Bernoulli systems and ONBs of exponentials I: Measure of the overlap

Keri Kornelson

University of Oklahoma - Norman

Fractals and Tilings 07 July 2009 **Overlap Measure**

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Measuring Overlap

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Acknowledgements

- This is joint work with Palle Jorgensen (University of Iowa) and Karen Shuman (Grinnell College).
- 2. This work was partially supported by
 - NSF Grant DMS-0701164
 - Woodrow Wilson Fellowship Foundation and the Mellon Foundation

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Iterated Function Systems (IFSs)

[Hutchinson, 1981]

Definition

An Iterated Function System (IFS) is a finite collection $\{\tau_i\}_{i=1}^k$ of contractive maps on a complete metric space. By the Banach Contraction Mapping Theorem, there

exists a unique compact set X satisfying

$$\bigcup_{i=1}^{k} \tau_i(X) = X.$$
 (1)

A D F 4 目 F 4 目 F 4 目 F 9 Q Q

The set X is called the attractor of the IFS.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Iterated Function Systems (IFSs)

[Hutchinson, 1981]

Definition

An Iterated Function System (IFS) is a finite collection $\{\tau_i\}_{i=1}^k$ of contractive maps on a complete metric space. By the Banach Contraction Mapping Theorem, there

exists a unique compact set X satisfying

$$\bigcup_{i=1}^{k} \tau_i(X) = X.$$
 (1)

The set X is called the attractor of the IFS.

Given any compact set $A_0 \subset \mathbb{R}^d$, successive iterations of our contraction

$$A_{n+1} = \bigcup_{i=1}^{\kappa} \tau_i(A_n)$$

converge (in Hausdorff metric) to the attractor X.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

IFS Measure

[Hutchinson, 1981]

Given an IFS $\{\tau_i\}_{i=1}^k$ and probability weights $\{p_i\}_{i=1}^k$ with $\sum_{i=1}^k p_i = 1$, there is a unique probability measure, supported on X, such that

$$\mu = \sum_{i=1}^{k} p_i(\mu \circ \tau_i^{-1}),$$

(2)

This measure μ is often called an equilibrium or Hutchinson measure.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

IFS Measure

[Hutchinson, 1981]

Given an IFS $\{\tau_i\}_{i=1}^k$ and probability weights $\{p_i\}_{i=1}^k$ with $\sum_{i=1}^k p_i = 1$, there is a unique probability measure, supported on X, such that

$$\mu = \sum_{i=1}^{k} \boldsymbol{p}_i(\mu \circ \tau_i^{-1}),$$

(2)

Overlap Measure

K. Kornelson

IFS notation and

Bernoulli IFSs The ONB question

Measuring Overlap

terms

This measure μ is often called an equilibrium or Hutchinson measure.

Given any probability measure μ_0 , iterations of the measure transformation

$$\mu_{n+1} = \sum_{i=1}^k p_i(\mu_n \circ \tau_i^{-1})$$

converge to the equilibrium measure μ

Bernoulli IFS

Definition A Bernoulli IFS consists of two affine maps τ_0 and τ_1 on \mathbb{R} of the form

$$au_0(\mathbf{x}) = \lambda \mathbf{x} \qquad au_1(\mathbf{x}) = \lambda(\mathbf{x}+1)$$

for $0 < \lambda < 1$.

We denote the attractor set by X_{λ} and the the equilibrium measure using equal weights $p_0 = p_1 = \frac{1}{2}$ by μ_{λ} .

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Bernoulli IFS

Definition A Bernoulli IFS consists of two affine maps τ_0 and τ_1 on \mathbb{R} of the form

$$au_0(\mathbf{x}) = \lambda \mathbf{x} \qquad au_1(\mathbf{x}) = \lambda(\mathbf{x}+1)$$

for $0 < \lambda < 1$.

We denote the attractor set by X_{λ} and the the equilibrium measure using equal weights $p_0 = p_1 = \frac{1}{2}$ by μ_{λ} .

