On the Self-affine Tiles with Polytope Convex Hulls and Their Lebesgue Measure

Ibrahim Kirat

Istanbul Technical University

Department of Mathematics

Workshop on Fractals and Tilings, July 2009

On the Self-affine Tiles with Polytope Convex Hulls and Their Lebesgue Measure

Abstract

Let F be a self-affine tile generated by a finite number of affine maps. The problem of determining the convex hull of F is of geometrical interest. In regard to this problem, we give necessary and sufficient conditions for the convex hull of F to be a polytope. Additionally, we determine the vertices of such polytopes. Our constructive proofs lead us to upper bounds for the Lebesgue measure of F. We also test our technique on well-known examples.

Let $M_n(\mathbb{R})$ denote the set of $n \times n$ matrices with real entries. A matrix $T \in M_n(\mathbb{R})$ is called *expanding* (or *expansive*) if all its eigenvalues have moduli > 1. We call a finite set $D = \{d_1, \dots, d_q\} \subset \mathbb{R}^n$ a *digit set*. Let T^* denote the adjoint of T.

- 本語 医子宫 医子宫

We first recall a couple of known theorems.

THEOREM

[1] Let F = F(T, D) be the compact set satisfying TF = F + Dfor an expanding matrix T and a digit set D. Let $\{n_j\}$ be the outward unit normal vectors of (n - 1)-dimensional faces of the convex hull P of D. Then the convex hull of F, C(F), is a polytope if and only if every n_j is an eigenvector of $(T^*)^k$ for some k.

[1] R. Strichartz, and Y. Wang, Geometry of self-affine tiles I, *Indiana Univ. Math. J* 48 (1999), 1-23.

(*) It is stated in [1] that even in the case when A^N is a multiple of the identity, hence C(F) is a polytope, it is not clear how to estimate the number of faces of C(F).

(人間) とうき くうき

Let $\mu(F)$ denote the Lebesgue measure of T.

THEOREM

[2] Let $T \in M_n(\mathbb{R})$ be an expanding integer matrix and $D \subset \mathbb{Z}^n$ be a digit set with $\#D = |\det(T)|$. Then $\mu(F(T, D))$ is an integer.

[2] J. C. Lagarias and Y. Wang, Integral self-affine tiles in \mathbb{R}^n I. Standard and non-standard digit sets, *J. London Math. Soc.* 54 (1996), 161-179.

(**) It is also mentioned by the authors that the techniques in [1] or [2] don't seem to work for affine iterated function systems (AIFSs) involving mappings with different linear parts.

直 と く ヨ と く ヨ と

Here we consider the attractors of AIFSs with polytope convex hulls. Regarding the problems in (*) and (**), we are interested in the following questions:

- (1) How can we get the vertices of C(F)?
- (2) How can we compute or approximate $\mu(F(T, D))$?

The norm of a matrix $T \in M_n(\mathbb{R})$ induced by $\|\cdot\|$ is given by

$$||T|| = \sup_{||x||=1} \{||Tx|| : x \in \mathbb{R}^n\}.$$

For $\mathcal{T} = \{T_1, \cdots, T_q\} \subset M_n(\mathbb{R})$, we define

$$\|\mathcal{T}\| = \max\{\|\mathcal{T}_j\|: \ \mathcal{T}_j \in \mathcal{T}\}.$$

For $j_1 \cdots j_k \in \{1, \cdots, q\}$, let $J = (j_1, \cdots, j_k)$ denote a multi-index and let |J| = k be the length of J. By T_J , we mean the product $T_{j_1} \cdots T_{j_k}$ and we let $\mathcal{T}^k = \{T_J : |J| = k\}$.

DEFINITION

[3] The number

$$\lambda(\mathcal{T}) = \lim_{k} \|\mathcal{T}^{k}\|^{1/k} = \limsup \|\mathcal{T}^{k}\|^{1/k} = \inf_{k} \|\mathcal{T}^{k}\|^{1/k}$$

is called the joint spectral radius of \mathcal{T} .

[3] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, *Indag. Math.* 22 (1960), 379-381.

PROPOSITION

[4] Suppose that $\mathcal{T} = \{T_1, T_2, ..., T_q\} \subset M_n(\mathbb{R})$ satisfies $\lambda(\mathcal{T}) < 1$. Then for any $D = \{d_1, \cdots, d_q\} \subset \mathbb{R}^n$, there exists a unique nonempty compact set $F = F(\mathcal{T}, D)$ satisfying

$$\mathsf{F} = igcup_{j=1}^q T_j(\mathsf{F} + d_j).$$

[4] I. Kirat and I. Kocyigit, Remarks on Self-affine Fractals with Polytope Convex Hulls, manuscript (2008).

