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Tube formulas and self-similar tilings

Introduction and basic terms

Inner and outer tube formulas
Definition: The outer ε-neighbourhood (ε-nbd) of a bounded open
set A ⊆ Rd is

Aε := {x ∈ A{ ..
. dist(x, bd A) ≤ ε}.
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Inner and outer tube formulas
Definition: The outer ε-neighbourhood (ε-nbd) of a bounded open
set A ⊆ Rd is

Aε := {x ∈ A{ ..
. dist(x, bd A) ≤ ε}.

An outer tube formula for A ⊆ Rd is an explicit formula for vold(Aε).

Definition: The inner ε-nbd of a bounded open set A ⊆ Rd is
A−ε := {x ∈ A ..

. dist(x,A{) ≤ ε} = (A{)ε.

An inner tube formula is an explicit formula for vold(A−ε).
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Introduction and basic terms

How to compute the tube formula for a self-similar set?
Use inner tube formula for A{ to find outer tube formula for A.

(1) Obtain the components of A{ from the IFS.

(2) Determine compatibility conditions.

(3) Compute V(ε) = vold((A{)−ε) using complex dimensions.
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Introduction and basic terms

Self-similar sets in Rd

Definition
Φ = {Φ1, . . . ,ΦJ} is a self-similar system in Rd iff

Φj(x) = rjMjx + tj, j = 1, 2, . . . , J

where 0 < rj < 1, Mj ∈ O(d), and tj ∈ Rd, for each j.

A self-similar set F ⊆ Rd is a fixed point of Φ

F = Φ(F) :=
J⋃

j=1

Φj(F).
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The canonical self-affine tiling

Two tiling examples: Koch curve and Sierpinski gasket

The Koch tiling and the Sierpinski gasket tiling
Φ1(z) = ξz, Φ2(z) = (1− ξ)(z− 1) + 1, for ξ = 1

2 + i

2
√

3
∈ C.

Φ1(x) = x
2 + p1, Φ2(x) = x

2 + p2, Φ3(x) = x
2 + p3.
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The canonical self-affine tiling

Open tilings: definition, construction, and properties

Tiling by open sets
Definition: Let A = {Ai}i∈N where Ai ⊆ Rd are disjoint open sets.
A is an open tiling of a compact set K ⊆ Rd iff K =

⋃∞
i=1 Ai.

The sets Ai are called the tiles.



Tube formulas and self-similar tilings

The canonical self-affine tiling

Open tilings: definition, construction, and properties

Tiling by open sets
Definition: Let A = {Ai}i∈N where Ai ⊆ Rd are disjoint open sets.
A is an open tiling of a compact set K ⊆ Rd iff K =

⋃∞
i=1 Ai.

The sets Ai are called the tiles.

Not a typical tiling:
Only some compact set K ⊇ F is tiled, not Rd.
Tiles occur at all scales.

(Given ε > 0, there is a tile with diameter less than ε.)

Tiles are open sets.
No local finiteness is assumed.
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The canonical self-affine tiling

Open tilings: definition, construction, and properties

Initiating the tiling construction
For the construction to be possible, assume

F satisfies the open set condition, and
int F = ∅.
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The canonical self-affine tiling

Open tilings: definition, construction, and properties

Initiating the tiling construction
For the construction to be possible, assume

F satisfies the open set condition, and
int F = ∅.

If O is a feasible open set for F, this means:
1 Φj(O) ∩ Φk(O) = ∅ for j 6= k,
2 Φj(O) ⊆ O for each j,
3 F ⊆ O, and
4 O * Φ(O).

First, construct a tiling of K := O.
Later, worry about which K work for the tube formula.
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The canonical self-affine tiling

Tile and generators

Each tile is the image of a generator
Definition: The generators {Gq}Q

q=1 are the connected components
of int(K \ Φ(K)).

Some examples may have multiple generators.
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The canonical self-affine tiling

Tile and generators

Each tile is the image of a generator
Definition: The generators {Gq}Q

q=1 are the connected components
of int(K \ Φ(K)).

Definition: The self-affine tiling1 associated with Φ and O is
T = T (O) = {Φw(Gq) ... w ∈ W, q = 1, . . . ,Q},

whereW :=
⋃∞

k=0{1, . . . ,N}k is all finite strings on {1, . . . ,N}, and
Φw := Φw1 ◦Φw2 ◦ . . .◦Φwn .

Theorem: T (O) is an open tiling of K = O.

Let T =
⋃

R∈T R denote the union of the tiles.

