Erin P. J. Pearse erin-pearse@uiowa.edu

Joint work with Michel L. Lapidus and Steffen Winter

VIGRE Postdoctoral Fellow Department of Mathematics University of Iowa

Workshop Fractals and Tilings Austrian Science Foundation FWF, in Strobl, Austria

July 6 – July 10, 2009

EPJP supported in part by NSF VIGRE grant DMS-0602242.

Inner and outer tube formulas

Definition: The *outer* ε *-neighbourhood* (ε -nbd) of a bounded open set $A \subseteq \mathbb{R}^d$ is ____

$$A_{\varepsilon} := \{ x \in A^{\complement} : dist(x, \mathrm{bd} A) \leq \varepsilon \}.$$

<ロ> < ()</p>

Inner and outer tube formulas

Definition: The *outer* ε *-neighbourhood* (ε -nbd) of a bounded open set $A \subseteq \mathbb{R}^d$ is ____

$$A_{\varepsilon} := \{ x \in A^{\complement} : dist(x, \mathrm{bd} A) \leq \varepsilon \}.$$

An *outer tube formula* for $A \subseteq \mathbb{R}^d$ is an explicit formula for $\operatorname{vol}_d(A_{\varepsilon})$.

(日)

Inner and outer tube formulas

Definition: The *outer* ε *-neighbourhood* (ε -nbd) of a bounded open set $A \subseteq \mathbb{R}^d$ is

$$A_{\varepsilon} := \{ x \in A^{\complement} : dist(x, \mathrm{bd} A) \leq \varepsilon \}.$$

An *outer tube formula* for $A \subseteq \mathbb{R}^d$ is an explicit formula for $\operatorname{vol}_d(A_{\varepsilon})$.

Definition: The *inner* ε *-nbd* of a bounded open set $A \subseteq \mathbb{R}^d$ is $A_{-\varepsilon} := \{x \in \overline{A} : dist(x, A^{\complement}) \leq \varepsilon\} = (A^{\complement})_{\varepsilon}.$

An *inner tube formula* is an explicit formula for $vol_d(A_{-\varepsilon})$.

How to compute the tube formula for a self-similar set? Use inner tube formula for A^{\complement} to find outer tube formula for *A*.

How to compute the tube formula for a self-similar set? Use inner tube formula for A^{\complement} to find outer tube formula for *A*.

(日) (日) (日) (日) (日) (日) (日)

(1) Obtain the components of A^{\complement} from the IFS.

(2) Determine compatibility conditions.

(3) Compute $V(\varepsilon) = \operatorname{vol}_d((A^{\complement})_{-\varepsilon})$ using complex dimensions.

Self-similar sets in \mathbb{R}^d

Definition $\Phi = \{\Phi_1, \dots, \Phi_J\}$ is a *self-similar system* in \mathbb{R}^d iff

$$\Phi_j(x) = r_j M_j x + t_j, \qquad j = 1, 2, \dots, J$$

where $0 < r_j < 1$, $M_j \in O(d)$, and $t_j \in \mathbb{R}^d$, for each *j*.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへぐ

Self-similar sets in \mathbb{R}^d

Definition $\Phi = \{\Phi_1, \dots, \Phi_J\}$ is a *self-similar system* in \mathbb{R}^d iff

$$\Phi_j(x) = r_j M_j x + t_j, \qquad j = 1, 2, \dots, J$$

where $0 < r_j < 1$, $M_j \in O(d)$, and $t_j \in \mathbb{R}^d$, for each *j*.

A *self-similar set* $F \subseteq \mathbb{R}^d$ is a fixed point of Φ

$$F = \Phi(F) := \bigcup_{j=1}^{J} \Phi_j(F).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

The canonical self-affine tiling

-Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

$$\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 ● のへぐ

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

The canonical self-affine tiling

L Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The canonical self-affine tiling

-Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling $\Phi_1(z) = \xi \overline{z}, \ \Phi_2(z) = (1 - \xi)(\overline{z} - 1) + 1, \ \text{ for } \xi = \frac{1}{2} + \frac{i}{2\sqrt{3}} \in \mathbb{C}.$

 $\Phi_1(x) = \frac{x}{2} + p_1, \ \Phi_2(x) = \frac{x}{2} + p_2, \ \Phi_3(x) = \frac{x}{2} + p_3.$

The canonical self-affine tiling

Open tilings: definition, construction, and properties

Tiling by open sets

Definition: Let $\mathcal{A} = \{A^i\}_{i \in \mathbb{N}}$ where $A^i \subseteq \mathbb{R}^d$ are disjoint open sets. \mathcal{A} is an *open tiling* of a compact set $K \subseteq \mathbb{R}^d$ iff $K = \overline{\bigcup_{i=1}^{\infty} A^i}$.

