∗N := {x1,N , . . . , xN,N} denote an optimal configuration and let
Es(A,N) := E(ω∗N).



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

Cases s = p − 1 and s →∞

The function kp−1(·, y) is harmonic on Rp \ {y}.
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Cases s = p − 1 and s →∞

As s →∞ and fixed N,0@X
i 6=j

1
|xi − xj |s

1A1/s

→ 1
min{|xi − xj |, i 6= j} .

Thus, minimal energy configurations become best-packing configurations,
i.e., they maximize the minimum pairwise distance between N points on A as
s →∞.
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Example: A = S2

Describe optimal 2 point configurations.
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Example: A = S2

Describe optimal 3 point configurations.
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Example: A = S2

Describe optimal 4 point configurations.
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Example: A = S2

Describe optimal 5 point configurations.
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Example: A = S2

For a configuration of points ωN = {x1, . . . , xN} ⊂ S2, let νi denote the
number of nearest neighbors in ωN to xi (i.e., the number of edges for the
Voronoi cell for xi ). A simple application of Euler’s characteristic formula

gives:
NX

i=1

(6− νi ) = 12.
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Example: A = S2; N = 174; s = 0, 1, 2

Matthew Calef: Vanderbilt PhD student



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

Example: A = S2; N = 174; s = 0, 1, 2

N = 174; s = 2
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Example: A = S2; N = 174; s = 0, 1, 2

N = 174; s = 1
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Example: A = S2; N = 174; s = 0, 1, 2

N = 174; s = 0



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

Red = heptagon, Green = hexagon, Blue = pentagon

N = 1600, s = 4
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Spherical crystallography of “colloidosomes”
Spherical crystallography of  ‘colloidosomes’

“Colloidosome” = colloids of 

radius a coating water droplet

(radius R) -- Weitz Laboratory

Confocal image: P.  Lipowsky, & A. Bausch 

Ordering on a sphere ! a minimum of 12

5-fold disclinations, as in soccer balls and

fullerenes  -- what happens for R/a >> 1 ?

! Adsorb, say, latex spheres onto lipid bilayer vesicles or water droplets

! Useful for encapsulation of flavors and fragrances,  drug delivery

[H. Aranda-Espinoza e.t al. Science 285, 394 (1999)]

!Strength of colloidal ‘armor plating’ influenced by defects in shell….

! For water droplets, surface tension prevents buckling….



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

Questions from physics

How does long range order (crystalline structure) arise out of simple
pairwise interactions?

How does the structure depend on the geometry of the world A
(dimension, curvature, ...) in which the particles live. How does the
structure depend on the interaction?

How does the order break down as we move away from the ground
state?
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Asymptotics of configurations as N →∞

Problem: What is the asymptotic behavior of Es(A,N) and of ω∗N as
N →∞?

Q1: How are minimal s-energy configurations for A distributed for large N?

Q2: How does the asymptotic behavior of Es(A,N) depend on A and s?
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Connections to Potential Theory

Let A ⊂ Rp be compact with Hausdorff dimension d = dimH(A).

MA := {all Borel probability measures µ on A}.

For µ ∈MA, let

Is(µ) :=

Z Z
1

|x − y |s dµ(y)dµ(x).

Frostman (1935): For s < d , there exists a unique equilibrium measure
µs in MA such that

Is(µs) ≤ Is(ν) for all ν ∈MA

and Is(ν) =∞ for s ≥ d and all ν ∈MA.

The s-capacity of A is caps(A) = Is(µs)−1.

Points in an optimal configuration are also called Fekete points.
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Connection Between Continuous & Discrete Problems

Theorem (Fekete, 1923; Pólya and Szegő, 1931)

Let A ⊂ Rp be compact, s < d := dimH(A), and µs denote the Riesz
s-equilibrium measure on A. Then

lim
N→∞

Es(A,N)

N(N − 1)
= Is(µs)

and minimal s-energy configurations ω∗N = ω∗N(A, s) satisfy in the weak-star
topology

νN :=
1
N

X
x∈ω∗N

δx
∗→ µs as N →∞.

Remark: Weak-star convergence of νN to µs means

1
N

NX
x∈ω∗N

f (x)→
Z

f dµs

for any f ∈ C(A).
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Sketch of Proof

Step 1: First observe that

Es(A,N) = Es(ω∗N) =
1

N − 2

NX
k=1

Es (ω∗N \ {xk,N}) ≥
N

N − 2
Es(A,N − 1).

Then
τN :=

Es(A,N)

N(N − 1)
≥ Es(A,N − 1)

N(N − 1)

N
N − 2

= τN−1

showing that τN is increasing with N.

Let
τ := lim

N→∞

Es(A,N)

N(N − 1)
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Sketch of Proof

Step 2: Show τ ≤ Is(µs).

