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Definition: The outer e-neighbourhood (¢-nbd) of a bounded open
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A. = {x € AC: dist(x,bdA) < ¢}.
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Inner and outer tube formulas

Definition: The outer e-neighbourhood (¢-nbd) of a bounded open
setA CR%is .
A. = {x € AC: dist(x,bdA) < ¢}.

An outer tube formula for A C R is an explicit formula for vol,(A.).
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Definition: The inner e-nbd of a bounded open set A C R? is
A_. = {x € A: dist(x,A®) < e} = (AD)..

An inner tube formula is an explicit formula for vol;(A—_.).
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leroduction and basic terms

How to compute the tube formula for a self-similar set?

Use inner tube formula for A° to find outer tube formula for A.
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(1) Obtain the components of A® from the IFS.
(2) Determine compatibility conditions.

(3) Compute V(c) = vol,((A%)_.) using complex dimensions.
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Self-similar sets in R?

Definition
® = {®4,...,9,} is a self-similar system in R¢ iff

@j(x):rijx—i—tj, j=12,...,J

where 0 < r; < 1, M; € O(d), and t; € R, for each ;.



Tube formulas and self-similar tilings
leroduction and basic terms
Self-similar sets in R?

Definition
® = {®4,...,9,} is a self-similar system in R¢ iff

@j(x):rijx—i—tj, j=12,...,J
where 0 < r; < 1, M; € O(d), and t; € R, for each ;.

A self-similar set F C R4 is a fixed point of ®

F = ®(F) := | &(F).

J=1
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LThe canonical self-affine tiling

LTwo tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling
01(2) =€Z ©2)=(1-E-1)+1, foré=3+;-€C.

@y (x) = 3 +p1, Pa(x) = 3 +p2, B3(x) = 3 +ps.
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LThe canonical self-affine tiling

LOpen tilings: definition, construction, and properties

Tiling by open sets

Definition: Let A = {A'},cy Where A" C R? are disjoint open sets.
A'is an open tiling of a compact set K C R? iff K = 2| A

The sets A’ are called the tiles.
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LThe canonical self-affine tiling

LOpen tilings: definition, construction, and properties

Tiling by open sets

Definition: Let A = {A'},cy Where A" C R? are disjoint open sets.
A'is an open tiling of a compact set K C R? iff K = 2| A

The sets A’ are called the tiles.
Not a typical tiling:
m Only some compact set K D F is tiled, not R.

m Tiles occur at all scales.
(Given e > 0, there is a tile with diameter less than ¢.)

m Tiles are open sets.
m No local finiteness is assumed.
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LOpen tilings: definition, construction, and properties

Initiating the tiling construction

For the construction to be possible, assume
m F satisfies the open set condition, and
B intF = 2.
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LThe canonical self-affine tiling

LOpen tilings: definition, construction, and properties

Initiating the tiling construction

For the construction to be possible, assume
m F satisfies the open set condition, and
B intF = 2.

If O is a feasible open set for F, this means:

®;(0) N P(0) = & for j #k,
®;(0) C O for each j,

F C O, and

0 ¢ ©(0).

First, construct a tiling of K := O.
Later, worry about which K work for the tube formula.
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LThe canonical self-affine tiling

LTile and generators

Each tile is the image of a generator

Definition: The generators {Gq}fz1 are the connected components
of int(K \ ®(K)).

Some examples may have multiple generators.
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LThe canonical self-affine tiling

LTile and generators

Each tile is the image of a generator

Definition: The generators {Gq}fz1 are the connected components

of int(K \ ®(K)).

Definition: The self-affine tiling' associated with ® and O is
T=T7(0)={2,(Gy):weW,q=1,...,0},

where W = |J2{1, ..., N} is all finite strings on {1,...,N}, and
®, =, 09,,0...00, .

Theorem: 7(0) is an open tiling of K = O.

Let T = (g7 R denote the union of the tiles.

The tiling construction works for self-affine sets,
but tube formula technique is only valid for self-similar sets.
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LThe canonical self-affine tiling

LTile and generators

How to pick a good O (or K)

Theorem [Compatibility Theorem]: Let int F = & satisfy OSC with
feasible set O and associated tiling 7 (0). Then TFAE:

bdT = F.

bdK C F.

bd(K \ ®(K)) C F.

bdG, C Fforallg € Q.
F.NK=T_foralle > 0.