The sets A^i are called the *tiles*.

The canonical self-affine tiling

Open tilings: definition, construction, and properties

Tiling by open sets

Definition: Let $\mathcal{A} = \{A^i\}_{i \in \mathbb{N}}$ where $A^i \subseteq \mathbb{R}^d$ are disjoint open sets. \mathcal{A} is an *open tiling* of a compact set $K \subseteq \mathbb{R}^d$ iff $K = \overline{\bigcup_{i=1}^{\infty} A^i}$.

The sets A^i are called the *tiles*.

Not a typical tiling:

- Only some compact set $K \supseteq F$ is tiled, not \mathbb{R}^d .
- Tiles occur at all scales.

(Given $\varepsilon > 0$, there is a tile with diameter less than ε .)

- Tiles are open sets.
- No local finiteness is assumed.

The canonical self-affine tiling

Open tilings: definition, construction, and properties

Initiating the tiling construction

For the construction to be possible, assume

■ *F* satisfies the *open set condition*, and

(日)

int $F = \emptyset$.

L The canonical self-affine tiling

Open tilings: definition, construction, and properties

Initiating the tiling construction

For the construction to be possible, assume

■ F satisfies the open set condition, and

int $F = \emptyset$.

If O is a feasible open set for F, this means:

1
$$\Phi_j(O) \cap \Phi_k(O) = \emptyset$$
 for $j \neq k$,

2 $\Phi_j(O) \subseteq O$ for each *j*,

3
$$F \subseteq \overline{O}$$
, and

First, construct a tiling of $K := \overline{O}$. Later, worry about which *K* work for the tube formula.

The canonical self-affine tiling

└─ Tile and generators

Each tile is the image of a generator

Definition: The *generators* $\{G_q\}_{q=1}^Q$ are the connected components of $int(K \setminus \Phi(K))$.

Some examples may have multiple generators.

L The canonical self-affine tiling

└─ Tile and generators

Each tile is the image of a generator

Definition: The *generators* $\{G_q\}_{q=1}^Q$ are the connected components of $int(K \setminus \Phi(K))$.

Definition: The *self-affine tiling*¹ associated with Φ and O is $\mathcal{T} = \mathcal{T}(O) = \{\Phi_w(G_q) : w \in \mathcal{W}, q = 1, \dots, Q\},\$

where $\mathcal{W} := \bigcup_{k=0}^{\infty} \{1, \dots, N\}^k$ is all finite strings on $\{1, \dots, N\}$, and $\Phi_w := \Phi_{w_1} \circ \Phi_{w_2} \circ \dots \circ \Phi_{w_n}$.

Theorem: T(O) is an open tiling of $K = \overline{O}$.

Let $T = \bigcup_{R \in \mathcal{T}} R$ denote the union of the tiles.

¹The tiling construction works for *self-affine sets*, but tube formula technique is only valid for self-similar sets.

- The canonical self-affine tiling
 - └─ Tile and generators

How to pick a good O (or K)

- Theorem [Compatibility Theorem]: Let int $F = \emptyset$ satisfy OSC with feasible set O and associated tiling $\mathcal{T}(O)$. Then TFAE:
 - 1 bd T = F.
 - 2 bd $K \subseteq F$.
 - $3 \ \mathrm{bd}(K \setminus \Phi(K)) \subseteq F.$
 - 4 bd $G_q \subseteq F$ for all $q \in Q$.
 - 5 $F_{\varepsilon} \cap K = T_{-\varepsilon}$ for all $\varepsilon \geq 0$.

6
$$F_{\varepsilon} \cap K^{\complement} = K_{\varepsilon} \cap K^{\complement}$$
 for all $\varepsilon \geq 0$.

So for a given Φ and *F*, check that one of 1–4 is satisfied. Then 5–6 ensure the inner/outer decomposition:

- The canonical self-affine tiling
 - L Tile and generators

How to pick a good O (or K)

Specific possibilities:

(1) Choose K = [F] and O = int K.