The measure μ_{λ} can be realized as the probability distribution of the random variable $\sum_{i} \omega_{i} \lambda^{i}$, where each ω_{i} is a random variable taking on the values 0 or 1 with equal probability.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question Measuring Overlap

Bernoulli IFS attractors

λ < 1/2: X_λ is a Cantor set with non-integer Hausdorff dimension.

λ = ¹/₂: X_{1/2} is the interval [0, 1] and the measure μ_{1/2} is Lebesgue measure.

λ > 1/2: X_λ is the interval [0, λ/(1-λ)]. These measures have overlap, i.e.

 $au_0(X_\lambda) \cap au_1(X_\lambda)$

has nonzero Lebesgue measure.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Some known results about μ_{λ}

- [Erdös, 1939] If λ > ¹/₂ is the inverse of a Pisot number, the measure μ_λ is singular with respect to Lebesgue measure.
- ► [Kakutani, 1947] If λ₁ < λ₂ < ¹/₂ then μ_{λ1} and μ_{λ2} are mutually singular.
- ► [Garsia, 1962] There is a countable family of μ_{λ} with $\lambda \in (\frac{1}{2}, 1)$ which are absolutely continuous.
- ► [Solomyak, 1995] For almost every λ ∈ (¹/₂, 1), μ_λ is absolutely continuous.
- [Jorgensen & Pedersen, Strichartz, 1998] μ_{1/4} is a spectral measure, but μ_{1/3} is not. More generally, for λ = 1/n, if *n* is even, there is an ONB of exponentials but when *n* is odd, there is not.

K. Kornelson

IFS notation and terms

Bernoulli IFSs The ONB question

The ONB question

Question

For which values of λ is μ_{λ} does $L^{2}(\mu_{\lambda})$ have an ONB of exponential functions?

Theorem (Jorgensen, K, Shuman 2008; Hu, Lau 2008)

Let $\lambda = \frac{a}{b}$ in reduced form. If *b* is odd, then any orthonormal collection of exponentials in $L^2(X_{\lambda}, \mu_{\lambda})$ must be finite. If *b* is even, then there exists a countably infinite collection of orthonormal exponentials in $L^2(X_{\lambda}, \mu_{\lambda})$.

If $\lambda = \frac{a}{b} > \frac{1}{2}$, then the question arises of whether the (essential) overlap influences whether an ONB of exponentials exists.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Special Case: $\lambda = \frac{3}{4}$

Let

$$\Gamma = \left\{ \sum_{j=0}^{p} a_{j} 4^{j} : a_{j} \in \{0,1\}, p \text{ finite} \right\}$$

= $\{0, 1, 4, 5, 16, 17, 20, 21, \ldots\}.$ (3)

Overlap Measure K. Kornelson IFS notation and terms Bernoulli IFSs The ONB question

Measuring Overlap

The collection $\{e_{\gamma} : \gamma \in \Gamma\}$ is an ONB for $L^{2}(\mu_{\frac{1}{4}})$ (JoPe98).

It is also an orthonormal set in $L^2(\mu_{\frac{3}{4}})$, but is it an ONB?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Test for ONB

Using the Parseval identity for orthonormal bases and Stone-Weierstrass, we see that $\{e_{\gamma} : \gamma \in \Gamma\}$ is an ONB if and only if

$$egin{array}{rcl} \|m{e}_t\|^2_{\mu_{rac{3}{4}}} &=& \sum_{\gamma\in\Gamma}|\langlem{e}_t,m{e}_\gamma
angle|^2 \ &=& \sum_{\gamma\in\Gamma}|\widehat{\mu}_{rac{3}{4}}(t-\gamma)|^2 \end{array}$$

Our test for an ONB is whether, for every value of *t*, this last line is equal to 1.

$$\sum_{\gamma \in \Gamma} [\widehat{\mu}_{\frac{3}{4}}(t-\gamma)]^2 = \sum_{\gamma \in \Gamma} \prod_{k=1}^{\infty} \cos^2\left(2\pi \left(\frac{3}{4}\right)^k (t-\gamma)\right) \equiv 1.$$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Evidence for non-ONB

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Measuring Overlap

Figure: 40 terms in both the product and sum in the approximation of the function $\sum_{\gamma \in \Gamma} |\hat{\mu}_{\frac{3}{4}}(t-\gamma)|^2$. The function does not appear to be identically 1.