1The tiling construction works for self-affine sets,
but tube formula technique is only valid for self-similar sets.
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The canonical self-affine tiling

Tile and generators

How to pick a good O (or K)

Theorem [Compatibility Theorem]: Let int F = ∅ satisfy OSC with
feasible set O and associated tiling T (O). Then TFAE:

1 bd T = F.
2 bd K ⊆ F.
3 bd(K \ Φ(K)) ⊆ F.
4 bd Gq ⊆ F for all q ∈ Q.
5 Fε ∩ K = T−ε for all ε ≥ 0.
6 Fε ∩ K{ = Kε ∩ K{ for all ε ≥ 0.

So for a given Φ and F, check that one of 1–4 is satisfied.
Then 5–6 ensure the inner/outer decomposition:
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The canonical self-affine tiling

Tile and generators

How to pick a good O (or K)
Specific possibilities:

(1) Choose K = [F] and O = int K.

Feasible iff int Φj(K) ∩ Φk(K) = ∅ for j 6= k. (Tileset condition)

In this case, int F 6= ∅ iff F is convex. (Nontriviality condition)
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Feasible iff int Φj(K) ∩ Φk(K) = ∅ for j 6= k. (Tileset condition)

In this case, int F 6= ∅ iff F is convex. (Nontriviality condition)

(2) Let U be the unbounded component of F{.
Choose K = U{ (the envelope of F) and O = int K.

For the envelope, one always has bd K ⊆ F ⊆ K ⊆ [F],
and K is convex iff K = [F].
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Computation of the tube formula

How to compute the tube formula
Suppose you have

Φ satisfying OSC, with
int F = ∅, and
a feasible open set O satisfying the compatibility theorem.

What is the tube formula?

We compute V(ε) = vold(T−ε), the inner tube formula for the tiling.
Wlog, suppose there is only one generator.
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Computation of the tube formula

The scaling zeta function: scales and sizes

The scaling zeta function
Definition: Let rw = rw1rw2 . . . rwn be the scaling ratio of Φw.
The scaling zeta function is given by the scaling ratios of Φ via

ζs(s) =
∑

w∈W
rs

w =
1

1−
∑N

j=1 rs
j

, for s ∈ C.

ζs records the sizes (and multiplicities) of the tiles T = {Φw(G)}.
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Computation of the tube formula

The scaling zeta function: scales and sizes

The scaling zeta function
Definition: Let rw = rw1rw2 . . . rwn be the scaling ratio of Φw.
The scaling zeta function is given by the scaling ratios of Φ via

ζs(s) =
∑

w∈W
rs

w =
1

1−
∑N

j=1 rs
j

, for s ∈ C.

ζs records the sizes (and multiplicities) of the tiles T = {Φw(G)}.

Definition: The complex dimensions of Φ are Ds := {poles of ζs}.

Theorem: dimM(F) = sup
ω∈Ds

Reω = max{ω ∈ Ds ..
. ω ∈ R}.

ζs is the Mellin transform of a measure ηs:

ζs(s) =
∫ ∞

0
x−s ηs(dx), ηs :=

∑
w∈W

δr−1
w

.
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Computation of the tube formula

The scaling zeta function: scales and sizes

Converting “scales” to “sizes”
Definition: The inradius of A ⊆ Rd is the radius of the largest
metric ball contained in A.

Equivalently, ρ(A) := inf{ε > 0 ..
. A−ε = A}.

For A = G, write g := ρ(G).
The tile Φw(G) has inradius rwg.
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Computation of the tube formula

The scaling zeta function: scales and sizes

Converting “scales” to “sizes”
Definition: The inradius of A ⊆ Rd is the radius of the largest
metric ball contained in A.

Equivalently, ρ(A) := inf{ε > 0 ..
. A−ε = A}.

For A = G, write g := ρ(G).
The tile Φw(G) has inradius rwg.

Definition: G is diphase iff there are constants κk so that

VG(ε) =
d−1∑
k=0

κkε
d−k, 0 ≤ ε ≤ g.

Theorem: If A is convex, then vold(Aε) =
∑d−1

k=0 κkε
d−k for ε ≥ 0.

Here, κk = µk(A) vold-k(Bd−k), and µk are the intrinsic volumes.
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Computation of the tube formula

A simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings
Theorem (Tube formula for simple diphase self-similar tilings)
Suppose T has a single diphase generator and ζs has only simple
poles. Then for 0 ≤ ε ≤ g,

VT (ε) =
∑
ω∈Ds

res (ζs;ω)
d∑

k=0

gω−k

ω − k
κkε

d−ω +
d−1∑
k=0

κkζs(k)εd−k,

where Ds := {poles of ζs}.
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Computation of the tube formula

A simplified form of the tube formula for self-similar tilings

The tube formula for self-similar tilings
Theorem (Tube formula for simple diphase self-similar tilings)
Suppose T has a single diphase generator and ζs has only simple
poles. Then for 0 ≤ ε ≤ g,

VT (ε) =
∑

ω∈Ds∪{0,1,...,d−1}

cωεd−ω, for cω = res (ζs;ω)
d∑

k=0

gω−k

ω − k
κk,

where Ds := {poles of ζs}.