Feasible iff int $\Phi_j(K) \cap \Phi_k(K) = \emptyset$ for $j \neq k$. (Tileset condition) In this case, int $F \neq \emptyset$ iff F is convex. (Nontriviality condition)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

nac

- The canonical self-affine tiling
 - └─ Tile and generators

How to pick a good O (or K)

Specific possibilities:

(1) Choose K = [F] and O = int K.

Feasible iff int $\Phi_j(K) \cap \Phi_k(K) = \emptyset$ for $j \neq k$. (Tileset condition) In this case, int $F \neq \emptyset$ iff F is convex. (Nontriviality condition)

(2) Let *U* be the unbounded component of F^{\complement} . Choose $K = U^{\complement}$ (the *envelope* of *F*) and $O = \operatorname{int} K$.

For the envelope, one always has $\operatorname{bd} K \subseteq F \subseteq K \subseteq [F]$, and *K* is convex iff K = [F].

- The canonical self-affine tiling
 - └─ Tile and generators

How to pick a good O (or K)

Specific possibilities:

(1) Choose K = [F] and O = int K.

Feasible iff int $\Phi_j(K) \cap \Phi_k(K) = \emptyset$ for $j \neq k$. (Tileset condition) In this case, int $F \neq \emptyset$ iff F is convex. (Nontriviality condition)

(2) Let *U* be the unbounded component of F^{\complement} . Choose $K = U^{\complement}$ (the *envelope* of *F*) and $O = \operatorname{int} K$.

For the envelope, one always has $\operatorname{bd} K \subseteq F \subseteq K \subseteq [F]$, and *K* is convex iff K = [F].

How to compute the tube formula

Suppose you have

- Φ satisfying OSC, with
- int $F = \emptyset$, and
- a feasible open set *O* satisfying the compatibility theorem.

What is the tube formula?

We compute $V(\varepsilon) = \text{vol}_d(T_{-\varepsilon})$, the inner tube formula for the tiling. Wlog, suppose there is only one generator.

Computation of the tube formula

L The scaling zeta function: scales and sizes

The scaling zeta function

Definition: Let $r_w = r_{w_1}r_{w_2} \dots r_{w_n}$ be the scaling ratio of Φ_w . The *scaling zeta function* is given by the scaling ratios of Φ via

$$\zeta_{\mathfrak{s}}(s) = \sum_{w \in \mathcal{W}} r_w^s = rac{1}{1 - \sum_{j=1}^N r_j^s}, \qquad ext{for } s \in \mathbb{C}.$$

 $\zeta_{\mathfrak{s}}$ records the sizes (and multiplicities) of the tiles $\mathcal{T} = \{\Phi_w(G)\}$.

Computation of the tube formula

L The scaling zeta function: scales and sizes

The scaling zeta function

Definition: Let $r_w = r_{w_1}r_{w_2} \dots r_{w_n}$ be the scaling ratio of Φ_w . The *scaling zeta function* is given by the scaling ratios of Φ via

$$\zeta_{\mathfrak{s}}(s) = \sum_{w \in \mathcal{W}} r_w^s = rac{1}{1 - \sum_{j=1}^N r_j^s}, \qquad ext{for } s \in \mathbb{C}.$$

 $\zeta_{\mathfrak{s}}$ records the sizes (and multiplicities) of the tiles $\mathcal{T} = \{\Phi_w(G)\}$. Definition: The *complex dimensions* of Φ are $\mathcal{D}_{\mathfrak{s}} := \{\text{poles of } \zeta_{\mathfrak{s}}\}$. Theorem: dim. (E) a sum Partia mar($\omega \in \mathcal{D}$ is $\omega \in \mathbb{P}$)

Theorem: dim_{$$\mathcal{M}$$}(F) = sup _{$\omega \in \mathcal{D}_{\mathfrak{s}}$} Re ω = max{ $\omega \in \mathcal{D}_{\mathfrak{s}} : \omega \in \mathbb{R}$ }.

 $\zeta_{\mathfrak{s}}$ is the Mellin transform of a measure $\eta_{\mathfrak{s}}$:

$$\zeta_{\mathfrak{s}}(s) = \int_0^\infty x^{-s} \eta_{\mathfrak{s}}(dx), \qquad \eta_{\mathfrak{s}} := \sum_{w \in \mathcal{W}} \delta_{r_w^{-1}}.$$

・ロト・(四ト・(日下・(日下・))

Computation of the tube formula

L The scaling zeta function: scales and sizes

Converting "scales" to "sizes"

Definition: The *inradius* of $A \subseteq \mathbb{R}^d$ is the radius of the largest metric ball contained in *A*.