REMARK

[4] The expanding assumption on T_j^{-1} cannot guarantee $\lambda(T) < 1$. To see this, we give the following example of a set of expanding matrices with $\lambda(T) = 1$: Let $T = \{T_1, T_2\}$ with $T_1^{-1} = \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$ $T_2^{-1} = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$.

Results

Assume that $0 \in D$. For $d_{j_k} \in D$, the sequence $d_{j_1}d_{j_2} \dots d_{j_k} \dots$ corresponds to the point $x = \sum_{k=1}^{\infty} T_{j_1}T_{j_2} \dots T_{j_k}d_{j_k} \in F$ and hence x will be represented by $j_1j_2 \dots j_k \dots$ As usual, $j_1j_2 \dots j_p$ (i.e., the block $j_1j_2 \dots j_p$ is repeated indefinitely) denotes a *periodic* sequence and $j_1j_2 \dots j_m \overline{j_{m+1}j_{m+2}} \dots \overline{j_p}$ an *eventually periodic* (e.p.) sequence.

We set

$$A_{k} = \{j_{1}j_{2} \dots j_{k} = j_{1}j_{2} \dots j_{k}\overline{0} = \sum_{i=1}^{k} T_{j_{1}}T_{j_{2}} \dots T_{j_{i}}d_{j_{i}} : d_{j_{1}}, \dots, d_{j_{k}} \in D\}.$$

Let $\phi_j(x) = T_j(x + d_j)$, $1 \le j \le q$. In the Hausdorff metric, we know that

$$A_k = \bigcup_{|J|=k} \phi_J(0), \qquad k = 1, 2, \dots,$$

converges to F as $k \to \infty$.

Let $S \in \mathbb{R}^n$ be a set. We will denote the set of vertices of $\mathcal{C}(S)$ by $\mathcal{V}(S)$. Now let $\mathcal{V}_k = \mathcal{V}(A_k)$.

THEOREM

[4] Assume that $T_1 = T_2 = \cdots = T_q$ and $\lambda(\mathcal{T}) < 1$. Then

(i) C(F) is a polytope if and only if $\#V_i = \#V_{i+1} = t$ for some k. In such a case, for any j > i, V_j has t elements too.

(ii) If $\#V_{i+1} = \#V_i = t$ for some *i*, then #V(F) = t and for any j > i, V_j consists of consecutive terms of points of V(F) which are periodic points in $\partial(F)$.

[4] I. Kirat and I. Kocyigit, Remarks on Self-affine Fractals with Polytope Convex Hulls, manuscript (2008).

・ 同 ト ・ ヨ ト ・ ヨ ト …

The previous theorem may not hold true if we drop the assumption that $T_1 = T_2 = \cdots = T_q$. For the general case, we will give another characterization of polytope convex hulls of similar nature. We let $(j_1 j_2 \dots j_p)_r = \underbrace{j_1 j_2 \dots j_p j_1 j_2 \dots j_p \dots j_1 j_2 \dots j_p}_{r \text{ times}}$,

i.e., $(j_1j_2...j_p)_r$ denotes a finite sequence consisting of r blocks of digits $j_1j_2...j_p$. For bounded s and all sufficiently large $r \ge 2$, a point of the form

$$x = i_1 i_2 \dots i_m (j_1 j_2 \dots j_p)_r j_{p+1} \dots j_{p+s}$$

will also be called an e.p. point.

Results: The multiple-matrix case

Let $\mathcal{W}_{k,\infty}$ consist of e.p. points of the form $i_1 i_2 \dots i_m \overline{j_1 j_2 \dots j_p}$ associated to the e.p. points of $\mathcal{W}_k \subseteq \mathcal{V}_k$. Set

$$\mathcal{W}_{k,\infty}^{\mathsf{C}} = \{ x = i_1' i_1 i_2 \dots i_m \overline{j_1 j_2 \dots j_p} \mid i_1 \dots i_m \overline{j_1 j_2 \dots j_p} \in \mathcal{W}_{k,\infty}, \ x \notin \mathcal{W}_{k,\infty} \}$$

THEOREM

[4] Assume that F is a self-affine set defined by $\mathcal{T} = \{T_1, T_2, ..., T_q\} \subset M_n(\mathbb{R})$ with $\lambda(\mathcal{T}) < 1$ and a digit set D. Then $\mathcal{C}(F)$ is a polytope if and only if there exists a $k_0 \in \mathbb{N}$ and a subset $\mathcal{W}_{k_0} \subseteq \mathcal{V}_{k_0}$ with e.p. points such that

$$\mathcal{W}_{k_0,\infty}^{\mathcal{C}} \cup \mathcal{V}_{k_0} \subseteq \mathcal{C}(\mathcal{W}_{k_0,\infty}).$$

In such a case, $C(F) = C(W_{k_0,\infty})$ and all periodic vertices of C(F) appear in V_k for all sufficiently large k.