Compare to the Steiner formula:

vold(Aε) =
d−1∑
k=0

κkε
d−k for ε ≥ 0.
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Computation of the tube formula

The general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets
The geometric zeta function of T with one generator is

ζT (ε, s) := ζs(s)εd−s
d∑

k=0

gs−k

s− k
κk, ζs(s) :=

∑
w∈W

rs
w,

and it has poles

DT :={ω ..
.
ζT (ε, s) has a pole at s = ω}

=Ds ∪ {0, 1, . . . , d − 1}.

These are the complex dimensions of the tiling T .
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Computation of the tube formula

The general form of the tube formula for self-similar tilings

Geometric zeta function and Steiner-like sets
The geometric zeta function of T with one generator is

ζT (ε, s) := ζs(s)εd−s
d∑

k=0

gs−k

s− k
κk(G, ε), ζs(s) :=

∑
w∈W

rs
w,

and it has poles DT := {0, 1, . . . , d − 1} ∪ Ds.

Definition: A bounded open set G is Steiner-like iff

VG(ε) =
d∑

k=0

κk(G, ε)εd−k, 0 ≤ ε ≤ g,

where κk(G, ·) is bounded and locally integrable and
lim
ε→0+

κk(G, ε)

exists, and is positive and finite.
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Computation of the tube formula

The general form of the tube formula for self-similar tilings

The tube formula for self-similar tilings
Theorem: Suppose T has a single Steiner-like generator. Then

VT (ε) =
∑
ω∈DT

res (ζT ;ω), for 0 ≤ ε ≤ g.

The End
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Computation of the tube formula

The general form of the tube formula for self-similar tilings
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Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L ⊆ R, so L
consists of

L := {Ln}∞n=1,

where each Ln is an open interval.
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Definition
A fractal string is simply a bounded open subset L ⊆ R, so L
consists of

L := {Ln}∞n=1,

where each Ln is an open interval.
Essential strategy of fractal strings:

study fractal subsets of R via their complements.
∂L is some fractal set we want to study.
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Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L ⊆ R, so L
consists of

L := {Ln}∞n=1,

where each Ln is an open interval.
Essential strategy of fractal strings:

study fractal subsets of R via their complements.
∂L is some fractal set we want to study.

L :={`n}∞n=1,
∑∞

n=1
`n <∞.

`1 ≥ `2 ≥ ... > 0.
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Supplementary material

Fractal strings

Fractal strings: the case d = 1

Definition
A fractal string is simply a bounded open subset L ⊆ R, so L
consists of

L := {Ln}∞n=1,

where each Ln is an open interval.
When ∂L is a self-similar set, the fractal string L is a self-similar
tiling in Rd, d = 1.

Fractal strings came first — the self-similar tiling is an extension of
this theory to Rd.
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Supplementary material

Fractal strings

ζL relates geometric and arithmetic properties

Definition
The geometric zeta function of a fractal string L is

ζL(s) =
∞∑

n=1

`s
n =

∑
gs

q

1−
∑

rs
j
, s ∈ C.

Theorem: D = inf{σ ≥ 0 ..
. ∑∞

n=1 `
σ
n <∞}.

Definition
Accordingly, the complex dimensions of L are

DL = {ω ∈ C ..
. ζL has a pole at ω}.
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Supplementary material

The tube formula for fractal strings

The (inner) tube formula for fractal strings
Theorem: For a self-similar fractal string L,

V(L−ε) =
∑
ω∈DL

(2ε)1−ω

ω(1− ω)
res (ζL(s);ω)− 2ε.

(Sum is over the set of complex dimensions.)
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Supplementary material

The tube formula for fractal strings

The (inner) tube formula for fractal strings
Theorem: For a self-similar fractal string L,

V(L−ε) =
∑

ω∈DL∪{0}

cωε1−ω.

Minkowski content isM = limε→0+ V(L−ε)ε−(1−D), when it exists.
Tube formula shows when string is measurable.
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Supplementary material

The tube formula for fractal strings

The (inner) tube formula for fractal strings
Theorem: For a self-similar fractal string L,

V(L−ε) =
∑

ω∈DL∪{0}

cωε1−ω.