Equivalently, $\rho(A) := \inf\{\varepsilon > 0 : A_{-\varepsilon} = A\}.$

For A = G, write $g := \rho(G)$. The tile $\Phi_w(G)$ has inradius r_wg .

L The scaling zeta function: scales and sizes

Converting "scales" to "sizes"

Definition: The *inradius* of $A \subseteq \mathbb{R}^d$ is the radius of the largest metric ball contained in *A*.

Equivalently, $\rho(A) := \inf\{\varepsilon > 0 : A_{-\varepsilon} = A\}.$

For A = G, write $g := \rho(G)$. The tile $\Phi_w(G)$ has inradius $r_w g$.

Definition: *G* is *diphase* iff there are constants κ_k so that $V_G(\varepsilon) = \sum_{k=0}^{d-1} \kappa_k \varepsilon^{d-k}, \qquad 0 \le \varepsilon \le g.$

Theorem: If *A* is convex, then $\operatorname{vol}_d(A_{\varepsilon}) = \sum_{k=0}^{d-1} \kappa_k \varepsilon^{d-k}$ for $\varepsilon \ge 0$. Here, $\kappa_k = \mu_k(A) \operatorname{vol}_{d-k}(B^{d-k})$, and μ_k are the *intrinsic volumes*.

Computation of the tube formula

A simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem (Tube formula for simple diphase self-similar tilings) Suppose \mathcal{T} has a single diphase generator and $\zeta_{\mathfrak{s}}$ has only simple poles. Then for $0 \leq \varepsilon \leq g$,

$$V_{\mathcal{T}}(\varepsilon) = \sum_{\omega \in \mathcal{D}_{\mathfrak{s}}} \operatorname{res}\left(\zeta_{\mathfrak{s}};\omega\right) \sum_{k=0}^{d} \frac{g^{\omega-k}}{\omega-k} \kappa_{k} \varepsilon^{d-\omega} + \sum_{k=0}^{d-1} \kappa_{k} \zeta_{\mathfrak{s}}(k) \varepsilon^{d-k},$$

where $\mathcal{D}_{\mathfrak{s}} := \{ \text{poles of } \zeta_{\mathfrak{s}} \}.$

Computation of the tube formula

A simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem (Tube formula for simple diphase self-similar tilings) Suppose T has a single diphase generator and $\zeta_{\mathfrak{s}}$ has only simple poles. Then for $0 \leq \varepsilon \leq g$,

$$V_{\mathcal{T}}(\varepsilon) = \sum_{\omega \in \mathcal{D}_{\mathfrak{s}} \cup \{0, 1, \dots, d-1\}} c_{\omega} \varepsilon^{d-\omega}, \quad \text{for } c_{\omega} = \text{res}\left(\zeta_{\mathfrak{s}}; \omega\right) \sum_{k=0}^{u} \frac{g^{\omega-k}}{\omega-k} \kappa_{k},$$

(日)

where $\mathcal{D}_{\mathfrak{s}} := \{ \text{poles of } \zeta_{\mathfrak{s}} \}.$

Compare to the Steiner formula:

$$\operatorname{vol}_d(A_{\varepsilon}) = \sum_{k=0}^{d-1} \kappa_k \varepsilon^{d-k}$$
 for $\varepsilon \ge 0$.

L The general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets

The *geometric zeta function* of \mathcal{T} with one generator is

$$\zeta_{\mathcal{T}}(\varepsilon,s) := \zeta_{\mathfrak{s}}(s)\varepsilon^{d-s}\sum_{k=0}^{d}\frac{g^{s-k}}{s-k}\kappa_{k}, \qquad \zeta_{\mathfrak{s}}(s) := \sum_{w\in\mathcal{W}}r_{w}^{s},$$

and it has poles

$$\mathcal{D}_{\mathcal{T}} := \{ \omega : \zeta_{\mathcal{T}}(\varepsilon, s) \text{ has a pole at } s = \omega \}$$
$$= \mathcal{D}_{\mathfrak{s}} \cup \{0, 1, \dots, d-1\}.$$

These are the complex dimensions of the tiling T.