A (1) < A (1) </p>

Algorithms

Algorithm 1: The single-matrix case

Choose a number k₀ ∈ N,
Start finding V₁, V₂, · · · V_{k0}, and stop finding more of them if #V_i = #V_{i+1} for some i ∈ {1, · · · k₀},
Extract the points in V(F) from V_{i+1} in the following way: If k > i + 1 and

$$\begin{aligned} \mathcal{V}_{i+1} &= \{ j_1 \dots j_{i+1}, \ j_2 \dots j_{i+1} j_{i+2}, \ j_3 \dots j_{i+2} j_{i+3}, \dots, j_{k-i} \dots j_k = j_1 \dots j_{i+1}, \\ & (\text{similarly other sequences here}) \dots \}, \end{aligned}$$

then

 $\mathcal{V}(F) = \{\overline{j_1...j_{i+1}...j_{k-i-1}}, \overline{j_2...j_{i+1}...j_{k-i-1}j_1}, ..., \overline{j_{k-i-1}j_1j_2...j_{k-i-2}}, ...\}$ When $k \le i+1$ and

$$\mathcal{V}_{i+1} = \{ j_1 \dots j_k \dots j_{i+1}, \ j_2 \dots j_{i+1} j_{i+2}, \ j_3 \dots j_{i+2} j_{i+3}, \ \dots, j_{k+1} \dots j_{k+i+1} = j_1 \dots \\ (\text{similarly other sequences here}) \dots \},$$

we have $\mathcal{V}(F) = \{\overline{j_1 \dots j_k}, \overline{j_2 \dots j_k j_1}, \dots, \overline{j_k j_1 \dots j_{k-1}}, \dots\}.$

Set
$$C_k = \bigcup_{|J|=k} \phi_J(\mathcal{C}(F)), \qquad k = 1, 2, \dots$$

We can use the vertex-finding algorithms together with the following simple proposition to give upper bounds for the Lebesgue measure of F.

PROPOSITION

 $\{\mu(C_k)\}$ converges to $\mu(F)$ decreasingly.

Example

The twin dragon. For $T^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}, F(T, D)$ is called the twin dragon tile (see the Figure). For this example, we find $\#\mathcal{V}_4 = \#\mathcal{V}_5 = 8$ and

 $\mathcal{V}_5 = \{22111, 21111, 11112, 11122, 11222, 12222, 22221, 22211\}.$

Since $\#\mathcal{V}_4 = \#\mathcal{V}_5 = 8$, the convex hull is an octagon. Using Algorithm 1, we can extract the vertex set V(F) from \mathcal{V}_5 . Expressed as coordinate pairs,

$$\mathcal{V}(F) = \{(2/3, -1), (2/3, -1/3), (0, 1/3), (-1/3, 1/3), \\ (-2/3, 0), (-2/3, -2/3), (0, -4/3), (1/3, -4/3)\}$$

as marked in the next Figure .

Ibrahim Kirat On the Self-affine Tiles with Polytope Convex Hulls and Their Leb

э

590

A Haar tile For the expansive matrices

$$T_1^{-1} = T_2^{-1} = \begin{bmatrix} 2 & 0 \\ 3 & -2 \end{bmatrix},$$

and $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, d_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, d_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \}$, the associated self-affine set $F = F(\mathcal{T}, D)$ is a tile (see the Figure). We obtain $\#\mathcal{V}_2 = \#\mathcal{V}_3 = 6$ and $\mathcal{V}_3 = \{434, 343, 323, 232, 121, 212\}$. Since V_3 has 6 strings, the convex hull is a hexagon. Again by the vertex finding algorithm, from \mathcal{V}_3 , we get

$$\mathcal{V}(F) = \{\overline{43}, \overline{34}, \overline{32}, \overline{23}, \overline{12}, \overline{21}\} \\ = \{(1, 1/3), (1, 4/3), (2/3, 4/3), (1/3, -2/3), (0, 1/3), (0, -2/3)\}$$

For the Lebesgue measure, we get from the second column of the next Table that $0 < \mu(F) \le 1.0104$. Since *D* is a complete residue system for T_1^{-1} , $\mu(F)$ is a non-zero integer. Therefore, $\mu(F) = 1$, i.e., *F* is a Haar tile.

On the Self-affine Tiles with Polytope Convex Hulls and Their Leb

590

Table: First few successive approximations to Lebesgue measures

	The Haar tile	Levy's dragon	Heighway's dragon	The 3-digit tile
$\mu(\mathcal{C}_1)$	1.1666	1.9375	0.52546	0.51192
$\mu(\mathcal{C}_2)$	1.0833	1.7031	0.47222	0.45152
$\mu(\mathcal{C}_3)$	1.0417	1.5156	0.4349	0.41183
$\mu(\mathcal{C}_4)$	1.0208	1.3867	0.40538	0.38557
$\mu(\mathcal{C}_5)$	1.0104	1.2969	0.38028	0.36813
$\mu(\mathcal{C}_8)$		1.0806	0.32872	0.34363

Notice that the table suggests that the convergence of $\mu(C_k)$ to the actual value of $\mu(F)$ in the single-matrix case is faster than the other case.