Spectral asymptotics: the eigenvalue counting function is

Nν(x) = x · vol1(L) + res (ζL; D)ψ(x) + error, where

ψ(x) =

{∑
n∈Z ζ(D + inp) xD+inp

D+inp , or
−ζ(D) xD

D .

Recall: res (ζL; D) is related to D-dimnl volume of ∂L.
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Supplementary material

The tube formula for fractal strings

V(T−ε) =
∑
ω∈DT

res (ζT (ε, s);ω) .

V(T−ε) =
∑
ω∈Ds

d∑
k=0

res (ζs;ω) gω−kκk
εd−ω

ω − k
+

d−1∑
k=0

gkκkζs(k)εd−k.

Compare to strings:

V(L−ε) =
∑

ω∈DL∪{0}

cωε1−ω.
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Supplementary material

Examples of fractal strings

CS is the complement of the Cantor set in [0, 1]

CS =
{

1
3
,

1
9
,

1
9
,

1
27
,

1
27
,

1
27
,

1
27
, . . .

}
,

ζCS(s) =
∞∑

k=0

2k3−(k+1)s =
3−s

1− 2 · 3−s .

The complex dimensions of CS (poles of ζCS) are

DCS = {D + inp ..
. n ∈ Z}, where

D = log32, i =
√
−1, p = 2π/ log 3
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Supplementary material

Examples of fractal strings

CS is an example of a lattice string
The complex dimensions DCS .
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Supplementary material

Examples of fractal strings

Nonlattice example: the Golden String.
Let r1 = 2−1 and r2 = 2−φ, where φ = 1

2(1 +
√

5) is the golden
ratio. The Golden String is a nonlattice1 string with lengths

GS =
{(

n
k

)
{rk

1rn−k
2 } ... k ≤ n = 0, 1, 2, . . .

}
(n

k

)
indicates the multiplicity of rk

1rn−k
2 .

ζGS(s) =
1

1− 2−s − 2−φs ,

DGS are the solutions of the transcendental equation

2−ω + 2−φω = 1 (ω ∈ D),
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Supplementary material

Examples of fractal strings

Example 2: the Golden String.
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Supplementary material

Examples of fractal strings

Example 2: the Golden String.

The Golden String is a limit of lattice strings via Diophantine
approximation.

2
1
,

3
2
,

5
3
,

8
5
,

13
8
,

21
13
,

34
21
,

55
34
, . . . −→ φ.

For any such approximation, r1 and r2 are integer powers of some
common base r.

r1 = rk1 , r2 = rk2 , k1, k2 ∈ N
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Examples of fractal strings

Example 2: the Golden String.
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Example 2: the Golden String.
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Examples of fractal strings

Lattice vs. Nonlattice
For self-similar strings, a dichotomy exists.
The lattice case:

{log r1, . . . , log rJ} are rationally dependent.
Complex dimns lie on finitely many vert lines.
There is a row of dimns on Re s = D.
Infinitely many complex dimensions have real part D.
∂L is not Minkowski measurable.
The Cantor String CS is a lattice string.
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Examples of fractal strings

Lattice vs. Nonlattice
For self-similar strings, a dichotomy exists.
The nonlattice case:

Some log rj are rationally independent.
Complex dimns are scattered in a horizontally bounded strip
[σl,D].
Reω appears dense in the interval [σl,D].
D is the only dim with Reω = d.
∂L is Minkowski measurable.
The golden string GS is a nonlattice string.
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Minkowski dimension is box-counting dimension

Definition
The Minkowski dimension of the set Ω ⊆ Rd

D = dimM Ω = lim
ε→0+

log Mε(Ω)
− log ε

= inf{t ≥ 0 ..
. V(Ω−ε) = O

(
εd−t) as ε→ 0+}.

For a string Ω = L, the Minkowski dimension is

D = dimM ∂L.
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Minkowski measurability

Definition
The set Ω is Minkowski measurable if and only if the limit

M =M(D; Ω) = lim
ε→0+

V(Ω−ε)ε−(d−D)

exists, and 0 <M <∞.

A string L is measurable iff ∂L is. M is the Minkowski content.

“Measurable” = Minkowski measurable in this talk.
For fractal strings: V(L−ε) =

∑
`n>2ε

2ε+
∑
`n≤2ε

`n.
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Minkowski measurability and dimension

Using V(Ω−ε) to see Minkowski measurability

Complex dimensions with real part D induce oscillations in V(L−ε)
of order D (“geometric oscillations”).

This means limε→0+ V(L−ε)ε−(1−D) cannot exist; it contains terms
of the form

cωεIm(ω)i = cωeIm(ω)i log ε.
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