Resolvent kernel estimates on P.C.F.S.S. fractals

Luke G. Rogers

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals

ヘロン ヘアン ヘビン ヘビン

ъ

• Contractions F_1, \ldots, F_N on complete metric space.

• Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V_0 such that cells intersect only at points of sets $F_w(V_0)$, *w* a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

イロン 不良 とくほう 不良 とうせい

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

イロン 不良 とくほう 不良 とうせい

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

イロン 不得 とくほど 不良 とうほう

- Contractions F_1, \ldots, F_N on complete metric space.
- Self-similar set X (usually fractal).

$$X = \bigcup_{1}^{N} F_n(X)$$

- For word $w = w_1 \dots w_m$, call $F_w = F_{w_1} \circ \dots F_{w_m}(X)$ an *m*-cell.
- Post-critically finite if there is finite set V₀ such that cells intersect only at points of sets F_w(V₀), w a word.
- Examples: Unit Interval, Sierpinski Gasket
- Non-example: Sierpinski Carpet

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Key Idea: PCFSS sets can be viewed as limits of graphs.

・ロト ・ 理 ト ・ ヨ ト ・

Key Idea: PCFSS sets can be viewed as limits of graphs.

The Unit Interval

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals

・ロト ・ 理 ト ・ ヨ ト ・

Key Idea: PCFSS sets can be viewed as limits of graphs.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Key Idea: PCFSS sets can be viewed as limits of graphs.

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Key Idea: PCFSS sets can be viewed as limits of graphs.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Key Idea: PCFSS sets can be viewed as limits of graphs.

프 > + 프 > -

Key Idea: PCFSS sets can be viewed as limits of graphs.

・ロト ・ 理 ト ・ ヨ ト ・

Key Idea: PCFSS sets can be viewed as limits of graphs.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Key Idea: PCFSS sets can be viewed as limits of graphs.

(E) < (E)</p>

Basic differential operator is Laplacian Δ

• It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^{\chi}} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

• Symbol \rightsquigarrow hides scaling information of two types:

- μ_w factor corresponding to measure μ on set
- r_w factor corresponding to energy

ヘロン ヘアン ヘビン ヘビン

ъ

- Basic differential operator is Laplacian Δ
- It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^X} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

• Symbol ~ hides scaling information of two types:

- μ_w factor corresponding to measure μ on set
- *r_w* factor corresponding to energy

ヘロン ヘアン ヘビン ヘビン

æ

Laplacian

- Basic differential operator is Laplacian Δ
- It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^X} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

Symbol ~> hides scaling information of two types:

- μ_w factor corresponding to measure μ on set
- r_w factor corresponding to energy

ヘロン ヘアン ヘビン ヘビン

æ

- Basic differential operator is Laplacian Δ
- It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^X} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

- Symbol ~ hides scaling information of two types:
 - μ_w factor corresponding to measure μ on set
 - *r_w* factor corresponding to energy

ヘロト ヘアト ヘビト ヘビト

Laplacian

- Basic differential operator is Laplacian Δ
- It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^X} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

- Symbol variable scaling information of two types:
 - μ_w factor corresponding to measure μ on set
 - *r_w* factor corresponding to energy

ヘロト ヘアト ヘビト ヘビト

Laplacian

- Basic differential operator is Laplacian Δ
- It is a scaling limit of graph Laplacians

$$\Delta_m u(x) = \sum_{y \sim m^X} (u(y) - u(x)) \rightsquigarrow \Delta u(x)$$

- Symbol ~ hides scaling information of two types:
 - μ_w factor corresponding to measure μ on set
 - *r_w* factor corresponding to energy

Resolvent kernel for Laplacian

• For z not in spectrum, consider resolvent $(z - \Delta)^{-1}$.

• Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian $f(\Delta)$
 - Heat estimates e^{t∆} (Kumagai, Fitzsimmons, Hambly)

ヘロト 人間 とくほとく ほとう

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian f(Δ)
 - Heat estimates e^{t∆} (Kumagai, Fitzsimmons, Hambly)

ヘロト 人間 とくほとく ほとう

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian f(Δ)
 - Heat estimates e^{t∆} (Kumagai, Fitzsimmons, Hambly)

ヘロト 人間 とくほとく ほとう

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian $f(\Delta)$
 - Heat estimates e^{t∆} (Kumagai, Fitzsimmons, Hambly)

・ロト ・ 理 ト ・ ヨ ト ・

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian $f(\Delta)$
 - Heat estimates *e*^t (Kumagai, Fitzsimmons, Hambly)

ヘロア 人間 アメヨア 人口 ア

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian $f(\Delta)$
 - Heat estimates *e*^t (Kumagai, Fitzsimmons, Hambly)

・ロット (雪) () () () ()

Resolvent kernel for Laplacian

- For z not in spectrum, consider resolvent $(z \Delta)^{-1}$.
- Look at resolvent kernel: function $G^{(z)}(x, y)$ such that

$$(z - \Delta)^{-1} u(x) = \int_X u(y) G^{(z)}(x, y) d\mu(y)$$

- Goal: Understand structure of $G^{(z)}(x, y)$ and obtain estimates.
- Reasons:
 - Operators of Laplacian f(Δ)
 - Heat estimates *e*^{t∆} (Kumagai, Fitzsimmons, Hambly)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Structure of Resolvent Kernel

• **Theorem [lonescu, Pearse, R., Ruan, Strichartz]** For suitable *z*, the resolvent kernel may be written as a self-similar series:

$$G^{(z)}(x,y) = \sum_{w \in W_*} r_w \Psi^{(r_w \mu_w z)}(F_w^{-1}x, F_w^{-1}y)$$

where Ψ term lives on cell F_w and solves analogous discrete problem.

• Explicit formula for Ψ in terms of "piecewise eigenfunction" $\eta_D^{(Z)}$, which satisfies

$$(z - \Delta)\eta_p^{(z)} = 0$$

 $\eta_p^{(z)}(q) = \delta_{pq} \text{ on } V_0$

<ロ> (四) (四) (三) (三) (三)

Structure of Resolvent Kernel

• **Theorem [lonescu, Pearse, R., Ruan, Strichartz]** For suitable *z*, the resolvent kernel may be written as a self-similar series:

$$G^{(z)}(x,y) = \sum_{w \in W_*} r_w \Psi^{(r_w \mu_w z)}(F_w^{-1}x, F_w^{-1}y)$$

where Ψ term lives on cell F_w and solves analogous discrete problem.

• Explicit formula for Ψ in terms of "piecewise eigenfunction" $\eta_{p}^{(Z)}$, which satisfies

$$(z - \Delta)\eta_p^{(z)} = 0$$

 $\eta_p^{(z)}(q) = \delta_{pq} ext{ on } V_0$

イロト イポト イヨト イヨト 三日

- Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues
- Red bumps are multiples of one fixed bump.
- Heights determined by smoothness requirement

- Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues
- Red bumps are multiples of one fixed bump.
- Heights determined by smoothness requirement

Piecewise eigenfunction is just Sinh function

 Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues

Red bumps are multiples of one fixed bump.

Heights determined by smoothness requirement

- Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues
- Red bumps are multiples of one fixed bump.
- Heights determined by smoothness requirement

- Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues
- Red bumps are multiples of one fixed bump.
- Heights determined by smoothness requirement

- Self-similar decomposition into piecewise eigenfunctions with smaller eigenvalues
- Red bumps are multiples of one fixed bump.
- Heights determined by smoothness requirement

- Smoothness ⇒ bump smaller by factor each time
- Function decays exponentially with number of cells
- Number of cells depends on eigenvalue!

Unit Interval Case

Smoothness ⇒ bump smaller by factor each time

Function decays exponentially with number of cells

• Number of cells depends on eigenvalue!

Unit Interval Case

Slope at top has larger magnitude than slope at bottom

- Smoothness ⇒ bump smaller by factor each time
- Function decays exponentially with number of cells
- Number of cells depends on eigenvalue!