Overlap and spectral measure

Theorem (Dutkay, Han, Jorgensen 2009) If μ_{λ} is spectral, $\mu_{\lambda}(overlap) = 0$.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Overlap and spectral measure

Theorem (Dutkay, Han, Jorgensen 2009) If μ_{λ} is spectral, $\mu_{\lambda}(overlap) = 0$.

This motivates a look at what we can say about the measure of the overlap set.

イロト (同) (三) (三) (つ) (つ)

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

The overlap interval

Recall that for $\lambda > \frac{1}{2}$, the attractor set is

$$X_{\lambda} = \left[0, \frac{\lambda}{1-\lambda}\right].$$

Denote the right endpoint of the attractor set $b_{\lambda} = \frac{\lambda}{1-\lambda}$.

The overlap interval is $[\lambda, \frac{\lambda^2}{1-\lambda}]$, which clearly has nonzero Lebesgue measure when $\lambda > \frac{1}{2}$. We need to examine the measure with respect to μ_{λ} .

 $0 \qquad \lambda \qquad \frac{\lambda^2}{1-\lambda} \qquad \frac{\lambda}{1-\lambda}$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Symmetry Theorem

Theorem For any $\alpha \in X_{\lambda}$,

$$\mu_{\lambda}([\mathbf{0},\alpha]) = \mu_{\lambda}([\mathbf{b}_{\lambda} - \alpha, \mathbf{b}_{\lambda}]).$$

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

In particular, $\mu_{\lambda}(\tau_0(X_{\lambda})) = \mu_{\lambda}(\tau_1(X_{\lambda})).$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Proof of Symmetry Theorem

Proof.

Consider μ_{λ} as the probability distribution for $\sum_{i=1}^{\infty} \omega_i \lambda^i$, where each ω_i is a random variable taking the values $\{0, 1\}$ with equal probability. Then $\mu_{\lambda}([0, \alpha])$ is the probability that

$$\sum_{i=1}^{\infty} \omega_i \lambda^i < \alpha.$$

Similarly, $\mu_{\lambda}([b_{\lambda} - \alpha, b_{\lambda}])$ is the probability that $\sum_{i=1}^{\infty} \omega_i \lambda^i > b_{\lambda} - \alpha$. This condition is equivalent to

$$\sum_{i=1}^{\infty} (1-\omega_i)\lambda^i < \alpha.$$

But each $(1 - \omega_i)$ also takes on values in $\{0, 1\}$ with equal probability, so the probabilities must be the same.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Computing μ_{λ} measures

Use the convergence of measures from Hutchinson's theory, letting $\mu_0 = \delta_0$, a Dirac point mass measure.

$$\mu_{0} = \delta_{0}$$

$$\mu_{1} = \frac{1}{2} (\delta_{0} \circ \tau_{0}^{-1} + \delta_{0} \circ \tau_{1}^{-1})$$

$$\vdots \qquad \vdots$$

$$\mu_{n+1} = \frac{1}{2} (\mu_{n} \circ \tau_{0}^{-1} + \mu_{n} \circ \tau_{1}^{-1})$$

$$= \frac{1}{2^{n}} \sum_{\omega_{1} \omega_{2} \cdots \omega_{n}} \delta_{0} \circ \tau_{\omega_{n}}^{-1} \circ \tau_{\omega_{n-1}}^{-1} \circ \cdots \circ \tau_{\omega_{1}}^{-1} \quad (\omega_{i} \in \{0, 1\})$$

$$= \frac{1}{2^{n}} \sum_{\omega_{1} \omega_{2} \cdots \omega_{n}} \delta_{\omega_{1} \lambda + \omega_{2} \lambda^{2} + \cdots + \omega_{n} \lambda^{n}} \rightarrow \mu_{\lambda}$$

