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PCFSS Set

Contractions F1, . . . ,FN on complete metric space.
Self-similar set X (usually fractal).

X =
N⋃
1

Fn(X )

For word w = w1 . . .wm, call Fw = Fw1 ◦ · · ·Fwm (X ) an
m-cell.
Post-critically finite if there is finite set V0 such that cells
intersect only at points of sets Fw (V0), w a word.
Examples: Unit Interval, Sierpinski Gasket
Non-example: Sierpinski Carpet
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Laplacian

Basic differential operator is Laplacian ∆

It is a scaling limit of graph Laplacians

∆mu(x) =
∑

y∼mx

(
u(y) − u(x)

)
 ∆u(x)

Symbol hides scaling information of two types:
µw factor corresponding to measure µ on set
rw factor corresponding to energy
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Resolvent kernel for Laplacian

For z not in spectrum, consider resolvent (z −∆)−1.
Look at resolvent kernel: function G(z)(x , y) such that

(z −∆)−1u(x) =

∫
X

u(y)G(z)(x , y) dµ(y)

Goal: Understand structure of G(z)(x , y) and obtain
estimates.
Reasons:

Operators of Laplacian f (∆)
Heat estimates et∆ (Kumagai, Fitzsimmons, Hambly)
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Structure of Resolvent Kernel

Theorem [Ionescu, Pearse, R., Ruan, Strichartz] For
suitable z, the resolvent kernel may be written as a
self-similar series:

G(z)(x , y) =
∑

w∈W∗

rw Ψ(rwµw z)(F−1
w x ,F−1

w y)

where Ψ term lives on cell Fw and solves analogous
discrete problem.
Explicit formula for Ψ in terms of “piecewise eigenfunction”
η

(z)
p , which satisfies

(z −∆)η
(z)
p = 0

η
(z)
p (q) = δpq on V0
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Unit Interval Case

Piecewise eigenfunction is just Sinh function

Self-similar decomposition into piecewise eigenfunctions
with smaller eigenvalues
Red bumps are multiples of one fixed bump.
Heights determined by smoothness requirement
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Unit Interval Case

Slope at top has larger magnitude than slope at bottom
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Smoothness⇒ bump smaller by factor each time
Function decays exponentially with number of cells
Number of cells depends on eigenvalue!
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Decay with Chemical Metric

For given z ∈ (0,∞) decompose fractal so cells have
Laplacian scale ∼ z−1.
Path distance called “Chemical Metric” d (z)(x , y)

Have showed: Piecewise eigenfunctions decay
exponentially with chemical distance
Some extra work shows off diagonal resolvent kernel
decay is similar

G(z)(x , y) ≤ Cz−1/(S+1) exp
(
−cd (z)(x , y)

)
For certain fractals d (z)(x , y) ≈ zγ some γ ≤ 1

2
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Estimates in Sector of C

Have decay estimate on positive real axis

Spectral decomposition implies G(z) grows slower than
power of |z | in sector
Multiply G(z)(x , y) by exp

(
Azγ

)
with A ∈ C chosen so Azγ

imaginary on ray angle a and real part less than d (z)(x , y)
on real axis
Product is bounded on boundary of sector and grows
slower than exp(|A||z |γ) on sector
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Estimates in Sector of C

Product bounded by Phragmen-Lindelöf theorem
Hence for some constants∣∣∣G(z)(x , y)

∣∣∣ ≤ C |z |−1/(S+1) exp
(
−c(x , y)zγ

)
Theorem (R.)
The resolvent kernel satisfies∣∣∣G(z)(x , y)

∣∣∣ ≤ C
|z |−1/(S+1)

sin Arg(z)
exp

(
−c1 sin(c2(π − Arg(z)))d (z)(x , y)

)
Modified version of Phragmen-Lindelöf deals with cases
where chemical metric not like |z |γ

Corollary: Upper bounds on heat kernel by contour
integration

Luke G. Rogers Resolvent kernel estimates on P.C.F.S.S. fractals
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