D.P. Hardin

Department of Mathematics
Vanderbilt University

TU Graz, July 3, 2009

«0O>» «F)»r « =

DA




Problem Definition and Motivation Potential Theory Hypersingular case: s > d.

Reisz s energy

The Riesz s-energy of wy = {x1, X2, ..., xn} C RP is, for s > 0,

Es(wn) = Z Z ks(Xi, X;)

=1 j#i
where
ke(x, ) = x—yl™°% s>0
T g (x—yl), s=0
J— 75_
Note:‘xy%ﬁ—log\x—ﬂass—m.

Best packing in RY



Problem Definition and Motivation Potential Theory Hypersingular case: s > d.

Constrained optimization problem:

Given a compact set A C RP.

Minimize the objective function
N
Es(w/v) = Z Z ks(X,', XI)
=1 j#i

subject to the constraint wy = {xy,...,xn} C A.

Best packing in Rd
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Constrained optimization problem:

Given a compact set A C RP.

Minimize the objective function
N
Es(w/v) = Z Z ks(X,', XI)
i=1 j#i

subject to the constraint wy = {xy,...,xn} C A.

Let wy := {x1.n,- .., Xnn} denote an optimal configuration and let
Es(A,N) = E(wy)-



The function k,—1(-, y) is harmonic on R\ {y}.
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Problem Definition and Motivation Potential Theory Hypersingular case: s > d. Best packing in RY

Casess=p—1and s —

As s — oo and fixed N,

1/s

1 1
)l B ey oy

Thus, minimal energy configurations become best-packing configurations,
i.e., they maximize the minimum pairwise distance between N points on A as
S — oo.



Describe optimal 2 point configurations.
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Describe optimal 3 point configurations.
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Describe optimal 4 point configurations.
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Describe optimal 5 point configurations.
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Problem Definition and Motivation Potential Theory Hypersingular case: s > d. Best packing in Rd

Example: A = S?

For a configuration of points wy = {x1,...,xy} C S?, let v; denote the
number of nearest neighbors in wy to x; (i.e., the number of edges for the
Voronoi cell for x;). A simple application of Euler’s characteristic formula

N
gives: > (6—u) =12
i=1
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Example: A= S?; N =174;s=0,1,2

Matthew Calef: Vanderbilt PhD student
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Example: A= S%; N =174;s=0,1,2

N=174,5s=2
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Example: A= S%; N =174;s=0,1,2

N=174;s=1



D and Potential Theory Hypersingular case: s > d. Best packing in RY

Example: A= S?; N =174;s=0,1,2

N=174;5=0
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D and Potential Theory Hypersingular case: s > d. Best packing in RY

Spherical crystallography of “colloidosomes”

% Adsorb, say, latex spheres onto lipid bilayer vesicles or water droplets

% Useful for encapsulation of flavors and fragrances, drug delivery

[H. Aranda-Espinoza e.t al. Science 285, 394 (1999)]
% Strength of colloidal ‘armor plating’ influenced by defects in shell....

% For water droplets, surface tension prevents buckling....

“Colloidosome” = colloids of
radius a coating water droplet
(radius R) -- Weitz Laboratory

Ordering on a sphere =» a minimum of 12
5-fold disclinations, as in soccer balls and
fullerenes -- what happens for R/a >> 1 ?

Confocal image: P. Lipowsky, & A. Bausch
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Questions from physics

@ How does long range order (crystalline structure) arise out of simple
pairwise interactions?

@ How does the structure depend on the geometry of the world A
(dimension, curvature, ...) in which the particles live. How does the
structure depend on the interaction?

@ How does the order break down as we move away from the ground
state?
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Asymptotics of configurations as N — oo

Problem: What is the asymptotic behavior of £5(A, N) and of w}, as
N — o00?

Q1: How are minimal s-energy configurations for A distributed for large N?

Q2: How does the asymptotic behavior of £s(A, N) depend on A and s?
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Connections to Potential Theory

Let A C R? be compact with Hausdorff dimension d = dims(A).

M, = {all Borel probability measures p on A}.

@ For pu € My, let

b = [ [ Ggman o).