• Slope at top has larger magnitude than slope at bottom

- Smoothness ⇒ bump smaller by factor each time
- Function decays exponentially with number of cells
- Number of cells depends on eigenvalue!

- For given z ∈ (0,∞) decompose fractal so cells have Laplacian scale ~ z⁻¹.
- Path distance called "Chemical Metric" $d^{(Z)}(x, y)$
- Have showed: Piecewise eigenfunctions decay exponentially with chemical distance
- Some extra work shows off diagonal resolvent kernel decay is similar

$$G^{(z)}(x,y) \le Cz^{-1/(S+1)} \exp\left(-cd^{(z)}(x,y)\right)$$

• For certain fractals $d^{(z)}(x, y) \approx z^{\gamma}$ some $\gamma \leq \frac{1}{2}$

ヘロア 人間 アメヨア 人口 ア

- For given z ∈ (0,∞) decompose fractal so cells have Laplacian scale ~ z⁻¹.
- Path distance called "Chemical Metric" $d^{(z)}(x, y)$
- Have showed: Piecewise eigenfunctions decay exponentially with chemical distance
- Some extra work shows off diagonal resolvent kernel decay is similar

$$G^{(z)}(x,y) \le Cz^{-1/(S+1)} \exp\left(-cd^{(z)}(x,y)\right)$$

• For certain fractals $d^{(z)}(x, y) \approx z^{\gamma}$ some $\gamma \leq \frac{1}{2}$

ヘロン ヘアン ヘビン ヘビン

- For given z ∈ (0,∞) decompose fractal so cells have Laplacian scale ~ z⁻¹.
- Path distance called "Chemical Metric" $d^{(z)}(x, y)$
- Have showed: Piecewise eigenfunctions decay exponentially with chemical distance
- Some extra work shows off diagonal resolvent kernel decay is similar

$$G^{(z)}(x,y) \le Cz^{-1/(S+1)} \exp\left(-cd^{(z)}(x,y)\right)$$

• For certain fractals $d^{(z)}(x, y) \approx z^{\gamma}$ some $\gamma \leq \frac{1}{2}$

・ロト ・ 理 ト ・ ヨ ト ・

- For given z ∈ (0,∞) decompose fractal so cells have Laplacian scale ~ z⁻¹.
- Path distance called "Chemical Metric" $d^{(z)}(x, y)$
- Have showed: Piecewise eigenfunctions decay exponentially with chemical distance
- Some extra work shows off diagonal resolvent kernel decay is similar

$$G^{(z)}(x,y) \le Cz^{-1/(S+1)} \exp\left(-cd^{(z)}(x,y)\right)$$

• For certain fractals $d^{(z)}(x, y) \approx z^{\gamma}$ some $\gamma \leq \frac{1}{2}$

・ロト ・ 理 ト ・ ヨ ト ・

- For given z ∈ (0,∞) decompose fractal so cells have Laplacian scale ~ z⁻¹.
- Path distance called "Chemical Metric" $d^{(z)}(x, y)$
- Have showed: Piecewise eigenfunctions decay exponentially with chemical distance
- Some extra work shows off diagonal resolvent kernel decay is similar

$$G^{(z)}(x,y) \leq C z^{-1/(S+1)} \exp\left(-cd^{(z)}(x,y)\right)$$

• For certain fractals $d^{(z)}(x, y) \approx z^{\gamma}$ some $\gamma \leq \frac{1}{2}$

ヘロン ヘアン ヘビン ヘビン

- Spectral decomposition implies G^(z) grows slower than power of |z| in sector
- Multiply G^(z)(x, y) by exp(Az^γ) with A ∈ C chosen so Az^γ imaginary on ray angle a and real part less than d^(z)(x, y) on real axis
- Product is bounded on boundary of sector and grows slower than $\exp(|A||z|^{\gamma})$ on sector

- Spectral decomposition implies G^(z) grows slower than power of |z| in sector
- Multiply G^(z)(x, y) by exp(Az^γ) with A ∈ C chosen so Az^γ imaginary on ray angle a and real part less than d^(z)(x, y) on real axis
- Product is bounded on boundary of sector and grows slower than exp(|A||z|^γ) on sector

