
It was difficult to decide whether to talk about Steinhaus’ simultaneous tiling

problem:

Is there some S ⊂ R2 such that S meets every isometric copy of Z2 in exactly

one point?

In particular the open problem:

Can such a set S be Lebesgue measurable?

This problem seems to involve many not clearly understood issues in planar

geometric measure theory and harmonic analysis.

and

1



Random fractals occurring in algorithmic randomness

Workshop on Fractals and Tilings 2009

Strobl, Austria

R. Daniel Mauldin

University of North Texas, Denton, Texas

www.math.unt.edu/∼mauldin

2



There has been a growing interaction between logicians, set theorists and

computer scientists with analysts under the general umbrella of ”‘algorithmic

randomness.” We will hear more about this from Jack Lutz who has done a

lot of foundational work on this. It involves applications and modifications of

techniques from all these areas for this new mixture and presents us with some

opportunities for some new vibrant research directions.

Example: A Construction of Random Subsets of C = {0,1}N

We illustrate our results by the following basic example. Consider the con-

struction of a subset of C = {0,1}N . First, build a random tree in {0,1}∗ as

follows. Begin at the root. If a finite tree has been constructed, then for

each end node of the tree, append only the left branch, append only the right

branch, or append both with equal probability. Do this independently at each

end node. Iterating, a random tree Tω is constructed. Consider the random set

Kω ⊂ {0,1}N consisting of all infinite paths through the tree Tω and let P also

be the corresponding measure induced on the coding space of this process.
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Several things are known about sets constructed in this manner. In particular,

the following theorem was proven.

T.: (Barmpalias, Brodhead, Cenzer, Dashti, Weber)(2007) For P − a.e. K,

dimH,ρ(K) = log2

(

4
3

)

=: η, where dimH,ρ is Hausdorff dimension with respect

to the ultrametric ρ(σ, τ) = 1
2|σ∧τ |+1.

Actually, their theorem says for every P -random K, the dimension formula

holds. They are consdering a somewhat different notion of randonmess, but

for our pruposes we can consider our usual notion.

Much more is known. The following theorem gives us the exact Hausdorff

measure function.

T.: (Mau-McL) For P -a.e. K, Hη(K) = 0. Moreover, for P -a.e. K,

0 < Hg(K) < ∞, where g(t) = tη| log | log t||
2− log 4

log3.
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Method of proof:

• Regard the procedure described above as producing a random subset of

C = Cantor’s middle 1
3 set. This turns out to be a random recursive

construction as described by Mauldin and Williams in TAMS, 295, 1986,

325-346. Applying results from this paper and results of Graf, Mauldin

and Williams in Memoirs AMS no. 381, 1988, we find that dimH,|·|(K) =

α = log 4
log 3 − 1 as a subset of C with the usual Euclidean metric | · |. We

also find Hα(K) = 0 and for P − a.e. K, 0 < Hk(K) < ∞, where k(t) =

tα| log | log t||1−α. (Again, this is all with respect to the euclidean metric.)

• Transfer results to {0,1}N . Use the coding map φ : {0,1}N 7→ C, φ(σ) =
∑

i≥1

2σ(i)
3i . φ is bi-Hölder of order d = log 3

log 2:

ρ(σ, τ)d ≤ |φ(σ) − φ(τ)| ≤ 3ρ(σ, τ)d.
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• Apply geometric results about how Hausdorff dimension and measures

transform: For E ⊂ C, dimH,ρ(E)) = d·dimH,|·|(φ(E)) and

0 < Hk(φ(E)) < ∞,

if and only if

0 < Hg(E) < ∞.



By the way, this transfer theorem certainly works for Hausdorff gauge functions

of the form

g(t) = tα · L(t),

where L is some product of powers of iterated logarithms. But I don’t know

if the theorem is true if L(t) is simply a slowly varying function of Karamata.
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These theorems are special cases of general random recursions in RN given by

Graf-Mauldin-Williams. First let us state a more general version for 2 letter

alphabets.

General results (stated for alphabets with 2 letters). Let A = {0,1} and let

F(A∗) denote the set of prefix free subsets of A∗, and let P be a probability dis-

tribution on F(A∗). Then we generate a random subset of AN using P . Thus,

if the construction has generated a finite tree at some stage we independently

append to each end node a random element of F(A∗).
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We find the Hausdorff dimension, η, with respect to the ultra metric as follows.

Define Φ : [0,∞) → [0,∞) by Φ(β) = EB∈F (A∗)

[

∑

σ∈B

(

1
2|σ|

)β
]

.

The geometric properties of Φ are indicated in the figure.

As will be indicated, the Hausdorff dimension of the random set is a. s. η,

where Φ(η) = 1. For the basic example, Φ(β) = 1
3

1
2β + 1

3
1
2β + 1

3[
1
2β + 1

2β ] = 4
3

1
2β .

Solving Φ(η) = 1, we find dimH,ρ(K) = log2(
4
3).
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Here are some general theorems.