@ Frostman (1935): For s < d, there exists a unique equilibrium measure
s in M4 such that

Is(us) < s(v) forall v e My

and Is(v) = oo for s > d and all v € M.
@ The s-capacity of Ais capy(A) = ls(us) .
@ Points in an optimal configuration are also called Fekete points.
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Connection Between Continuous & Discrete Problems

Theorem (Fekete, 1923; Pélya and Szegd, 1931)

Let A C RP be compact, s < d := dimy(A), and us denote the Riesz
s-equilibrium measure on A. Then

Es(AN)
Nooo N(N—1) — = Is(s)

and minimal s-energy configurations wy = wy (A, 8) satisfy in the weak-star
topology
1 x
I/NZ:N Z&(Hps as N — co.

*
XGwN

Remark: Weak-star convergence of vy to us means

N
1
DS f(x)—>/fdus
XEwE

forany f € C(A).
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Sketch of Proof

Step 1: First observe that

=z

Es(AN) = Es(wi) = > Es(wn \ {xen}) = %SS(A, N —1).
k=1

Then
E(AN) _ E&AN-1) N __
NN=1)= NN-1) N—2 N

showing that 7y is increasing with N.

™ =

Let A N)
o S ’
T M ONIN= 1)



Step 2: Show 7 < fs(us)

Then

Es(A,N) < Z =

VXi,...,Xn € A
X|s7 9 bl

N
1
exan < [ f i e o) o)
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Step 2: Show 7 < fs(us)

Then

Es(A,N) < Z =

VXi,...,Xn € A
X|s7 9 bl

E(AN) < z?;/ / |X X[ dps(xt) -+ dus(xn)
i)
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Step 2: Show 7 < fs(us)

Es(AN) < Z T X|s, VX1,..., Xy € A.
Then
AN <Y [ desxadnsto)
i#
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Step 2: Show 7 < fs(us)

Es(A, N)<Z|

“x |s N VX1 s
i#
Then

&mm<;//v s s ) lns()
i#

sZum

i#
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Problem Definition and Motivation Potential Theory Hypersingular case: s > d.

Sketch of Proof

Step 2: Show 7 < [s(us).

N
1
55(A7N)§Zm7 VX17...,XN€A,
i#]

Then
u 1
< _ : :
E(AN) ;/A/A s ) ds()

N
<D ls(ps) = N(N = 1)Is(ps)
i

Best packing in RY



Problem Definition and Motivation Potential Theory Hypersingular case: s > d.

Sketch of Proof

Step 2: Show 7 < Is(us).

E(AN) <> o xp M EA
i
Then
N 1
AN <Y [ [ o dus(e)distn)
i /
N
< Z Is(ps) = N(N — 1) Is(ps)
i
and so:

w<Is(us) = 7 <ls(ps).

Best packing in RY
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Sketch of Proof

Step 3: By Banach-Alaoglu Thm, vy has a weak-star cluster point .
Consider

Is(p) = //|X_17y|sdu(x)du(y)
- A//"ﬂlo//mm{ ‘S,M} du(x)du(y)
= I@OONILmOO//mIn{ Ik }dVN(X)dVN(y)

< Ilm Ni N2 {&(A,N) + NM}
= 7 < Is(ps)-

So 1 = us and hence 7 = Is(us) and vy —— ps.



N = 1000 points

Q>



and

Potential Theory

N 000 points

Hypersingular case: s > d.

Best packing in RY
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Surfaces of revolution—the case s =0

For A in the right-half xy-plane, let [(A) denote the set in R® obtained by
rotating A about the y-axis. Let 110, gamma(a) denote the log energy equilibrium
onT(A).

Let A, denote the ‘right-most’
portion of A.



Problem Definition and Motivation Potential Theory Hypersingular case: s > d. Best packing in RY

Surfaces of revolution—the case s =0

For A in the right-half xy-plane, let [(A) denote the set in R® obtained by
rotating A about the y-axis. Let 110, gamma(a) denote the log energy equilibrium
onT(A).

Let A, denote the ‘right-most’
portion of A.

Theorem (H., Saff, and Stahl, 2006)

Suppose A is a compact set in the right-half plane R, x R. Then the support
of the equilibrium measure po (s is contained in T (Ay).

J. Brauchart, H., and Saff (2008) also provide related results for 0 < s < 1.



Ed Saff, Vanderbilt




Herbert Stahl, Technische Fachhochschule Berlin

DA
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Johann Brauchart, (TU Graz PhD) Vanderbilt



For s > d =dimA, Is(u) = oo for any pu € Ma. Also

«O>» «Fr « > «

DA



For s > d =dimA, Is(u) = oo for any u € Mia. Also

 Ei(A)
= NII—">noo N2 -
So new methods are required for s > d.
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Problem Definition and Motivation Potential Theory Hypersingular case: s > d. Best packing in RY

The case A= S% and s = d.

