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Iterated Function Systems (IFSs)
[Hutchinson, 1981]

Definition
An Iterated Function System (IFS) is a finite collection
{τi}k

i=1 of contractive maps on a complete metric space.

By the Banach Contraction Mapping Theorem, there
exists a unique compact set X satisfying

k⋃

i=1

τi(X ) = X . (1)

The set X is called the attractor of the IFS.
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Iterated Function Systems (IFSs)
[Hutchinson, 1981]

Definition
An Iterated Function System (IFS) is a finite collection
{τi}k

i=1 of contractive maps on a complete metric space.

By the Banach Contraction Mapping Theorem, there
exists a unique compact set X satisfying

k⋃

i=1

τi(X ) = X . (1)

The set X is called the attractor of the IFS.

Given any compact set A0 ⊂ R
d , successive iterations of

our contraction

An+1 =

k⋃

i=1

τi(An)

converge (in Hausdorff metric) to the attractor X .
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IFS Measure
[Hutchinson, 1981]

Given an IFS {τi}k
i=1 and probability weights {pi}k

i=1 with∑k
i=1 pi = 1, there is a unique probability measure,

supported on X, such that

µ =

k∑

i=1

pi(µ ◦ τ−1
i ), (2)

This measure µ is often called an equilibrium or
Hutchinson measure.
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IFS Measure
[Hutchinson, 1981]

Given an IFS {τi}k
i=1 and probability weights {pi}k

i=1 with∑k
i=1 pi = 1, there is a unique probability measure,

supported on X, such that

µ =

k∑

i=1

pi(µ ◦ τ−1
i ), (2)

This measure µ is often called an equilibrium or
Hutchinson measure.
Given any probability measure µ0, iterations of the
measure transformation

µn+1 =
k∑

i=1

pi(µn ◦ τ−1
i )

converge to the equilibrium measure µ
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Bernoulli IFS

Definition
A Bernoulli IFS consists of two affine maps τ0 and τ1 on
R of the form

τ0(x) = λx τ1(x) = λ(x + 1)

for 0 < λ < 1.

We denote the attractor set by Xλ and the the equilibrium
measure using equal weights p0 = p1 = 1

2 by µλ.
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Bernoulli IFS

Definition
A Bernoulli IFS consists of two affine maps τ0 and τ1 on
R of the form

τ0(x) = λx τ1(x) = λ(x + 1)

for 0 < λ < 1.

We denote the attractor set by Xλ and the the equilibrium
measure using equal weights p0 = p1 = 1

2 by µλ.

The measure µλ can be realized as the probability
distribution of the random variable

∑
i ωiλ

i , where each ωi

is a random variable taking on the values 0 or 1 with
equal probability.
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Bernoulli IFS attractors

◮ λ < 1
2 : Xλ is a Cantor set with non-integer

Hausdorff dimension.
◮ λ = 1

2 : X 1
2

is the interval [0, 1] and the measure µ 1
2

is Lebesgue measure.

◮ λ > 1
2 : Xλ is the interval

[
0, λ

1−λ

]
. These measures

have overlap, i.e.

τ0(Xλ) ∩ τ1(Xλ)

has nonzero Lebesgue measure.
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Some known results about µλ

◮ [Erdös, 1939] If λ > 1
2 is the inverse of a Pisot

number, the measure µλ is singular with respect to
Lebesgue measure.

◮ [Kakutani, 1947 ] If λ1 < λ2 < 1
2 then µλ1 and µλ2 are

mutually singular.

◮ [Garsia, 1962] There is a countable family of µλ with
λ ∈ (1

2 , 1) which are absolutely continuous.

◮ [Solomyak, 1995] For almost every λ ∈ (1
2 , 1), µλ is

absolutely continuous.

◮ [Jorgensen & Pedersen, Strichartz, 1998] µ 1
4

is a

spectral measure, but µ 1
3

is not. More generally, for

λ = 1
n , if n is even, there is an ONB of exponentials

but when n is odd, there is not.
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The ONB question

Question
For which values of λ is µλ does L2(µλ) have an ONB of
exponential functions?

Theorem (Jorgensen, K, Shuman 2008; Hu, Lau
2008)
Let λ = a

b in reduced form. If b is odd, then any
orthonormal collection of exponentials in L2(Xλ, µλ) must
be finite. If b is even, then there exists a countably infinite
collection of orthonormal exponentials in L2(Xλ, µλ).