A F.nk®=k.nKCforalle > 0.

So for a given ® and F, check that one of 1—4 is satisfied.
Then 56 ensure the inner/outer decomposition:
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LTiIe and generators

How to pick a good O (or K)
Specific possibilities:
(1) Choose K = [F] and O = intK.

Feasible iff int ®;(K) N ®4(K) = @ for j # k. (Tileset condition)
In this case, int F # @ iff F is convex. (Nontriviality condition)
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and K is convex iff K = [F].
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LComputation of the tube formula

How to compute the tube formula

Suppose you have

m O satisfying OSC, with

m intF = &, and

m a feasible open set O satisfying the compatibility theorem.
What is the tube formula?

We compute V(e) = voly(T-.), the inner tube formula for the tiling.
WIlog, suppose there is only one generator.
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LComputation of the tube formula

LThe scaling zeta function: scales and sizes

The scaling zeta function
Definition: Let r,, = ry, 1w, - . . 1y, be the scaling ratio of ®,,.
The scaling zeta function is given by the scaling ratios of ® via

1
Gls)=Y rm=—cg—, forsecC.
wew =207

(s records the sizes (and multiplicities) of the tiles 7 = {®,,(G)}.
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LComputation of the tube formula

LThe scaling zeta function: scales and sizes

The scaling zeta function

Definition: Let r,, = ry, 1w, - . . 1y, be the scaling ratio of ®,,.
The scaling zeta function is given by the scaling ratios of ® via

1
Gls)=Y rm=—cg—, forsecC.
wew =207

(s records the sizes (and multiplicities) of the tiles 7 = {®,,(G)}.
Definition: The complex dimensions of ® are D, := {poles of (,}.

Theorem: dimp(F) = sup Rew = max{w € Dys: w € R}.
w€Dg

(s is the Mellin transform of a measure 7s:

Cs(s) = /Ooox_s ns(dx), Ns = Z 5r;1.

wew
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LComputation of the tube formula

LThe scaling zeta function: scales and sizes

Converting “scales” to “sizes”

Definition: The inradius of A C R is the radius of the largest
metric ball contained in A.

Equivalently, p(A) :=inf{e > 0:A_. = A}.

For A = G, write g := p(G).
The tile ®,,(G) has inradius r,g.
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LComputation of the tube formula

LThe scaling zeta function: scales and sizes

Converting “scales” to “sizes”

Definition: The inradius of A C R is the radius of the largest
metric ball contained in A.

Equivalently, p(A) :=inf{e > 0:A_. = A}.

For A = G, write g := p(G).
The tile ®,,(G) has inradius r,g.

Definition: G is diphase iff there are constants «; so that

d—1
Ve(e) = Z rpe? ", 0<e<g.
k=0

Theorem: If A is convex, then voly(A.) = 3297} kied~* for e > 0.
Here, r; = i (A) vol i (BY~%), and 1 are the intrinsic volumes.
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LComputation of the tube formula

LA simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem (Tube formula for simple diphase self-similar tilings)
Suppose 7 has a single diphase generator and ¢; has only simple
poles. Thenfor0 < e < g,

d d—1
Vr(e) = Z res (Cs; w Z "ikgdiw + Z "fkgs(k)gdika

w€Ds k= k=0

where D, := {poles of ¢,}.
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LComputation of the tube formula

LA simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem (Tube formula for simple diphase self-similar tilings)
Suppose 7 has a single diphase generator and ¢; has only simple
poles. Thenfor0 <e < g,

d
Vr(e) = Z coe®Y, for ¢, = res ((s;w Z

w€e€D;U{0,1,...,d—1} k=

where D, := {poles of (;}.

Compare to the Steiner formula:
d—1

voly (A Z ke? "k for e > 0.
k=0
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LComputation of the tube formula

LThe general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets

The geometric zeta function of 7 with one generator is

d
(r(es) =GN S, Gl =Y A,

k=0 wew

and it has poles

Dy :={w: (r(e,s) has apole at s = w}
=D, U{0,1,...,d —1}.

