A homology theory for basic sets

Ian F. Putnam, University of Victoria **Axiom A** (S. Smale,1967): M a compact Riemannian manifold, $\varphi : M \to M$ a diffeomorphism with a hyperbolic structure on the set $X \subset M$ of non-wandering points.

Typically, X is some type of fractal. X may be decomposed into irreducible pieces called basic sets.

Smale space (D. Ruelle): a purely topological version.

(X,d) compact metric space, φ homeomorphism. Each point x has neighbourhoods

 $X^{s}(x,\epsilon) \times X^{u}(x,\epsilon),$

local stable and unstable sets, with

$$\begin{split} d(\varphi(y),\varphi(z)) &\leq \lambda d(y,z), \ y,z \in X^s(x,\epsilon), \\ d(\varphi^{-1}(y),\varphi^{-1}(z)) &\leq \lambda d(y,z), \ y,z \in X^u(x,\epsilon), \end{split}$$
 with $0 < \lambda < 1.$

Hyperbolic toral automorphism:

$$\left(egin{array}{cc} 1 & 1 \ 1 & 0 \end{array}
ight) : \mathbb{R}^2/\mathbb{Z}^2 o \mathbb{R}^2/\mathbb{Z}^2$$

Shifts of finite type:

Let $G = (G^0, G^1, i, t)$ be a finite directed graph. Then

$$\begin{split} \Sigma_G &= \{ (e^k)_{k=-\infty}^{\infty} \mid e^k \in G^1, \\ &\quad i(e^{k+1}) = t(e^k), \text{ for all } k \} \\ \sigma(e)^k &= e^{k+1}, \text{ "left shift"} \end{split}$$

The local product structure is given by

$$\Sigma^{s}(e, 2^{-n}) = \{(\dots, *, *, *, e^{-n}, e^{1-n}, e^{2-n} \dots)\}$$

$$\Sigma^{u}(e, 2^{-n}) = \{(\dots, e^{n-2}, e^{n-1}, e^{n}, *, *, *, \dots)\}$$

A shift of finite type is any system conjugate to (Σ_G, σ) , for some G.

Why shifts of finite type are important.

Theorem 1. The shifts of finite type are exactly the totally disconnected Smale spaces.

Theorem 2 (Bowen). If (X, φ) is any irreducible Smale space, then there exists

 $\pi: (\mathbf{\Sigma}, \sigma) \to (X, \varphi),$

continuous, surjective and finite-to-one.

Proof is by constructing Markov partitions (codings).

Krieger's invariant (to come....)

Solenoid: Start with $z \in \mathbb{T} \to z^m \in \mathbb{T}$; expanding, but not a homeomorphism.

$$X = \lim \mathbb{T} \leftarrow \mathbb{T} \leftarrow \cdots$$
$$= \{(z_k)_{k \ge 0} \mid z_{k+1}^m = z_k\}.$$
$$\varphi(z)_k = z_k^m.$$

We have $X^{s}(x,\epsilon) \sim \text{Cantor}, X^{u}(x,\epsilon) \sim (-\epsilon,\epsilon)$.

Let G be the graph with one vertex, m edges, so Σ_G is the full m-shift. There is a factor map

$$\pi: (\Sigma_G, \sigma) \to (X, \varphi)$$

based on the base m expansion of real numbers.

This map has a special property: for all e in $\Sigma_G, \epsilon > 0$, $\pi(\Sigma^s(e, \epsilon))$ is open in $X^s(\pi(e), \epsilon')$ and

$$\pi: \Sigma^{s}(e,\epsilon) \to \pi(\Sigma^{s}(e,\epsilon))$$

is a homeomorphism. We say such a map is s-bijective.

Krieger's Invariant (1978 ?)

Krieger gave a construction of a C^* -algebra from a shift of finite type, whose K-theory was readily computed. He also gave a dynamical interpretation.

Let G be a directed graph and let N be the number of vertices in G. Let A be the adjacency matrix for the graph G.

$$D^{s}(\Sigma_{G},\sigma) = \lim \mathbb{Z}^{N} \xrightarrow{A} \mathbb{Z}^{N} \xrightarrow{A} \cdots$$

i.e. $\mathbb{Z}^N \times \mathbb{N}/(x,k) \sim (Ax,k+1)$.

- If G has one vertex and m edges, then N = 1, A = [m] and $D^s(\Sigma_G, \sigma) \cong \mathbb{Z}[1/m]$.
- If A = 0, then $D^s(\Sigma_G, \sigma) \cong 0$.
- If det(A) = ± 1 , then $D^s(\Sigma_G, \sigma) \cong \mathbb{Z}^N$.

D^s as a functor

If $\pi : (\Sigma, \sigma) \to (\Sigma', \sigma)$ is a factor map, does it induce a group homomorphism between the invariants $D^{s}(\Sigma, \sigma)$ and $D^{s}(\Sigma', \sigma)$?

If π is s-bijective, then there is a map

$$\pi^s: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma).$$

If π is *u*-bijective, then there is a map $\pi^{s*}: D^s(\Sigma', \sigma) \to D^s(\Sigma, \sigma)$

(Kitchens, Boyle, Marcus, Trow)

Problem: Can we extend Krieger's invariant to an arbitrary a Smale space, (X, φ) ?

Idea: Start with Bowen:

$$\pi: (\Sigma, \sigma) \to (X, \varphi).$$

For $N \geq 0$, define

$$\Sigma_N(\pi) = \{(e_0, e_1, \dots, e_N) \mid \pi(e_n) = \pi(e_0), \\ 0 \le n \le N\}.$$

For all $N \ge 0$, $(\Sigma_N(\pi), \sigma)$ is also a shift of finite type and we can consider $D^s(\Sigma_N(\pi), \sigma)$. We also have $\delta_n : (\Sigma_N(\pi), \sigma) \to (\Sigma_{N-1}(\pi), \sigma)$ which erases e_n , $0 \le n \le N$.