Es(A,N) ≤
NX

i 6=j

1
|xi − xj |s

, ∀x1, . . . , xN ∈ A.

Then

Es(A,N) ≤
Z

A
· · ·
Z

A

NX
i 6=j

1
|xi − xj |s

dµs(x1) · · · dµs(xN)
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Sketch of Proof
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Sketch of Proof
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Sketch of Proof
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Sketch of Proof

Step 2: Show τ ≤ Is(µs).

Es(A,N) ≤
NX

i 6=j

1
|xi − xj |s

, ∀x1, . . . , xN ∈ A.

Then

Es(A,N) ≤
NX
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Z
A

Z
A

1
|xi − xj |s

dµs(xi )dµs(xj )

≤
NX

i 6=j

Is(µs) = N(N − 1)Is(µs)

and so:
τN ≤ Is(µs) ⇒ τ ≤ Is(µs).
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Sketch of Proof

Step 3: By Banach-Alaoglu Thm, νN has a weak-star cluster point µ.
Consider

Is(µ) =

Z Z
1

|x − y |s dµ(x)dµ(y)

= lim
M→∞

Z Z
min


1

|x − y |s ,M
ff

dµ(x)dµ(y)

= lim
M→∞

lim
N→∞

Z Z
min


1

|x − y |s ,M
ff

dνN(x)dνN(y)

≤ lim
M→∞

lim
N→∞

1
N2 {Es(A,N) + NM}

= τ ≤ Is(µs).

So µ = µs and hence τ = Is(µs) and νN
∗−→ µs.
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N = 1000 points

s = 0.2 s = 1.0

s = 2.0 s = 4.0



Problem Definition and Motivation Potential Theory Hypersingular case: s ≥ d . Best packing in Rd

N = 4000 points

s = 0.2 s = 1.0

s = 2.0 s = 4.0
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Surfaces of revolution–the case s = 0

For A in the right-half xy -plane, let Γ(A) denote the set in R3 obtained by
rotating A about the y -axis. Let µ0,Gamma(A) denote the log energy equilibrium
on Γ(A) .

Let A+ denote the ‘right-most’
portion of A.

Theorem (H., Saff, and Stahl, 2006)

Suppose A is a compact set in the right-half plane R+ × R. Then the support
of the equilibrium measure µ0,Γ(A) is contained in Γ(A+).

J. Brauchart, H., and Saff (2008) also provide related results for 0 < s < 1.
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Ed Saff, Vanderbilt
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Herbert Stahl, Technische Fachhochschule Berlin
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Johann Brauchart, (TU Graz PhD) Vanderbilt
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What about s ≥ d?

For s > d = dim A, Is(µ) =∞ for any µ ∈MA. Also

τ = lim
N→∞

Es(A)

N2 =∞.

So new methods are required for s ≥ d .
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The case A = Sd and s = d .

Theorem (Kuijlaars & Saff, 1998)

lim
N→∞

Ed (Sd ,N)

N2 log N
=

1
d

Γ((d + 1)/2)√
π Γ(d/2)

=
Vol(Bd )

Area(Sd )
=
Hd (Bd )

Hd (Sd )
,

and (Götz & Saff, 2001) d-energy optimal configurations are asymptotically
uniformly distributed on Sd as N →∞.

Here Hd denotes d dimensional Hausdorff measure on Rp appropriately
normalized.

Grabner and Damelin, 2003, give discrepancy bounds for d-energy optimal
configurations on Sd .
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Compact sets in Rd

Theorem (H. & Saff, 2005)

Suppose A is a compact set in Rd . Then

(a) lim
N→∞

Ed (A,N)

N2 log N
=
Hd (Bd )

Hd (A)
,

(b) lim
N→∞

Es(A,N)

N1+s/d =
Cs,d

[Hd (A)]s/d , s > d .

If Hd (A) > 0, then

νN :=
1
N

X
x∈ω∗N

δx
∗→ HA

d as N →∞.

where HA
d = Hd (·∩A)

Hd (A)
.
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About the proof.

An important step in the proof is to show the existence of the limit (2) for
A = Ud := [0, 1]d . The unit cube is self-similar with scaling 1/m for any
m = 2, 3, .... We use this to find bounds relating Es(A,N) and Es(A,md N):

=⇒
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d-rectifiable sets

A ⊂ Rp is a d-rectifiable set if A is the image of a bounded set in Rd under a
Lipschitz mapping. If A is a d-rectifiable set, then A is almost the finite disjoint
union of almost isometric images of compact sets in Rd :

Lemma (Federer, 1969)

If A is a d-rectifiable set then for every ε > 0 there exist compact sets K1, K2,
K3, . . . ⊂ Rd and bi-Lipschitz mappings ψi : Ki → Rp with constant 1 + ε,
i = 1, 2, 3, . . ., such that ψ1(K1), ψ2(K2), ψ3(K3), . . . are disjoint subsets of A
with

Hd (A \
[

i

ψi (Ki )) = 0.