If λ = a
b > 1

2 , then the question arises of whether the
(essential) overlap influences whether an ONB of
exponentials exists.
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Special Case: λ =
3
4

Let

Γ =






p∑

j=0

aj4
j : aj ∈ {0, 1}, p finite






= {0, 1, 4, 5, 16, 17, 20, 21, . . .} . (3)

The collection {eγ : γ ∈ Γ} is an ONB for L2(µ 1
4
)

(JoPe98).

It is also an orthonormal set in L2(µ 3
4
), but is it an ONB?
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Test for ONB

Using the Parseval identity for orthonormal bases and
Stone-Weierstrass, we see that {eγ : γ ∈ Γ} is an ONB if
and only if

‖et‖2
µ 3

4

=
∑

γ∈Γ

|〈et , eγ〉|2

=
∑

γ∈Γ

|µ̂ 3
4
(t − γ)|2

Our test for an ONB is whether, for every value of t , this
last line is equal to 1.

∑

γ∈Γ

[µ̂ 3
4
(t − γ)]2 =

∑

γ∈Γ

∞∏

k=1

cos2
(

2π
(3

4

)k
(t − γ)

)
≡ 1.
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Evidence for non-ONB
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Figure: 40 terms in both the product and sum in the
approximation of the function

∑
γ∈Γ

|µ̂ 3
4
(t − γ)|2. The function

does not appear to be identically 1.
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Overlap and spectral measure

Theorem (Dutkay, Han, Jorgensen 2009)
If µλ is spectral, µλ(overlap) = 0.
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Overlap and spectral measure

Theorem (Dutkay, Han, Jorgensen 2009)
If µλ is spectral, µλ(overlap) = 0.

This motivates a look at what we can say about the
measure of the overlap set.
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The overlap interval

Recall that for λ > 1
2 , the attractor set is

Xλ =
[
0,

λ

1 − λ

]
.

Denote the right endpoint of the attractor set bλ = λ
1−λ

.

The overlap interval is [λ, λ2

1−λ
], which clearly has nonzero

Lebesgue measure when λ > 1
2 . We need to examine the

measure with respect to µλ.

0 λ λ2

1−λ
λ

1−λ
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Symmetry Theorem

Theorem
For any α ∈ Xλ,

µλ([0, α]) = µλ([bλ − α, bλ]).

In particular, µλ(τ0(Xλ)) = µλ(τ1(Xλ)).
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Proof of Symmetry Theorem

Proof.
Consider µλ as the probability distribution for

∑
∞

i=1 ωiλ
i , where

each ωi is a random variable taking the values {0, 1} with equal
probability. Then µλ([0, α]) is the probability that

∞∑

i=1

ωiλ
i < α.

Similarly, µλ([bλ − α, bλ]) is the probability that∑
∞

i=1 ωiλ
i > bλ − α. This condition is equivalent to

∞∑

i=1

(1 − ωi)λ
i < α.

But each (1 − ωi) also takes on values in {0, 1} with equal
probability, so the probabilities must be the same.
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Computing µλ measures
Use the convergence of measures from Hutchinson’s
theory, letting µ0 = δ0, a Dirac point mass measure.

µ0 = δ0

µ1 =
1
2

(δ0 ◦ τ−1
0 + δ0 ◦ τ−1

1 )

...
...

µn+1 =
1
2

(µn ◦ τ−1
0 + µn ◦ τ−1

1 )

=
1
2n

∑

ω1ω2···ωn

δ0 ◦ τ−1
ωn

◦ τ−1
ωn−1

◦ · · · ◦ τ−1
ω1

(ωi ∈ {0, 1})

=
1
2n

∑

ω1ω2···ωn

δω1λ+ω2λ2+···ωnλn → µλ

Therefore, for a set E ,

µλ(E) = lim
n→∞

1
2n #

{
ω1ω2 · · ·ωn :

n∑

i=1

ωiλ
i ∈ E

}
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Overlap for the golden ratio
Sidorov, Vershik 1998; Jorgensen, K, Shuman 2007

λ = φ−1 =

√
5 − 1
2

, λ2 + λ = 1

Theorem
When λ =

√
5−1
2 , the µλ-measure of the overlap is 1

3 .