These are the complex dimensions of the tiling 7.
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LComputation of the tube formula

LThe general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets

The geometric zeta function of 7 with one generator is

d
Cr(e,s): Z = Z r,

k=0 wew

and it has poles Dy :={0,1,...,d — 1} UDs,.

Definition: A bounded open set G is Steiner-like iff
= zdj r(Ge)e™, 0<e<y,

where ki (G, -) iézkgounded and locally integrable and

lim r(G,e)

e—0t
exists, and is positive and finite.
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LComputation of the tube formula

LThe general form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem: Suppose 7 has a single Steiner-like generator. Then

Vr(e)= > res((r;w), for0<e<eg.

weDT

The End
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LSupplemz—)ntary material

L Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L C R, so L
consists of

L:={Ln},2,

where each L, is an open interval.
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Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L C R, so L
consists of
L:={L},2,

where each L, is an open interval.
Essential strategy of fractal strings:

m study fractal subsets of R via their complements.

m OL is some fractal set we want to study.
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LSupplemz—)ntary material

L Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L C R, so L
consists of
L:={Ly},2,,

where each L, is an open interval.
Essential strategy of fractal strings:

m study fractal subsets of R via their complements.

m OL is some fractal set we want to study.

L:={0}2,, ZO: 0, < 0.
61 2522>0
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LSupplemz—)ntary material

L Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L C R, so L
consists of

L:={L,};2

n=1»
where each L, is an open interval.
When 0L is a self-similar set, the fractal string L is a self-similar
tiling in R4, d = 1.

Fractal strings came first — the self-similar tiling is an extension of
this theory to R¢.
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LSupplemz—)ntary material

L Fractal strings

(. relates geometric and arithmetic properties

Definition
The geometric zeta function of a fractal string L is

= >
Cc(S)ZE 6= =1 s e C.
gt 1->r

Theorem: D =inf{oc > 0: Y °2, (9 < oo}.

n=1"%n
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LSupplemz—)ntary material

L Fractal strings

(. relates geometric and arithmetic properties

Definition
The geometric zeta function of a fractal string L is

—~ 28
(e() =) b=, seC
25 Tosy
Theorem: D =inf{c > 0: Y 2, 47 < co}.

Definition
Accordingly, the complex dimensions of L are

Dy ={w e C: ( has apole at w}.
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LSupplemz—)ntary material

LThe tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

1—w
Vi)=Y 28 s (Cels)sw) — 2.

=t w(l —w)

(Sum is over the set of complex dimensions.)
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LSupplemz—)ntary material

LThe tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

V(L_;) = Z coel ™.

weD,U{0}

Minkowski content is M = lim. gy V(L_.)e~(=P), when it exists.
m Tube formula shows when string is measurable.
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LSupplemz—)ntary material

LThe tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

V(L_;) = Z coel ™.

weD,U{0}

Spectral asymptotics: the eigenvalue counting function is

N, (x) = x-voly (L) +res (Cc; D) ¢ (x) + error, where
. D—+1inj
(D + nnp)if)_s_].m;, or

) = ZnGZC
P(x) {—C(D)

Recall: res ((¢; D) is related to D-dimnl volume of OL.

o



Tube formulas and self-similar tilings

LSupplemz—)ntary material

LThe tube formula for fractal strings

V(T-o)= ) res(Cr(e,s);w).

weDT
d A 4ol
V(T_.) = Z Zres (Cs;w)g‘”*k/ik; . + Zg’%kg (k)ed=*
wED; k=0 k=0

Compare to strings:

V(L_.) = Z @i

weD,U{0}
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L Examples of fractal strings

CS is the complement of the Cantor set in [0, 1]

1111 1 1 1
o= {39927272727 }

3—S
kn—(k+1)s
Ces(s 22 3 =
The complex dimensmns of CS (poles of (¢s) are

Des = {D +1inp:n € Z}, where
D=1logs2, 1i=+v—-1, p=2n/log3
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LSupplemz—)ntary material

L Examples of fractal strings

CS is an example of a /attice string

The complex dimensions Des.