Therefore, for a set E,

$$\mu_{\lambda}(E) = \lim_{n \to \infty} \frac{1}{2^n} \# \Big\{ \omega_1 \omega_2 \cdots \omega_n : \sum_{i=1}^n \omega_i \lambda^i \in E \Big\}$$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Overlap for the golden ratio

Sidorov, Vershik 1998; Jorgensen, K, Shuman 2007

$$\lambda = \phi^{-1} = \frac{\sqrt{5} - 1}{2}, \quad \lambda^2 + \lambda = 1$$

Theorem

When $\lambda = \frac{\sqrt{5}-1}{2}$, the μ_{λ} -measure of the overlap is $\frac{1}{3}$.

Proof

Compute
$$\mu_{\lambda}(\tau_1(X_{\lambda})) = \mu_{\lambda}([\lambda, b_{\lambda}]) = \mu_{\lambda}\left(\left[\frac{\sqrt{5}-1}{2}, \frac{2}{\sqrt{5}-1}\right]\right)$$

$$\mu_{\lambda}([\lambda, \boldsymbol{b}_{\lambda}]) = \lim_{n \to \infty} \frac{1}{2^{n}} \# \Big\{ \omega_{1} \omega_{2} \cdots \omega_{n} : \sum_{i=1}^{n} \omega_{i} \lambda^{i} \in [\lambda, \boldsymbol{b}_{\lambda}] \Big\}$$

We count the number of length-n words $\omega = \omega_1 \omega_2 \cdots \omega_n$, $\omega_i \in \{0, 1\}$, such that $\sum_{i=1}^n \omega_i \lambda^i > \lambda$.

・ロト・日本 * 日本 * 日本 * 日本 * のへで

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

proof continued...

1*
$$\lambda + \sum_{i=2}^{n} \omega_i \lambda^i \ge \lambda$$

011* $\lambda^2 + \lambda^3 + \sum_{i=4}^n \omega_i \lambda^i \ge \lambda$

- 01011* $\lambda^2 + \lambda^4 + \lambda^5 + \sum_{i=6}^n \omega_i \lambda^i \ge \lambda$
- Lemma 1. For $\lambda = \frac{\sqrt{5}-1}{2}$, $\lambda^2 + \lambda^4 + \dots + \lambda^{2k} + \lambda^{2k+1} = \lambda \qquad \forall k \ge 1$.

Lemma 2. The *only* finite sums $\sum_{i=1}^{n} \omega_i \lambda^i \ge \lambda$ start as in Lemma 1.

K. Kornelson IFS notation and terms Bernoulli IFSs The ONB question

Overlap Measure

Measuring Overlap

・ロト・日本・日本・日本・日本・日本・日本

proof continued ...

For fixed odd *n*, we count the number of words $\omega_1 \omega_2 \cdots \omega_n$ with $\sum_{i=1}^n \omega_i \lambda^i \ge \lambda$. Notice the cases are disjoint!

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Measuring Overlap

Then, we have

$$\frac{1}{2^n}\#\left\{\omega_1\omega_2\cdots\omega_n: \sum_{i=1}^n\omega_i\lambda^i\geq\lambda\right\}=\frac{1}{2}+\frac{1}{8}+\cdots+\frac{1}{2^n}.$$

This value is the same for odd *n* and the next even n + 1. Taking the limit gives:

$$\lim_{n\to\infty}\frac{1}{2}\left(1+\frac{1}{4}+\frac{1}{4^2}+\cdots+\frac{1}{4^n}\right)=\frac{2}{3}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

proof continued ...

