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Introduction

PCFSS Set

@ Contractions Fi,..., Fy on complete metric space.
@ Self-similar set X (usually fractal).

@ Forword w = wy...wp, call Fy = Fy, o--- Fy,(X) an
m-cell.

@ Post-critically finite if there is finite set Vj such that cells
intersect only at points of sets F,(Vy), w a word.

@ Examples: Unit Interval, Sierpinski Gasket
@ Non-example: Sierpinski Carpet
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Key Idea: PCFSS sets can be viewed as limits of graphs.
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The Unit Interval
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Y~mX
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Introduction

Laplacian

@ Basic differential operator is Laplacian A
@ ltis a scaling limit of graph Laplacians

Amu(x) = Y (u(y) = u(x)) ~ Au(x)

Y~mX

@ Symbol ~» hides scaling information of two types:

e u, factor corresponding to measure u on set
e r, factor corresponding to energy
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Resolvent

Resolvent kernel for Laplacian

@ For z not in spectrum, consider resolvent (z — A)~".
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Resolvent

Resolvent kernel for Laplacian

@ For z not in spectrum, consider resolvent (z — A)~".
@ Look at resolvent kernel: function G¥)(x, y) such that

(z- B)u(x) = fx u(y)G(x. y) du(y)

@ Goal: Understand structure of G(¥)(x, y) and obtain
estimates.
@ Reasons:

e Operators of Laplacian f(A)
e Heat estimates e (Kumagai, Fitzsimmons, Hambly)
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Resolvent

Structure of Resolvent Kernel

@ Theorem [lonescu, Pearse, R., Ruan, Strichartz] For
suitable z, the resolvent kernel may be written as a
self-similar series:

G(Z)(X, y) — Z rww(fwllwz)(l__v;1 X, FvT/1 y)
weW,

where W term lives on cell F, and solves analogous
discrete problem.
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Resolvent

Structure of Resolvent Kernel

@ Theorem [lonescu, Pearse, R., Ruan, Strichartz] For
suitable z, the resolvent kernel may be written as a
self-similar series:

G(Z)(X, y) — Z rww(fwllwz)(l__v;1 X, FvT/1 y)
we W,
where W term lives on cell F, and solves analogous
discrete problem.

@ Explicit formula for W in terms of “piecewise eigenfunction’

n/(oz), which satisfies

(z-anY =0

’7592)(57) = 0pg on Vo
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70r /
60 /

s0L

201

101

0.2 0.4 0.6 0.8 10

@ Self-similar decomposition into piecewise eigenfunctions
with smaller eigenvalues

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals



Main Idea

Unit Interval Case

@ Piecewise eigenfunction is just Sinh function

0.2 0.4 0.6 0.8 10

@ Self-similar decomposition into piecewise eigenfunctions
with smaller eigenvalues

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals



Main Idea

Unit Interval Case

@ Piecewise eigenfunction is just Sinh function

0.2 0.4 0.6 0.8 10

@ Self-similar decomposition into piecewise eigenfunctions
with smaller eigenvalues
@ Red bumps are multiples of one fixed bump.
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Main Idea

Unit Interval Case

@ Piecewise eigenfunction is just Sinh function

0.2 0.4 0.6 0.8 10

@ Self-similar decomposition into piecewise eigenfunctions
with smaller eigenvalues

@ Red bumps are multiples of one fixed bump.

@ Heights determined by smoothness requirement
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Unit Interval Case

@ Slope at top has larger magnitude than slope at bottom
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Unit Interval Case

@ Slope at top has larger magnitude than slope at bottom

0.2 0.4 0.6 0.8 10

@ Smoothness = bump smaller by factor each time
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@ Smoothness = bump smaller by factor each time
@ Function decays exponentially with number of cells
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Main Idea

Unit Interval Case

@ Slope at top has larger magnitude than slope at bottom

0.2 0.4 0.6 0.8 10

@ Smoothness = bump smaller by factor each time
@ Function decays exponentially with number of cells
@ Number of cells depends on eigenvalue!
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Main Idea

Decay with Chemical Metric

@ For given z € (0, «) decompose fractal so cells have
Laplacian scale ~ z~".
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Main Idea

Decay with Chemical Metric

@ For given z € (0, «) decompose fractal so cells have
Laplacian scale ~ z~".

@ Path distance called “Chemical Metric” d(®)(x, y)

@ Have showed: Piecewise eigenfunctions decay
exponentially with chemical distance

@ Some extra work shows off diagonal resolvent kernel
decay is similar

GO (x,y) < Cz V(S+1) exp(—cd(z)(x, y))

@ For certain fractals d®(x,y) ~ z¥ some y < }
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Estimates in Sector of C

@ Have decay estimate on positive real axis

a

|

@ Spectral decomposition implies G(?) grows slower than
power of |z] in sector

e Multiply G&)(x, y) by exp(Az?) with A e C chosen so Az”
imaginary on ray angle a and real part less than d(®)(x, y)
on real axis
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Main Idea

Estimates in Sector of C

@ Have decay estimate on positive real axis

a

|

@ Spectral decomposition implies G(?) grows slower than
power of |z] in sector

e Multiply G&)(x, y) by exp(Az?) with A e C chosen so Az”
imaginary on ray angle a and real part less than d(®)(x, y)
on real axis

@ Product is bounded on boundary of sector and grows
slower than exp(]A||lz|") on sector
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Conclusions

Estimates in Sector of C

@ Product bounded by Phragmen-Lindeléf theorem
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Conclusions

Estimates in Sector of C

@ Product bounded by Phragmen-Lindeléf theorem
@ Hence for some constants

|G (x,y)| < ClzI™(5™) exp(-c(x, y)z’)

Theorem (R.)

The resolvent kernel satisfies

|Z|—1/(S+1)

(2) L B
|G (x,y)| = Csin Arg(z)

exp(~c1 sin(ca(x - Arg(2)))d@(x, y))
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@ Modified version of Phragmen-Lindel6f deals with cases
where chemical metric not like |z|”
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Conclusions

Estimates in Sector of C

@ Product bounded by Phragmen-Lindeléf theorem
@ Hence for some constants

|G (x,y)| < ClzI™(5™) exp(-c(x, y)z’)

Theorem (R.)

The resolvent kernel satisfies

|Z|—1/(S+1)

(2) L B
|G (x,y)| = Csin Arg(z)

exp(~c1 sin(ca(x - Arg(2)))d@(x, y))

@ Modified version of Phragmen-Lindel6f deals with cases
where chemical metric not like |z|”

@ Corollary: Upper bounds on heat kernel by contour
integration
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