L The general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets

The *geometric zeta function* of \mathcal{T} with one generator is

$$\zeta_{\mathcal{T}}(\varepsilon,s) := \zeta_{\mathfrak{s}}(s)\varepsilon^{d-s}\sum_{k=0}^{d}\frac{g^{s-k}}{s-k}\kappa_{k}(G,\varepsilon), \qquad \zeta_{\mathfrak{s}}(s) := \sum_{w\in\mathcal{W}}r_{w}^{s},$$

and it has poles $\mathcal{D}_{\mathcal{T}} := \{0, 1, \dots, d-1\} \cup \mathcal{D}_{\mathfrak{s}}.$

Definition: A bounded open set *G* is *Steiner-like* iff $V_G(\varepsilon) = \sum_{k=0}^{d} \kappa_k(G, \varepsilon) \varepsilon^{d-k}, \quad 0 \le \varepsilon \le g,$ where $\kappa_k(G, \cdot)$ is bounded and locally integrable and $\lim_{\varepsilon \to 0^+} \kappa_k(G, \varepsilon)$ exists, and is positive and finite.

L The general form of the tube formula for self-similar tilings

The tube formula for self-similar tilings

Theorem: Suppose $\ensuremath{\mathcal{T}}$ has a single Steiner-like generator. Then

$$V_{\mathcal{T}}(\varepsilon) = \sum_{\omega \in \mathcal{D}_{\mathcal{T}}} \operatorname{res} (\zeta_{\mathcal{T}}; \omega), \quad \text{for } 0 \le \varepsilon \le g.$$

The End

(日)

Computation of the tube formula

L The general form of the tube formula for self-similar tilings

Tube formulas and self-similar tilings

Erin P. J. Pearse erin-pearse@uiowa.edu

Joint work with Michel L. Lapidus and Steffen Winter

VIGRE Postdoctoral Fellow Department of Mathematics University of Iowa

Workshop Fractals and Tilings

Austrian Science Foundation FWF, in Strobl, Austria

EPJP supported in part by NSF VIGRE grant DMS-0602242.

Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition

A *fractal string* is simply a bounded open subset $L \subseteq \mathbb{R}$, so L consists of

$$L:=\{L_n\}_{n=1}^\infty,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where each L_n is an open interval.

Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition

A *fractal string* is simply a bounded open subset $L \subseteq \mathbb{R}$, so L consists of

$$L:=\{L_n\}_{n=1}^\infty,$$

where each L_n is an open interval.

Essential strategy of fractal strings:

- study fractal subsets of \mathbb{R} via their complements.
- \blacksquare ∂L is some fractal set we want to study.

Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition

A *fractal string* is simply a bounded open subset $L \subseteq \mathbb{R}$, so L consists of

$$L:=\{L_n\}_{n=1}^\infty,$$

where each L_n is an open interval.

Essential strategy of fractal strings:

- study fractal subsets of \mathbb{R} via their complements.
- \blacksquare ∂L is some fractal set we want to study.

$$\mathcal{L} := \{\ell_n\}_{n=1}^{\infty}, \qquad \sum_{n=1}^{\infty} \ell_n < \infty.$$
$$\ell_1 \ge \ell_2 \ge \dots > 0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition

A *fractal string* is simply a bounded open subset $L \subseteq \mathbb{R}$, so L consists of

$$L:=\{L_n\}_{n=1}^\infty,$$

where each L_n is an open interval.

When ∂L is a self-similar set, the fractal string *L* is a self-similar tiling in \mathbb{R}^d , d = 1.

Fractal strings came first — the self-similar tiling is an extension of this theory to \mathbb{R}^d .

Fractal strings

$\zeta_{\mathcal{L}}$ relates geometric and arithmetic properties

Definition

The geometric zeta function of a fractal string L is

$$\zeta_{\mathcal{L}}(s) = \sum_{n=1}^{\infty} \ell_n^s = \frac{\sum g_q^s}{1 - \sum r_j^s}, \qquad s \in \mathbb{C}.$$

Theorem: $D = \inf\{\sigma \ge 0 : \sum_{n=1}^{\infty} \ell_n^{\sigma} < \infty\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fractal strings

$\zeta_{\mathcal{L}}$ relates geometric and arithmetic properties

Definition

The geometric zeta function of a fractal string L is

$$\zeta_{\mathcal{L}}(s) = \sum_{n=1}^{\infty} \ell_n^s = \frac{\sum g_q^s}{1 - \sum r_j^s}, \qquad s \in \mathbb{C}.$$

