
Tree-adjoined spaces and the Hawaiian earring

W. Hojka (TU Wien)

Workshop on Fractals and Tilings 2009
July 6 - 10, 2009, Strobl (Austria)

W.Hojka (TU Wien) () Tree-adjoined spaces and the Hawaiian earring Fractals and Tilings 2009 1 / 7



Wild topology

In many interesting cases of wild spaces, their fundamental group can be
embedded in an inverse limit of free groups. Elements in that limit can be
considered as infinite words, e.g. for the Hawaiian earring:

Definition

Let A = {a1, a2, . . .}, and W be the set of all the maps g : λ→ A ∪ A−1,
where λ is a countable linear order type and the preimage of each ai is
finite. Let W ′ be the quotient set, where two elements are identified,
whenever there are ’cancellations’ that reduce them to the same word.

Theorem

Together with concatenation of orders, W ′ forms a group and is
isomorphic to the fundamental group π1(H, x0) of the Hawaiian earring.
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Making spaces ’wild’

Let Y be a compact metric space.

Theorem

There is a surjective map f from the Cantor set C onto Y .

Theorem

Consider C as a subset of the unit interval I . The adjunction space
Xf := Y tf I is a compact metric space, that is wild at every point in Y .

Alternatively, instead of I , an infinite binary tree attached to the cantor set
can be used. Both construction yield homotopy equivalent spaces.
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A sequence of maps

Y is embedded canonically into Xf . By contracting Y to a single point,
there is a natural map from Xf onto H.

Both maps induce
homomorphisms on the corresponding fundamental groups:

π1Y
ι−→ π1X

ψ−→ π1H

Some properties

(i) ι is injective,

(ii) im ι ⊆ kerψ,

(iii) If Y is connected and locally simply connected, then
(im ι)π1X = kerψ.
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Sketch of proof of (iii)

Lemma

If a ’small’ path γ is trivial, then there is a ’small’ homotopy between γ
and 1:

∀ε ∃δ ∀γ ' 1 :
D(im γ) < δ ⇒ ∃H homotopy between γ and 1, and D(im H) < ε

(where D is the diameter of a set).

Let γ : I → Xf be a path that is in the kernel of ψ.

Find a cancellation on γ−1(Xf \ Y ). That induces a relation on a
partition on the rest of I .

Only finitely many induced sub-paths in Y are not nullhomotopic.

Remove convex nullhomotopic sub-intervals by a common homotopy.
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Sketch of proof of (iii), continued

Insert (finitely many) ’return paths’, connecting the subpath to the
base point.

This yields a homotopy between the path and a finite concatenation
of loops in ΩXf , γ ' w1 · · ·wn.

Induction shows that this word corresponds to an element in
(im ι)π1Xf , the normal subgroup generated by the kernel.

Thus, kerψ = (im ι)π1Xf .

Corollary

If Y is simply connected, the fundamental group of Xf injects into that of
the Hawaiian earring.
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A group induced relation

Take any subset S ⊆ π1H < lim←−Fn.

Definition

Define a relation ∼ on the Cantor set w.r.t. S :

x ∼ y :⇔ ∃w ∈ S ∃k ⊆ λw :
k order isomorphic to ω or − ω,
x , y ∈ clA∪C(im w � k) .

Theorem

S = imψ ⇒ C/∼ ∼= Y .

Remark

f1, f2 : C � Y ⇒ Xf1 'h.e. Xf2 ,
∃σ permutation on the alphabet, (imψ1)σ = imψ2.
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