Theorem (Kuijlaars & Saff, 1998)

im E(SN) _ 1 T((d+1)/2) _ Vol(By) _ Ho(Ba)
N—oo N2logN — d /xl(d/2) Area(S9)  Hq(S9)’
and (Gétz & Saff, 2001) d-energy optimal configurations are asymptotically
uniformly distributed on S® as N — co.

Here H,4 denotes d dimensional Hausdorff measure on RP appropriately
normalized.

Grabner and Damelin, 2003, give discrepancy bounds for d-energy optimal
configurations on S°.
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Compact sets in R?

Theorem (H. & Saff, 2005)

Suppose A is a compact set in R%. Then
. Eq(AN)  Hg(Bdg)
@ M NelogN = Ha(A) ’
Es(AN) Cs.d
(b) N TNFsd T (A s>d

If Hq(A) > 0, then

1 *
VN::NZ‘SX_’HQ as N — oo.

*
XEUJN

Hg(-NA)
Ha(A) -

where H§ =




Problem Definition and Motivation Potential Theory

About the proof.

Hypersingular case: s > d.

Best packing in Rd

An important step in the proof is to show the existence of the limit (2) for

A= U? :=0,1]%. The unit cube is self-similar with scaling 1/m for any

m = 2,3, .... We use this to find bounds relating Es(A, N) and Es(A, m*N):

° ° ° ° e e o o
— see
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d-rectifiable sets

A C RP is a d-rectifiable set if A is the image of a bounded set in R? under a
Lipschitz mapping. If Ais a d-rectifiable set, then A is almost the finite disjoint
union of almost isometric images of compact sets in RY:
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d-rectifiable sets

A C RP is a d-rectifiable set if A is the image of a bounded set in R? under a
Lipschitz mapping. If Ais a d-rectifiable set, then A is almost the finite disjoint
union of almost isometric images of compact sets in RY:

Lemma (Federer, 1969)

If A is a d-rectifiable set then for every e > 0 there exist compact sets Ki, Kz,
Ks, ... C RY and bi-Lipschitz mappings v; : Ki — RP with constant1 + e,
i=1,2,3,..., such that ¥1(K1), ¥2(Kz), ¥3(Ks), . . . are disjoint subsets of A

with
Ha(A\ Uwi(Kf)) =0.

Any compact subset of a smooth d dimensional manifold is a d-rectifiable set.
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Minimum energy on d-rectifiable sets

Theorem (H. & Saff, 2005; Borodachov, H., & Saff, 2007)
Suppose s > d and A C RP is a d-rectifiable set. When s = d we further
assume A is a subset of a d-dimensional C' manifold. Then
(A N)  Hq(Bg)
@ M NelogN = Ha(A)
Es(AN) Cs,d
(b) Nlinoo N1+s/d [Hd(A)]S/d , §>d

If Hq(A) > 0, then

= Ha()la
X;*dx Ha(A) as N — oo.
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Sergiy Borodachov (Vanderbilt PhD), Towson University
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The constant Cs 4

@ d = 1: Since N-th roots of unity are optimal on unit circle, we obtain
Cs1 =2(¢(s) for s>1,

where ((s) is the classical Riemann zeta function.
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The constant Cs 4

@ d = 1: Since N-th roots of unity are optimal on unit circle, we obtain
Cs1 =2(¢(s) for s>1,
where ((s) is the classical Riemann zeta function.

@ For s > d, the Epstein zeta function for a d dimensional lattice A is

aas) = v

0#veA
Summing over lattice configurations gives:

Cs.g < CI"(5) = min|A[/9n(s), s> d. (1)
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The constant Cs 4

@ d = 1: Since N-th roots of unity are optimal on unit circle, we obtain
Cs1=2¢(s) for s> 1,
where ((s) is the classical Riemann zeta function.

@ For s > d, the Epstein zeta function for a d dimensional lattice A is
aas) = v
0#£veN

Summing over lattice configurations gives:

Coa < C3"(5) = min[N¥9Ga(s), s> d. (1)

o It is almost surely true (although not proved) that Cs» = |A|*/9¢A(S)
where A is the equilateral hexagonal lattice. It is conjectured (Cohn and
Kumar, 2007) that the Eg and Leech lattices play the same role in
dimensions d = 8 and d = 24.
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Sphere packing density in RY.