Theorem: $D = \inf\{\sigma \ge 0 : \sum_{n=1}^{\infty} \ell_n^{\sigma} < \infty\}.$

Definition

Accordingly, the complex dimensions of L are

$$\mathcal{D}_{\mathcal{L}} = \{ \omega \in \mathbb{C} : \zeta_{\mathcal{L}} \text{ has a pole at } \omega \}.$$

L The tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

$$V(L_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathcal{L}}} \frac{(2\varepsilon)^{1-\omega}}{\omega(1-\omega)} \operatorname{res}\left(\zeta_{\mathcal{L}}(s);\omega\right) - 2\varepsilon.$$

(Sum is over the set of complex dimensions.)

L The tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

$$V(L_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathcal{L}} \cup \{0\}} c_{\omega} \varepsilon^{1-\omega}.$$

Minkowski content is $\mathcal{M} = \lim_{\varepsilon \to 0+} V(L_{-\varepsilon})\varepsilon^{-(1-D)}$, when it exists.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Tube formula shows when string is measurable.

L The tube formula for fractal strings

The (inner) tube formula for fractal strings

Theorem: For a self-similar fractal string L,

$$V(L_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathcal{L}} \cup \{0\}} c_{\omega} \varepsilon^{1-\omega}.$$

Spectral asymptotics: the eigenvalue counting function is

$$\begin{split} N_{\nu}(x) &= x \cdot \operatorname{vol}_{1}(\mathcal{L}) + \operatorname{res}\left(\zeta_{\mathcal{L}}; D\right) \psi(x) + error, \quad \text{where} \\ \psi(x) &= \begin{cases} \sum_{n \in \mathbb{Z}} \zeta(D + \mathrm{i}n\mathbf{p}) \frac{x^{D + \mathrm{i}n\mathbf{p}}}{D + \mathrm{i}n\mathbf{p}}, & \text{or} \\ -\zeta(D) \frac{x^{D}}{D}. \end{cases} \end{split}$$

Recall: res ($\zeta_{\mathcal{L}}$; *D*) is related to *D*-dimnl volume of ∂L .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへぐ

Supplementary material

L The tube formula for fractal strings

$$V(\mathcal{T}_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathcal{T}}} \operatorname{res} \left(\zeta_{\mathcal{T}}(\varepsilon, s); \omega \right).$$

$$V(\mathcal{T}_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathfrak{s}}} \sum_{k=0}^{d} \operatorname{res}\left(\zeta_{\mathfrak{s}};\omega\right) g^{\omega-k} \kappa_{k} \frac{\varepsilon^{d-\omega}}{\omega-k} + \sum_{k=0}^{d-1} g^{k} \kappa_{k} \zeta_{\mathfrak{s}}(k) \varepsilon^{d-k}$$

Compare to strings:

$$V(L_{-\varepsilon}) = \sum_{\omega \in \mathcal{D}_{\mathcal{L}} \cup \{0\}} c_{\omega} \varepsilon^{1-\omega}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Examples of fractal strings

CS is the complement of the Cantor set in [0, 1]

$$CS = \left\{ \frac{1}{3}, \frac{1}{9}, \frac{1}{9}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \dots \right\},\$$
$$\zeta_{CS}(s) = \sum_{k=0}^{\infty} 2^k 3^{-(k+1)s} = \frac{3^{-s}}{1 - 2 \cdot 3^{-s}}.$$

The complex dimensions of CS (poles of ζ_{CS}) are

$$\mathcal{D}_{\mathcal{CS}} = \{D + in\mathbf{p} : n \in \mathbb{Z}\}, ext{ where }$$

 $D = \log_3 2, \quad i = \sqrt{-1}, \quad \mathbf{p} = 2\pi/\log 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Supplementary material

Examples of fractal strings

CS is an example of a *lattice* string

The complex dimensions \mathcal{D}_{CS} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Supplementary material

Examples of fractal strings

Nonlattice example: the Golden String.