10 4

D 1
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LSupplemz—)ntary material

L Examples of fractal strings

Nonlattice example: the Golden String.

Letry =27 and r, = 27%, where ¢ = 3(1 + /5) is the golden
ratio. The Golden String is a nonlattice' string with lengths

QS:{(Z){r’frg_k}3k§n=0,1,2,...}

() indicates the multiplicity of /A5 *.

1

Cos(s) = T 7= =5

Dgs are the solutions of the transcendental equation

27Y42 %=1 (weD)),
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L Examples of fractal strings

Example 2: the Golden String.

. o
o 7001e
.
e
.
* 1004*
0 D 1
.
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LSupplemz—)ntary material

L Examples of fractal strings

Example 2: the Golden String.

The Golden String is a limit of lattice strings via Diophantine
approximation.

235813213455

For any such approximation, r; and r, are integer powers of some
common base r.

rn=r" rn=r"k,kheN
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L Examples of fractal strings

Example 2: the Golden String.

: 5U| H a 50' . . 5u| . g pl® .
: H . : H Pt ° e
: P : o P b o : . . °
Toe | s b Ol 1 g [ * [ 1
S~ SR b5 b~8/5
. g p : o
I 0° Py o
* . . .
. » . . . o . .« * .
a 1001 ® e o 100 1004 .
S P N o © . R
. @ .. o s, . . .
. . . . A . .. . .
E S 1 a1 * B 1 a1 * O ¢ O 1
b~ 138 S~ 2113 &~ 34121 &~ 55534
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L Examples of fractal strings

Lattice vs. Nonlattice

For self-similar strings, a dichotomy exists.
The lattice case:
m {logry,...,logr,} are rationally dependent.
m Complex dimns lie on finitely many vert lines.
m There is a row of dimns on Res = D.
m Infinitely many complex dimensions have real part D.
m OL is not Minkowski measurable.
m The Cantor String CS is a lattice string.
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LSupplemz—)ntary material

L Examples of fractal strings

Lattice vs. Nonlattice

For self-similar strings, a dichotomy exists.
The nonlattice case:
m Some log r; are rationally independent.
m Complex dimns are scattered in a horizontally bounded strip
[o1, D).
m Rew appears dense in the interval [0y, D).
m D is the only dim with Rew = d.
m OL is Minkowski measurable.
m The golden string GS is a nonlattice string.
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L Minkowski measurability and dimension

Minkowski dimension is box-counting dimension

Definition
The Minkowski dimension of the set Q C R4

D = dimy Q = lim €M)
e—0+t —loge
=inf{r>0:V(Q_.)=0(") ase — 0"}.
For a string ©2 = L, the Minkowski dimension is

D= dlmM OL.
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LSupplemz—)ntary material

L Minkowski measurability and dimension

Minkowski measurability

Definition
The set Q2 is Minkowski measurable if and only if the limit

M = M(D;Q) = lim V(Q_.)e —(d=D)

exists, and 0 < M < oo.
A string £ is measurable iff IL is. M is the Minkowski content.

“Measurable” = Minkowski measurable in this talk.

For fractal strings: V(L_c) = > 2e+ Y 4,
0y >2e 0,<2e
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LSupplemz—)ntary material

L Minkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

-1 %{iIIII

26+24+2e+ L+ L+ L+ 0L+ L+ L+
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L Minkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

‘T 1$$IIII

2e +2e+2e+2e+ L+ 5+ L+ L+ L+ ...
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LMinkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

e—
g1-D

Ves(€)

S

b3 |—

=
o

‘T 1$$IIII

2e +2e+2e+2e+ L+ 5+ L+ L+ L+ ...
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L Minkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

eP1Vp(e)
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L Minkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

eP1Vp(e)

-
-

1 loge

=
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LSupplemz—)ntary material

L Minkowski measurability and dimension

Using V(Q2_.) to see Minkowski measurability

18 [ 2

Complex dimensions with real part D induce oscillations in V(L_;)
of order D (“geometric oscillations”).

This means lim._ o+ V(L_.)e~=P) cannot exist; it contains terms
of the form

Im(w)i Im(w)iloge

CwE =cy e
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