Proof
Compute µλ(τ1(Xλ)) = µλ([λ, bλ]) = µλ

([√5−1
2 , 2√

5−1

])
:

µλ([λ, bλ]) = lim
n→∞

1
2n #

{
ω1ω2 · · ·ωn :

n∑

i=1

ωiλ
i ∈ [λ, bλ]

}

We count the number of length-n words ω = ω1ω2 · · ·ωn,
ωi ∈ {0, 1}, such that

∑n
i=1 ωiλ

i > λ.
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proof continued...

1∗ λ +
∑n

i=2 ωiλ
i ≥ λ

011∗ λ2 + λ3 +
∑n

i=4 ωiλ
i ≥ λ

01011∗ λ2 + λ4 + λ5 +
∑n

i=6 ωiλ
i ≥ λ

Lemma 1. For λ =
√

5−1
2 ,

λ2 + λ4 + · · · + λ2k + λ2k+1 = λ ∀k ≥ 1.

Lemma 2. The only finite sums
∑n

i=1 ωiλ
i ≥ λ start as

in Lemma 1.
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proof continued ...
For fixed odd n, we count the number of words ω1ω2 · · ·ωn

with
∑n

i=1 ωiλ
i ≥ λ. Notice the cases are disjoint!

1∗ 011∗ 01011∗ · · · 0101 · · ·011

2n−1 2n−3 2n−5 · · · 1

Then, we have

1
2n #

{
ω1ω2 · · ·ωn :

n∑

i=1

ωiλ
i ≥ λ

}
=

1
2

+
1
8

+ · · · + 1
2n .

This value is the same for odd n and the next even n + 1.
Taking the limit gives:

lim
n→∞

1
2

(
1 +

1
4

+
1
42 + · · · + 1

4n

)
=

2
3
.
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proof continued ...

We have shown that

µλ(τ1(Xλ)) =
2
3

.

By the symmetry theorem, we also have

µλ(τ0(Xλ)) =
2
3

.

The measure of the overlap can then be computed

µλ

([
λ,

λ2

1 − λ

])
= µλ(τ0(Xλ)) + µλ(τ1(Xλ)) − µλ(Xλ)

=
2
3

+
2
3
− 1 =

1
3

.

�
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Overlap when λ > φ−1

Theorem (Jorgensen, K, Shuman 2007)
If λ > φ−1, the measure of the overlap is greater than 1

3 .
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Overlap when λ > φ−1

Theorem (Jorgensen, K, Shuman 2007)
If λ > φ−1, the measure of the overlap is greater than 1

3 .

Proof.
The same cases counted for λ = φ−1 all yield finite sums∑n

i=1 ωiλ
i ≥ λ. For example λ2 + λ3 > λ so all words

starting 011∗ yield finite sums greater than λ. But now,
Lemma 2 no longer holds, so there may be other finite
sums bigger than λ.

Example. λ = 3
4 , λ3 + λ4 + λ5 > λ.

Thus, µλ(τ1(Xλ)) > 2
3 , so µλ(τ0(Xλ) ∩ τ1(Xλ)) > 1

3 .
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Overlap when 1
2 < λ < φ−1

Theorem (Jorgensen, K, Shuman 2007)
If 1

2 < λ < φ−1, the measure of the overlap is greater than
or equal to 1

2m−1 for some m.
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Overlap when 1
2 < λ < φ−1

Theorem (Jorgensen, K, Shuman 2007)
If 1

2 < λ < φ−1, the measure of the overlap is greater than
or equal to 1

2m−1 for some m.

Sketch of proof.
Since λ > 1

2 , ∃m such that λ + λ2 + · · · + λm > 1.

We count finite words (as before) such that∑n
i=1 ωiλ

i ≥ λ. Let w = 011 · · ·1 (m − 1 ones.)

1∗ w1∗ ww1∗ · · · w · · ·w1

2n−1 2n−m−1 2n−2m−1 · · · 1

Taking the limit yields µλ(τ1(Xλ)) ≥ 2m−1

2m−1 , hence

µλ

(
τ0(Xλ) ∩ τ1(Xλ)

)
≥ 1

2m − 1
. �
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Stay tuned...

◮ In the next talk, Karen will discuss some results
finding more exact measurements of overlaps. This
is work done by one of her students last summer.
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Stay tuned...

◮ In the next talk, Karen will discuss some results
finding more exact measurements of overlaps. This
is work done by one of her students last summer.

◮ Conclusion All Bernoulli measures with Lebesgue
overlap also have essential, i.e. nonzero µλ-overlap.
This means that Dorin’s new result proves that no
Bernoulli measures for λ > 1

2 can be spectral.
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