Let $r_1 = 2^{-1}$ and $r_2 = 2^{-\phi}$, where $\phi = \frac{1}{2}(1 + \sqrt{5})$ is the golden ratio. The Golden String is a *nonlattice*¹ string with lengths

$$\mathcal{GS} = \left\{ \binom{n}{k} \{ r_1^k r_2^{n-k} \} : k \le n = 0, 1, 2, \dots \right\}$$

 $\binom{n}{k}$ indicates the multiplicity of $r_1^k r_2^{n-k}$.

$$\zeta_{\mathcal{GS}}(s) = \frac{1}{1 - 2^{-s} - 2^{-\phi_s}},$$

 $\mathcal{D}_{\mathcal{GS}}$ are the solutions of the transcendental equation

$$2^{-\omega} + 2^{-\phi\omega} = 1 \qquad (\omega \in \mathcal{D}),$$

(日) (日) (日) (日) (日) (日) (日)

Examples of fractal strings

Example 2: the Golden String.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● のへで

Examples of fractal strings

Example 2: the Golden String.

The Golden String is a limit of lattice strings via Diophantine approximation.

$$\frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \dots \longrightarrow \phi.$$

For any such approximation, r_1 and r_2 are integer powers of some common base r.

$$r_1 = r^{k_1}, \quad r_2 = r^{k_2}, \quad k_1, k_2 \in \mathbb{N}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Supplementary material
 - Examples of fractal strings

Example 2: the Golden String.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Examples of fractal strings

Example 2: the Golden String.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● のへで

Supplementary material

Examples of fractal strings

Lattice vs. Nonlattice

For self-similar strings, a dichotomy exists. The *lattice case*:

- $\{\log r_1, \ldots, \log r_J\}$ are rationally dependent.
- Complex dimns lie on finitely many vert lines.
- There is a row of dimns on $\operatorname{Re} s = D$.
- Infinitely many complex dimensions have real part *D*.

- \blacksquare ∂L is not Minkowski measurable.
- The Cantor String CS is a lattice string.

Supplementary material

Examples of fractal strings

Lattice vs. Nonlattice

For self-similar strings, a dichotomy exists. The *nonlattice case*:

- Some $\log r_j$ are rationally independent.
- Complex dimns are scattered in a horizontally bounded strip $[\sigma_l, D]$.

- **Re** ω appears dense in the interval $[\sigma_l, D]$.
- *D* is the only dim with $\operatorname{Re} \omega = d$.
- \blacksquare ∂L is Minkowski measurable.
- The golden string \mathcal{GS} is a nonlattice string.

Minkowski measurability and dimension

Minkowski dimension is box-counting dimension

Definition

The *Minkowski dimension* of the set $\Omega \subseteq \mathbb{R}^d$

$$D = \dim_M \Omega = \lim_{\varepsilon \to 0^+} \frac{\log M_{\varepsilon}(\Omega)}{-\log \varepsilon}$$

= $\inf\{t \ge 0 : V(\Omega_{-\varepsilon}) = O(\varepsilon^{d-t}) \text{ as } \varepsilon \to 0^+\}.$

For a string $\Omega = L$, the Minkowski dimension is

 $D = \dim_M \partial L.$

Supplementary material

Minkowski measurability and dimension

Minkowski measurability

Definition The set Ω is *Minkowski measurable* if and only if the limit

$$\mathcal{M} = \mathcal{M}(D; \Omega) = \lim_{\varepsilon \to 0+} V(\Omega_{-\varepsilon})\varepsilon^{-(d-D)}$$

exists, and $0 < \mathcal{M} < \infty$.

A string \mathcal{L} is measurable iff ∂L is. \mathcal{M} is the *Minkowski content*.

"Measurable" = Minkowski measurable in this talk. For fractal strings: $V(L_{-\varepsilon}) = \sum_{\ell_n > 2\varepsilon} 2\varepsilon + \sum_{\ell_n < 2\varepsilon} \ell_n.$

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - のへで

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

・ロト・日本・日本・日本・日本・日本

Minkowski measurability and dimension

Using $V(\Omega_{-\varepsilon})$ to see Minkowski measurability

Complex dimensions with real part *D* induce oscillations in $V(L_{-\varepsilon})$ of order *D* ("*geometric oscillations*").

This means $\lim_{\varepsilon \to 0^+} V(L_{-\varepsilon})\varepsilon^{-(1-D)}$ cannot exist; it contains terms of the form

$$c_{\omega}\varepsilon^{\operatorname{Im}(\omega)i} = c_{\omega}e^{\operatorname{Im}(\omega)i\log\varepsilon}$$