T.:

• If Φ(0) > 1, P(K 6= ∅) > 0

• For η := inf{β : Φ(β) ≤ 1},

P(dimH,ρ(K) = η|K 6= ∅) = 1.

• If PB∈F (A∗)(
∑

σ∈B

(

1
2|σ|

)η
6= 1) > 0, then P({ω : Hη(K(ω)) = 0}) = 1.

Comment: The condition Φ(0) > 1 (from branching processes) ensures us that

with positive probability K 6= ∅ and is in fact a Cantor set.

T.: If P is supported on a finite set of trees and PB∈F (A∗)(
∑

σ∈B

(

1
2|σ|

η)

6= 1) > 0,

then P(0 < Hg(K) < ∞|K 6= ∅) = 1, where g(t) = tη| log | log t||1−α, where

α = η log3(2).
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Comment: It is not necessary that P be supported on finitely many tress but

the exact dimension function is not known then.

I want to indicate some hueristics for how one arrives at the exact Hausdorff

dimension function g.



We are first interested in the functions of the form g(t) = tα and then in those

of the form g(t) = tαL(t) where L is slowly varying:

∀λ > 0, lim
t→0

L(λt)

L(t)
= 1.
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For the finite alphabet spaces with the standard ultra metric, there is another

characterization due to Jack Lutz of Hausdorff dimension using s-gales. We

consider {0,1}N with the ultra metric ρ.

Let s ≥ 0. An s-supergale is a function d : {0,1}∗ → [0,∞) such that for each σ:

d(σ) ≥ 2−s[d(σ ∗ 0) + d(σ ∗ 1)] .

d is an s-gale means

d(σ) = 2−s[d(σ ∗ 0) + d(σ ∗ 1)]

or 2−s|σ|d(σ) = 2−s|σ∗0|d(σ ∗ 0) + 2−s|σ∗1|d(σ ∗ 1)

The success set of d is S∞[d] = {σ ∈ C| lim sup d(σ|n) = ∞}.

T.: (J. Lutz) Let E ⊂ C. dimH(E) = inf{s : ∃ s − gale g, E ⊂ S∞[d]}.

REMARK. One can use this result to define new notions of dimension- con-

structive dimension or computable dimension of sets by restricting the gales

to be constructible or computable. In this way one can obtain the dimension

of a point x- the constructive dimension of the singleton set {x}.
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For the random sets we are focusing on we use a generalization of this result

and a particular generalized η-gale which allows us to obtain not only the

Hausdorff dimension but also the exact dimension function and many other

properties. Theses notions were used in [MW, 1986] and [GMW, 1990] to

obtain exact dimension in RN.



Random Recursive Constructions for Subsets of {0,1}N

Let {A1, A2, . . . , AN} be a collection of finite prefix-free subsets of {0,1}∗,

(Think of trees) and let P be a probability distribution on {1, . . . , N}. Let

V =
n
⋃

i=1
Ai and enumerate V = {v0, v1, . . . , vM}. For ω ∈ Ω = {1, . . . , N}N,

define

C0(ω) = {0,1}N, C1(ω) =
⋃

a∈Aω(1)

[a],

and if Ck(ω) has been defined and is [τk,1] ∪ [τk,2] ∪ · · · ∪ [τk,nk
], and the last

used letter of ω is ω(Nk), then define

Ck+1(ω) =
⋃

1≤i≤nk,
σ∈ω(Nk+i)

[τk,i ∗ σ].

Finally, define

K(ω) =
⋂

k≥1

Ck(ω).

When ω is random according to P , we call K(ω) a random closed subset of

{0,1}N.

Again, P also denotes infinite product measure on Ω.
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For σ ∈ {0, . . . , M}∗, define

Tσ(ω) =







2
−|vσ(|σ|)| if [vσ(1) ∗ · · · ∗ vσ(|σ|)] ∩ K(ω) 6= ∅

0 otherwise

Define Jσ(ω) = [vσ(1) ∗ · · · ∗ vσ(|σ|)] if this cylinder has nonempty intersection

with K(ω) and otherwise is ∅. Define

`σ(ω) = diamJσ(ω) =

|ω|
∏

i=1

Tσ|i(ω).

Notice by conditioning on the tree,

EP [
M
∑

i=0

T
η
i ] =

N
∑

k=1

P(k)E[
M
∑

i=0

T
η
i |ω(1) = k] =

N
∑

i=1

P(k)
∑

v∈Ak

2−|v|η.

Recall η is the unique number so that

EP [
M
∑

i=0

T
η
i ] = 1.
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Let

Sn(ω) =
∑

|σ|=n

`η
σ(ω).

Sn is our best estimate for the Hη measure of K(ω), given the first n stages

of the construction. Then

E[Sn+1|Fn] = E[
∑

|σ|=n

`η
σ

M
∑

p=1

T
η
σ∗p|Fn] =

∑

|σ|=n

`η
σE[

M
∑

p=1

T
η
σ∗p|Fn] = Sn.

Thus, (Sn)n∈N is a nonnegative martingale and converges to a random variable

X.