Let A4 denote the largest sphere packing density in R%. Connection between
Cs,¢ and A4 (Borodachov, H., & Saff, 2007)

1/d
(Coa)* = 172 () ass .

o Ay =1,
@ Ay =w/vV12 = .9069 (Fejes Toth, 1940’s),
@ Az = 7/v/18 = .7405 (Hales, 2007).
For d > 3, Ay is unknown, although extremely precise bounds are available

for d = 2, 8 and 24 (Cohn and Elkies, 2003). Ratio of upper bound to lower
bound is
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Sphere packing density in RY.

Let A4 denote the largest sphere packing density in R%. Connection between
Cs,¢ and A4 (Borodachov, H., & Saff, 2007)

1/d
(Cs,d)1/5~>(1/2) (%{jd)) as § — oo,.

o A = 1,

@ Ay =w/vV12 = .9069 (Fejes Toth, 1940’s),

@ Az = 7/v/18 = .7405 (Hales, 2007).
For d > 3, Ay is unknown, although extremely precise bounds are available
for d = 2, 8 and 24 (Cohn and Elkies, 2003). Ratio of upper bound to lower

bound is
1.00...001.

In each of these dimensions the densest packing appears to be a lattice
packing (the hexagonal lattice, Eg, Leech lattice, respectively).
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Best packing in dimensions d = 2, 8, and 24

Cohn & Elkies’ bounds for Ay for d = 2, 8,24 are based on the following:

Theorem (Cohn & Elkies, 2003)

Suppose f : R? — R is an admissible function satisfying the following three
conditions :

(1) f(0) = f(0) > 0,

(2) f(x) <0 for|x| >r, and
(3) f(t) >0 forall t.

Then Ay < VOI(By)(r/2)°.




@ Fejes Toth’s proof of best packing in R2.
@ Movie (Rob Womersley)
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Densest packing in R2.

The fact that the largest sphere packing A, = w/+/12 follows directly from the
following:

Theorem (Fejes Toth)

Suppose Q is a convex polygon in R? with six or fewer sides. Suppose
contains N pairwise disjoint open discs of radius r > 0. Then
AQ)
— r2a(6)

where A(S?) denotes the area of Q and a(n) = ntan(w/n) denotes the area of
the regular n-gon with inradius 1.

Then
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Sketch of proof.

Proof.

Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.
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Sketch of proof.

Proof.

Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).

@ Euler’s formula for planar graphs: Zf\; vi > 6N.
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).

@ Euler’s formula for planar graphs: Zf\; vi > 6N.

@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the

interval [3, 00).




Problem Definition and Motivation Potential Theory Hypersingular case: s > d. Best packing in RY

Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).

@ Euler’s formula for planar graphs: Zf\; vi > 6N.

@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the

interval [3, 00).
° AQ) =N, AV)
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).

@ Euler’s formula for planar graphs: Zf\; vi > 6N.

@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the

interval [3, 00).
° AQ) =X, AV) > P L, a(w)
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.

e A(V) > rPa(u).

@ Euler’s formula for planar graphs: Zf\; vi > 6N.

@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the

interval [3, 00).
0 AQ) =N AV) > P a(v) > NP YN a(v)
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.
e A(V) > rPa(u).
@ Euler’s formula for planar graphs: Zf\; vi > 6N.
@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the
interval [3, 00).
0 AQ) =N AV) > P a(v) > NP YN a(v)
> Nr?a (1N Sy, 1/,-)
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.
e A(V) > rPa(u).
@ Euler’s formula for planar graphs: Zf\; vi > 6N.
@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the
interval [3, 00).
0 AQ) =N AV) > P a(v) > NP YN a(v)
> Nr’a (1N SN 1/,-) > Nr?a(6)
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Sketch of proof.

Proof.
Let {B(x;, r)} be a collection of N non-overlapping discs in Q and let {V;}
denote the Voronoi decomposition of Q associated with the centers {x;}Y ;.
Then each V; is a vj-gon containing a disc of radius r.
e A(V) > rPa(u).
@ Euler’s formula for planar graphs: Zf\; vi > 6N.
@ The function a(x) = xtan(x/x) is decreasing and strictly convex on the
interval [3, 00).
0 AQ) =N AV) > P a(v) > NP YN a(v)
> Nr’a (1N SN 1/,-) > Nr?a(6)
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