Sar

Algorithm 2: The multiple-matrix case

1. Choose a number $k_0 \in \mathbb{N}$,

2. Start finding $\mathcal{V}_1, \mathcal{V}_2, \cdots \mathcal{V}_{k_0}$, and stop finding more of them if a there is a subset $\mathcal{W}_i \subseteq \mathcal{V}_i$ with e.p. points such that

$$\mathcal{W}_{i,\infty}^{\mathsf{C}} \cup \mathcal{V}_i \subseteq \mathcal{C}(\mathcal{W}_{i,\infty}).$$

for some $i \in \{1, \dots, k_0\}$, In such a case, $\mathcal{C}(F) = \mathcal{C}(\mathcal{W}_{i,\infty})$.

For the following examples, it is easy to show that $\lambda(\mathcal{T}) < 1$.

Example

A disconnected attractor.

Let

$$T_1^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad T_2^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$

and $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \}$. Then $F = \bigcup_{j=1}^2 F_j$ together with some $\mathcal{C}(\mathcal{V}_k) = \mathcal{C}(\mathcal{A}_k)$ are depicted in the next Figure. By Algorithm 2, $\mathcal{C}(F)$ is a heptagon with vertex set

 $\mathcal{V}_{19,\infty} = \mathcal{V}(F) \ = \ \{\overline{2}, 1\overline{2}, 11\overline{2}, 111\overline{2}, 1111\overline{2}, 1111\overline{2}, 1111\overline{2}, 11111\overline{2}, 11111\overline{2}\}.$

Figure: The disconnected attractor

Ibrahim Kirat On the Self-affine Tiles with Polytope Convex Hulls and Their Leb

э

э

Figure: The disconnected attractor

▲ 同 ▶ → 三 ▶

- ∢ ⊒ →

Levy's Dragon. For the expansive matrices

$$T_1^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad T_2^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},$$

and $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$, the associated self-affine set $F = F(\mathcal{T}, D)$ is a tile, called the Levy dragon (see the Figure for F together with some $\mathcal{C}(\mathcal{V}_k)$). By Algorithm 2,

 $\mathcal{V}_{19,\infty} = \mathcal{V}(F) = \{222\overline{21}, 22\overline{21}, 2\overline{21}, \overline{21}, \overline{121}, 11\overline{21}, 111\overline{21}, 111\overline{21}\}.$

Then the convex hull of Levy's dragon is an octagon. From the third column of the Table, we see that $0 < \mu(F) \le 1.0806$.

伺 ト く ヨ ト く ヨ ト

Ibrahim Kirat On the Self-affine Tiles with Polytope Convex Hulls and Their Leb

590

Example

Heighway's Dragon. For the expansive matrices

$$T_1^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad T_2^{-1} = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix},$$

and the digit set $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}, F = F(\mathcal{T}, D)$ is a tile, called the Heighway dragon. $F = F(\mathcal{T}, D)$ is depicted in the next Figure. For this example, the vertex set is

$$\mathcal{V}_{19,\infty} = \mathcal{V}(F) = \{\overline{2211}, 221\overline{2211}, 21\overline{2211}, 211\overline{2211}, 211\overline{22$$

Therefore, $\mathcal{C}(F)$ is a decagon. We use this decagon to approximate the Lebesgue measure. Thus the fourth column of the Table implies $0 < \mu(F) \le 0.32872$.

Figure: Heighwav's Dragon 다 아이라 가 (문화 전 문화 문화 것이다) Ibrahim Kirat On the Self-affine Tiles with Polytope Convex Hulls and Their Leb

Example

[4] A 3-digit tile. For the expansive matrices

 $T_1^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \qquad T_2^{-1} = T_1^{-1} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}, \qquad T_3^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$

and the digit set $D = \{ d_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, d_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \}, F = F(\mathcal{T}, D)$ is a tile (see the next Figure). By Algorithm 2, the vertex set is obtained as

 $\mathcal{V}(F) = \{11\overline{1112}, 1\overline{1112}, \overline{1112}, 112\overline{1112}, 12\overline{1112}, 2\overline{1112}, 2\overline{1112}, 2112\overline{1112}, 2\overline{1112}, 2\overline{1112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{112}, 2\overline{12}, 2\overline{12},$

Therefore, $\mathcal{C}(F)$ is a tetradecagon. For the Lebesgue measure, the fifth column of the Table yields $0 < \mu(F) \leq 0.34363$ so that $\mu(F)$ is not an integer.

On the Self-affine Tiles with Polytope Convex Hulls and Their Leb