Idea: Compute homology of (X, φ) from $D^s(\Sigma_N(\pi), \sigma), N \ge 0$ and the factor maps δ_n from $(\Sigma_N(\pi), \sigma)$ to $(\Sigma_{N-1}(\pi), \sigma)$.

Problem: Functoriality of δ_n .

Homology: Second attempt

Theorem 3 (Better Bowen). Let (X, φ) be an irreducible Smale space. There exists a Smale space (Y, ψ) with $Y^u(y, \epsilon)$ totally disconnected for all y and an s-bijective factor map

 $\pi_s: (Y, \psi) \to (X, \varphi).$

That is, $Y^u(y, \epsilon)$ is totally disconnected, while $Y^s(y, \epsilon)$ is homeomorphic to $X^s(\pi_s(y), \epsilon)$.

This is a "one-coordinate" version of Bowen's Theorem.

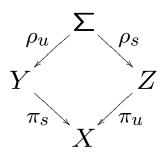
Reversing the rôles of stable and unstable, find (Z, ζ, π_u) .

We call $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$ an s/u-bijective pair for (X, φ) .

Consider the fibred product:

 $\Sigma = \{(y, z) \in Y \times Z \mid \pi_s(y) = \pi_u(z)\}$

with



 $\rho_s(y,z) = z \text{ is } s\text{-bijective, } \rho_u(y,z) = y \text{ is } u\text{-bijective. It follows that } \Sigma \text{ is a SFT.}$

For $L, M \ge 0$, $\Sigma_{L,M}(\pi) = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid y_l \in Y, z_m \in Z, \\ \pi_s(y_l) = \pi_u(z_m)\}.$

is a shift of finite type. Moreover, the maps

 $\delta_{l,}: \Sigma_{L,M} \to \Sigma_{L-1,M}, \delta_{,m}: \Sigma_{L,M} \to \Sigma_{L,M-1}$ which erase y_l and z_m are s-bijective and u-bijective, respectively.

We get a double complex:

$$\begin{array}{c} \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,2}) \leftarrow D^{s}(\Sigma_{1,2}) \leftarrow D^{s}(\Sigma_{2,2}) \leftarrow \\ \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,1}) \leftarrow D^{s}(\Sigma_{1,1}) \leftarrow D^{s}(\Sigma_{2,1}) \leftarrow \\ \uparrow & \uparrow & \uparrow \\ D^{s}(\Sigma_{0,0}) \leftarrow D^{s}(\Sigma_{1,0}) \leftarrow D^{s}(\Sigma_{2,0}) \leftarrow \end{array}$$

$$\partial_N^s : \bigoplus_{L-M=N} D^s(\Sigma_{L,M}) \\ \to \bigoplus_{L-M=N-1} D^s(\Sigma_{L,M})$$

$$\partial_N^s = \sum_{l=0}^L (-1)^l \delta_{l,}^s + \sum_{m=0}^{M+1} (-1)^{m+M} \delta_{m,m}^{s*}$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Basic theorems

Recall: beginning with (X, φ) , we select an s/u-bijective pair $\pi = (Y, \pi_s, Z, \pi_u)$ and compute $H_N^s(\pi)$.

Theorem 4. The groups $H_N^s(\pi)$ do not depend on the choice of s/u-bijective pair $\pi = (Y, \pi_s, Z, \pi_u)$, but only on (X, φ) .

From now on, we write $H_N^s(X,\varphi)$.

Theorem 5. The functor $H^s_*(X, \varphi)$ is covariant for s-bijective maps, contravariant for ubijective maps.

Theorem 6. For all N, $H_N^s(X,\varphi)$ is finite rank and only finitely many are non-zero. We can regard $\varphi : (X, \varphi) \to (X, \varphi)$, which is both *s* and *u*-bijective and so induces an automorphism of the invariants.

Theorem 7. (Lefschetz Formula) Let (X, φ) be any Smale space having an s/u-bijective pair and let $p \ge 1$.

 $\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[(\varphi^s)^p : \quad H^s_N(X, \varphi) \otimes \mathbb{Q} \\ \rightarrow \qquad H^s_N(X, \varphi) \otimes \mathbb{Q}]$

 $= \#\{x \in X \mid \varphi^p(x) = x\}$

Example 1: Shifts of finite type

If $(X, \varphi) = (\Sigma, \sigma)$, then $Y = \Sigma = Z$ is an s/ubijective pair.

$$\begin{array}{c|c} N & H_N^s(\Sigma, \sigma) \\ \hline 0 & D^s(\Sigma, \sigma) \\ \neq 0 & 0 \end{array}$$

Example 2: $(X, \varphi) = m^{\infty}$ -solenoid (Bazett-P.)

An s/u-bijective pair is $Y = \{0, 1, \dots, m-1\}^{\mathbb{Z}}$, the full *m*-shift, Z = X. We get

$$\begin{array}{c|c|c} N & H^s_N(X,\varphi) \\ \hline 0 & \mathbb{Z}[1/m] \\ 1 & \mathbb{Z} \\ \neq 0, 1 & 0 \end{array}$$

Example 3: A hyperbolic toral automorphism (Bazett-P.):

$$\left(\begin{array}{cc}1 & 1\\1 & 0\end{array}\right): \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$

We get

$$\begin{array}{c|c|c} N & H_N^s(X,\varphi) & \varphi^s \\ \hline -1 & \mathbb{Z} & 1 \\ 0 & \mathbb{Z}^2 & \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \\ 1 & \mathbb{Z} & -1 \\ \neq \pm 1, 0 & 0 & 0 \end{array}$$