- Spectral decomposition implies G^(z) grows slower than power of |z| in sector
- Multiply G^(z)(x, y) by exp(Az^γ) with A ∈ C chosen so Az^γ imaginary on ray angle a and real part less than d^(z)(x, y) on real axis
- Product is bounded on boundary of sector and grows slower than exp(|A||z|^γ) on sector

- Spectral decomposition implies G^(z) grows slower than power of |z| in sector
- Multiply $G^{(z)}(x, y)$ by $\exp(Az^{\gamma})$ with $A \in \mathbb{C}$ chosen so Az^{γ} imaginary on ray angle *a* and real part less than $d^{(z)}(x, y)$ on real axis
- Product is bounded on boundary of sector and grows slower than exp(|A||z|^γ) on sector

- Spectral decomposition implies G^(z) grows slower than power of |z| in sector
- Multiply $G^{(z)}(x, y)$ by $\exp(Az^{\gamma})$ with $A \in \mathbb{C}$ chosen so Az^{γ} imaginary on ray angle *a* and real part less than $d^{(z)}(x, y)$ on real axis
- Product is bounded on boundary of sector and grows slower than exp(|A||z|^γ) on sector

Estimates in Sector of $\mathbb C$

Product bounded by Phragmen-Lindelöf theorem

Hence for some constants

$$|G^{(z)}(x,y)| \le C|z|^{-1/(S+1)} \exp(-c(x,y)z^{\gamma})$$

Theorem (R.)

$$|G^{(z)}(x,y)| \le C \frac{|z|^{-1/(S+1)}}{\sin \operatorname{Arg}(z)} \exp(-c_1 \sin(c_2(\pi - \operatorname{Arg}(z)))d^{(z)}(x,y))$$

- Modified version of Phragmen-Lindelöf deals with cases where chemical metric not like |z|^γ
- Corollary: Upper bounds on heat kernel by contour integration

- Product bounded by Phragmen-Lindelöf theorem
- Hence for some constants

$$\left|G^{(z)}(x,y)\right| \leq C|z|^{-1/(S+1)}\exp\left(-c(x,y)z^{\gamma}\right)$$

Theorem (R.)

$$|G^{(z)}(x,y)| \le C \frac{|z|^{-1/(S+1)}}{\sin \operatorname{Arg}(z)} \exp(-c_1 \sin(c_2(\pi - \operatorname{Arg}(z)))d^{(z)}(x,y))$$

- Modified version of Phragmen-Lindelöf deals with cases where chemical metric not like |z|^γ
- Corollary: Upper bounds on heat kernel by contour integration

Estimates in Sector of \mathbb{C}

- Product bounded by Phragmen-Lindelöf theorem
- Hence for some constants

$$\left|G^{(z)}(x,y)\right| \leq C|z|^{-1/(S+1)}\exp\left(-c(x,y)z^{\gamma}\right)$$

Theorem (R.)

$$|G^{(z)}(x,y)| \le C \frac{|z|^{-1/(S+1)}}{\sin \operatorname{Arg}(z)} \exp(-c_1 \sin(c_2(\pi - \operatorname{Arg}(z)))d^{(z)}(x,y))$$

- Modified version of Phragmen-Lindelöf deals with cases where chemical metric not like |z|^γ
- Corollary: Upper bounds on heat kernel by contour integration

Estimates in Sector of \mathbb{C}

- Product bounded by Phragmen-Lindelöf theorem
- Hence for some constants

$$\left|G^{(z)}(x,y)\right| \leq C|z|^{-1/(S+1)}\exp\left(-c(x,y)z^{\gamma}\right)$$

Theorem (R.)

$$|G^{(z)}(x,y)| \le C \frac{|z|^{-1/(S+1)}}{\sin \operatorname{Arg}(z)} \exp(-c_1 \sin(c_2(\pi - \operatorname{Arg}(z)))d^{(z)}(x,y))$$

- Modified version of Phragmen-Lindelöf deals with cases where chemical metric not like |z|^γ
- Corollary: Upper bounds on heat kernel by contour integration