We have shown that

$$\mu_{\lambda}(\tau_1(X_{\lambda})) = \frac{2}{3}.$$

By the symmetry theorem, we also have

$$\mu_{\lambda}(\tau_0(X_{\lambda}))=\frac{2}{3}.$$

The measure of the overlap can then be computed

$$\mu_{\lambda}\left(\left[\lambda, \frac{\lambda^{2}}{1-\lambda}\right]\right) = \mu_{\lambda}(\tau_{0}(X_{\lambda})) + \mu_{\lambda}(\tau_{1}(X_{\lambda})) - \mu_{\lambda}(X_{\lambda})$$
$$= \frac{2}{3} + \frac{2}{3} - 1 = \frac{1}{3}.$$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Overlap when $\lambda > \phi^{-1}$

Theorem (Jorgensen, K, Shuman 2007) If $\lambda > \phi^{-1}$, the measure of the overlap is greater than $\frac{1}{3}$.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Measuring Overlap

・ロト・日本・山田・ 山田・ うんら

Overlap when $\lambda > \phi^{-1}$

Theorem (Jorgensen, K, Shuman 2007)

If $\lambda > \phi^{-1}$, the measure of the overlap is greater than $\frac{1}{3}$.

Proof.

The same cases counted for $\lambda = \phi^{-1}$ all yield finite sums $\sum_{i=1}^{n} \omega_i \lambda^i \ge \lambda$. For example $\lambda^2 + \lambda^3 > \lambda$ so all words starting 011* yield finite sums greater than λ . But now, Lemma 2 no longer holds, so there may be other finite sums bigger than λ .

Example. $\lambda = \frac{3}{4}, \qquad \lambda^3 + \lambda^4 + \lambda^5 > \lambda.$

Thus, $\mu_{\lambda}(\tau_1(X_{\lambda})) > \frac{2}{3}$, so $\mu_{\lambda}(\tau_0(X_{\lambda}) \cap \tau_1(X_{\lambda})) > \frac{1}{3}$.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Measuring Overlap

・ロト・日本・モト・モー シュル

Overlap when $\frac{1}{2} < \lambda < \phi^{-1}$

Theorem (Jorgensen, K, Shuman 2007)

If $\frac{1}{2} < \lambda < \phi^{-1}$, the measure of the overlap is greater than or equal to $\frac{1}{2^{m-1}}$ for some *m*.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Overlap when $\frac{1}{2} < \lambda < \phi^{-1}$ **Theorem (Jorgensen, K, Shuman 2007)** If $\frac{1}{2} < \lambda < \phi^{-1}$, the measure of the overlap is greater than or equal to $\frac{1}{2^{m}-1}$ for some *m*.

Sketch of proof.

Since $\lambda > \frac{1}{2}$, $\exists m$ such that $\lambda + \lambda^2 + \cdots + \lambda^m > 1$.

We count finite words (as before) such that $\sum_{i=1}^{n} \omega_i \lambda^i \ge \lambda. \text{ Let } w = 011 \cdots 1 (m-1 \text{ ones.})$ $\begin{vmatrix} 1 & w_{1*} & w_{$

Taking the limit yields $\mu_{\lambda}(\tau_1(X_{\lambda})) \geq \frac{2^{m-1}}{2^m-1}$, hence

$$\mu_{\lambda}\Big(\tau_0(X_{\lambda})\cap\tau_1(X_{\lambda})\Big)\geq \frac{1}{2^m-1}.$$

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Stay tuned...

In the next talk, Karen will discuss some results finding more exact measurements of overlaps. This is work done by one of her students last summer.

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ のへの

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question

Stay tuned...

- In the next talk, Karen will discuss some results finding more exact measurements of overlaps. This is work done by one of her students last summer.
- Conclusion All Bernoulli measures with Lebesgue overlap also have essential, i.e. nonzero μ_λ-overlap. This means that Dorin's new result proves that no Bernoulli measures for λ > ¹/₂ can be spectral.

Overlap Measure

K. Kornelson

IFS notation and terms

Bernoulli IFSs

The ONB question