Any compact subset of a smooth d dimensional manifold is a d-rectifiable set.
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Minimum energy on d-rectifiable sets

Theorem (H. & Saff, 2005; Borodachov, H., & Saff, 2007)

Suppose s ≥ d and A ⊂ Rp is a d-rectifiable set. When s = d we further
assume A is a subset of a d-dimensional C1 manifold. Then

(a) lim
N→∞

Ed (A,N)

N2 log N
=
Hd (Bd )

Hd (A)
,

(b) lim
N→∞

Es(A,N)

N1+s/d =
Cs,d

[Hd (A)]s/d , s > d .

If Hd (A) > 0, then

νN :=
1
N

X
x∈ω∗N

δx
∗→
Hd (·)|A
Hd (A)

as N →∞.
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Sergiy Borodachov (Vanderbilt PhD), Towson University
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The constant Cs,d

d = 1: Since N-th roots of unity are optimal on unit circle, we obtain

Cs,1 = 2ζ(s) for s > 1,

where ζ(s) is the classical Riemann zeta function.

For s > d , the Epstein zeta function for a d dimensional lattice Λ is

ζΛ(s) :=
X

0 6=v∈Λ

|v |−s.

Summing over lattice configurations gives:

Cs,d ≤ ζmin
d (s) := min

Λ
|Λ|s/dζΛ(s), s > d . (1)

It is almost surely true (although not proved) that Cs,2 = |Λ|s/dζΛ(s)
where Λ is the equilateral hexagonal lattice. It is conjectured (Cohn and
Kumar, 2007) that the E8 and Leech lattices play the same role in
dimensions d = 8 and d = 24.
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Sphere packing density in Rd .

Let 4d denote the largest sphere packing density in Rd . Connection between
Cs,d and ∆d (Borodachov, H., & Saff, 2007)

(Cs,d )1/s → (1/2)

„
Vol(Bd )

∆d

«1/d

as s →∞,.

∆1 = 1,

∆2 = π/
√

12 ≈ .9069 (Fejes Toth, 1940’s),

∆3 = π/
√

18 ≈ .7405 (Hales, 2007).

For d > 3, ∆d is unknown, although extremely precise bounds are available
for d = 2, 8 and 24 (Cohn and Elkies, 2003). Ratio of upper bound to lower
bound is

1.00 . . . 001.

In each of these dimensions the densest packing appears to be a lattice
packing (the hexagonal lattice, E8, Leech lattice, respectively).
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Best packing in dimensions d = 2, 8, and 24

Cohn & Elkies’ bounds for ∆d for d = 2, 8, 24 are based on the following:

Theorem (Cohn & Elkies, 2003)

Suppose f : Rd → R is an admissible function satisfying the following three
conditions :

(1) f (0) = f̂ (0) > 0,

(2) f (x) ≤ 0 for |x | ≥ r , and

(3) f̂ (t) ≥ 0 for all t .

Then ∆d ≤ Vol(Bd )(r/2)d .
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Fork in the road

Fejes Toth’s proof of best packing in R2.

Movie (Rob Womersley)
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Densest packing in R2.

The fact that the largest sphere packing ∆2 = π/
√

12 follows directly from the
following:

Theorem (Fejes Toth)

Suppose Ω is a convex polygon in R2 with six or fewer sides. Suppose Ω
contains N pairwise disjoint open discs of radius r > 0. Then

N ≤ A(Ω)

r 2a(6)

where A(Ω) denotes the area of Ω and a(n) = n tan(π/n) denotes the area of
the regular n-gon with inradius 1.

Then
Nπr 2

A(Ω)
≤ π

a(6)
= π/

√
12
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Sketch of proof.

Proof.

Let {B(xi , r)} be a collection of N non-overlapping discs in Ω and let {Vi}
denote the Voronoi decomposition of Ω associated with the centers {xi}N

i=1.
Then each Vi is a νi -gon containing a disc of radius r .

A(Vi ) ≥ r 2a(νi ).

Euler’s formula for planar graphs:
PN

i=1 νi ≥ 6N.

The function a(x) = x tan(π/x) is decreasing and strictly convex on the
interval [3,∞).

A(Ω) =
PN

i=1 A(Vi ) ≥ r 2PN
i=1 a(νi ) ≥ Nr 2PN

i=1 a(νi )
1
N

≥ Nr 2a
“

1
N

PN
i=1 νi

”
≥ Nr 2a(6)
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