T.: (Mauldin-Williams (1986)) E[X] = 1, X has finite moments of all orders

and Hη(K(ω)) ≤ X(ω) < ∞, for P a.e. ω and dimH(K) = η a.s.

We also define

Xσ(ω) = lim
n→∞

∑

|τ |=n

`
η
σ∗τ(ω).
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T.: (Mauldin-Williams) For each n, the random variables (Xσ)|σ|=n are i.i.d.

and as a family is independent of Fn and have the same distribution as X∅ = X.

Moreover, for each σ,

`η
σXσ =

M
∑

i=0

`
η
σ∗iXσ∗i

.

This is the generalized ”η-gale”. These equations allow us to define a random

measure µω supported on K(ω). Define

µω([σ]) = `η
σXσ.

By Kolmogorov’s consistency theorem this extends to a measure on K(ω) and

µω(K(ω)) = X(ω)

. Much information about K(ω) can be gained from the random measure µω

and the mixture measure Q defined next.
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I want to indicate how we can use this formalism to:

• First determine the rate at which the diameters `σ|n are going to zero.

• Second obtain a slowly varying function L so that infinitely often Xσ|n ∼

L(`σ|n)

This should allow us with some additional work to conclude 0 < Hg(K) < ∞.
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Let D = {0, ..., M}N. On the product space D × Ω we define a probability

measure Q as follows.

Q(B) =

∫

µω(Bω)dP(ω)

We consider the random variables Tk on D × Ω defined by Tk(σ, ω) = Tσ|n(ω).

(Tk)k∈N is an i.i.d. sequence.

Also, we can convert Q expected values into P expected values for certain

random variables: If k ∈ N and Y : D × Ω 7→ R is a random variable with the

property that Y (σ, ω) = y(σ′, ω) provided σ|k = σ′|k, then

EQ[Y ] = E[
∑

|σ|=k

`η
σXσY (σ, ·)].

In particular,

EQ[| logT |] = E[
∑

i

T
η
i | logTi|] < ∞
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The exact dimension function

As Hausdorff did in his original paper, if one finds Hη(K) = 0, then one seaches

for a slowly varying function L such that 0 < Hg(K) < ∞, where g(t) = tηL(t).

The first natural family to try are functions of the form L(t) = (log(t))θ. We

shall see this is too large.

First, note that by the strong law of large numbers

1

n
| log `σ|n| → B = EQ[| logT1|] = E[

∑

T
η
i | logTi|],

Q a. s or for P a.e. ω and µω a.e. σ. Thus, heuristically,

| log `σ|n|
θ ∼ Bθnθ

.

Now, for all t ≥ 0, by Chebyshev’s inequality

∞
∑

n=1

Q(Xn ≥ cnθ) ≤
∞
∑

n=1

1

ctntθ
EQ[Xt]. ≤

∞
∑

n=1

1

ctntθ
E[Xt+1].
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But, the right hand side is summable for large t, since X has moments of all

orders.

By the Borel-Cantelli lemma, this implies that

limn→∞
Xσ|n

| log `σ|n|
θ
= 0,

for P a.e. ω and µω a.e. σ. So, L(t) = | log t|θ does not work.

T.: (Borel-Cantelli) If
∑

n Q(An) < ∞ then for Q-a.e. (σ, ω) only finitely many

of the An’s occur.
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The second natural scale is L(t) = (| log | log t||)θ. Proceeding as before, we

have for c > 0, t ≥ 0,

(∗ ∗ ∗)
∞
∑

n=1

Q({(σ, ω) : cθXσ|n(ω) ≥ (logn)θ}) ≤

∞
∑

n=1

1

nt
EQ[etcX1/θ

] =
∞
∑

n=1

1

nt
E[XetcX1/θ

].
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So, if the moment generating function of X1/θ, has a finite radius of conver-

gence, then (***) is no obstacle to having

lim sup
n→∞

Xσ|n

| log | log `σ|n||
θ

> 0,

What we finally show is that the moment generating function of X1/θ has a

finite positive radius of convergence , where θ = 1 − η log3 2. We use this to

show that for P a.e. ω there are postive constants mω, Mω such that for µω

a.e. σ:

mω ≤ lim sup
µω(B(σ, ε))

g(2ε)
≤ Mω

It follows from this that for P a.e. ω

0 < Hg(Kω) < ∞.
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Here is a problem that Jack Lutz, Alex McLinden and I considered:

Is it true that there is a number D such that for P a.e. ω and for µω a.e. x

dim x = cdim {x} = D?

One might conjecture what D is. Let a is the a priori probability distribution

on the nodes that that node appears in a tree. If L1(σ, ω) is the average length

of the leaves of the first tree determined by ω, then for every P -random ω, for

every µω-random x,

dim x =
h(a)

EQ(L1)

h(a) is the entropy of a and EQ(L1) is a sort of Lyaponov exponent.

Problem, Can one obtain a random multifractal spectrum for the pointwise

dimension function?

Thank you.
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