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Exact measurements of overlap (due to Pengjun Shen)

In the summer of 2008, Pengjun Shen, Grinnell ’11, extended the
method Keri just described for the golden ratio to numbers λ of
the form

1 = λ+ λ2 + . . .+ λm.

For each m > 1, 1 = λ+ λ2 + . . .+ λm has a root λ in (1
2 , 1), and

as m gets larger, λ approaches 1
2 from above.

For m = 3, λ ≈ 0.543869.
For m = 10, λ ≈ 0.500245.
For m = 15, λ ≈ 0.500008.
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Exact measurements of overlap

Theorem (Pengjun Shen)

If λ is the real root of 1 = λ+ λ2 + . . .+ λm in (1
2 , 1), then

µλ(O) =
1

2m − 1
.

Proof.

Along the same lines as the proof Keri described for λ =
√

5−1
2 .
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Approximate measures of overlap (Pengjun Shen)

Figure: Values of µλ(O), with 50 sample points for λ ∈ [ 1
2 , 1].
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Pengjun, with the help of Grinnell computer science faculty
member John Stone, wrote a computer program to approximate
the measure of the overlap. The program seems to be much more
accurate for values of λ near 1

2 than for values of λ near 1.
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The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Generating Sierpinski gaskets

Let u0 =

[
0
0

]
, u1 =

[
1
0

]
, u2 =

[
1
2√
3

2

]
, and A =

[
λ 0
0 λ

]
, with

λ ∈ [1
2 , 1).

We work with the affine contractive IFS given by

τ0(x) = Ax,

τ1(x) = A(x + u1),

and

τ2(x) = A(x + u2).
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Comparing one and two dimensions

We found a few surprises for the thickened Sierpinski gasket Gλ for
λ ∈ (1

2 , 1).

The cases are not as simple as in one dimension.
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The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Recall: overlap in one dimension, λ ∈ [1
2 , 1), is

geometrically simple!

(a) λ = 1
2 : the attractor X 1

2
is an interval, and the overlap

τ0(X 1
2
) ∩ τ1(X 1

2
) is a single point.

(b) λ ∈ (1
2 , 1): the attractor Xλ and the overlap τ0(Xλ) ∩ τ1(Xλ)

are both intervals.

Of course, while the actual overlap set is simple, the harmonic
analysis for even this case is not simple at all!
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Symmetry for µλ on the Sierpinski gaskets

Overlap in two dimensions: more subtleties!

In two dimensions, there are 5 cases to consider.
Case 1: the “usual” Sierpinski gasket G 1

2
.

Figure: One iteration. Picture from Keri Kornelson.

Overlap occurs only at the vertices of the triangles.

The overlap in G 1
2

is a countable set of singleton points.
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The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Overlap at level n

Overlap at level n helps us study the overlap at the nth stage in
the generation of the attractor Gλ.

T τ0(T ) ∪ τ1(T ) ∪ τ2(T )

Overlap pictures generated by Brian Treadway on Mathematica.
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Symmetry for µλ on the Sierpinski gaskets

Overlap at level n

Overlap of level n, or ov(τn(T )), refers to overlap of monomials
in the τi s of degree n. For example,

ov(τ1(T )) = (τ0(T )∩ τ1(T ))∪ (τ0(T )∩ τ2(T ))∪ (τ1(T )∩ τ2(T )),

and

ov(τ2(T ))

= (τ0τ0(T ) ∩ τ0τ1(T )) ∪ (τ0τ0(T ) ∩ τ0τ2(T )) ∪ (τ0τ1(T ) ∩ τ0τ2(T ))

∪ (τ1τ0(T ) ∩ τ1τ1(T )) ∪ (τ1τ0(T ) ∩ τ1τ2(T )) ∪ (τ1τ1(T ) ∩ τ1τ2(T ))

∪ (τ2τ0(T ) ∩ τ2τ1(T )) ∪ (τ2τ0(T ) ∩ τ2τ2(T )) ∪ (τ2τ1(T ) ∩ τ2τ2(T )).
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Second case: λ ∈ (1
2 ,
√

5−1
2 )

In Gλ, λ ∈ (1
2 ,
√

5−1
2 ),

ov(τn(T )) ∩ ov(τn+1(T )) = ∅.

For example, n = 1:

ov(τ1(T ))
ov(τ2(T )):

the smaller shaded triangles
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Symmetry for µλ on the Sierpinski gaskets

Third case: λ =
√

5−1
2

The nature of the overlaps changes at the critical point

λ =
√

5−1
2 . For example, we see that ov(τ1(T )) and ov(τ2(T ))

have non-trivial intersection.

ov(τ1(T )) ov(τ1(T )) ∪ ov(τ2(T ))
The small triangles share at least one vertex each with the larger
shaded triangles.

K. L. Shuman Iterated function systems with overlap



Loose ends—one dimension
Sierpinski constructions in two dimensions

Operator theory and essential overlap

The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Third case: λ =
√

5−1
2

Furthermore, at stage n, one of two things can occur:

the intersection of the interiors of ov(τn(T )) and triangles of
ov(τn+2(T )) is empty

triangles of ov(τn+2(T )) are completely contained within
ov(τn(T ))

ov(τ1(T ))
⋃3

n=1 ov(τn(T ))
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The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Fourth case: λ ∈ (
√

5−1
2 , 2

3)

For λ ∈ (
√

5−1
2 , 2

3), ov(τn(T )) ∩ ov(τn+1(T )) is uncountable. For
example, n = 1 again:

ov(τ1(T )) ov(τ1(T )) ∪ ov(τ2(T ))
But notice that there are still gaps!
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The nature of the overlap
Symmetry for µλ on the Sierpinski gaskets

Fifth case: λ ∈ [2
3 , 1)

Finally, when λ ∈ [2
3 , 1), the gaps close, but the overlap still

remains.

Figure: Four iterations for G 3
4
. No gaps!
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Symmetry

Notation:

Ω = {u0,u1,u2}N
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Symmetry

Notation:

Ω = {u0,u1,u2}N
Ω is the set of infinite strings

ω = (ui1 ,ui2 , . . . ,uin , . . .).
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The nature of the overlap
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Symmetry

Notation:

Ω = {u0,u1,u2}N

P 1
3

= Bernoulli measure on Ω
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Symmetry

Notation:

Ω = {u0,u1,u2}N

P 1
3

= Bernoulli measure on Ω

Define P 1
3

on cylinders and extend to all of Ω. Cylinders are

determined by finitely many elements at the beginning of a
word ω ∈ Ω. If w = (w1,w2, . . . ,wn) is a finite word, then a
cylinder in Ω is

Ω(w) = {ω ∈ Ω : ω1 = w1, ω2 = w2, . . . , ωn = wn}.

Then

P 1
3
(Ω(w)) =

1

3n
.
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Symmetry

Notation:

Ω = {u0,u1,u2}N

P 1
3

= Bernoulli measure on Ω

π : Ω→ G, the encoding map

µ equilibrium (Hutchinson) measure on G formed with equal
weights
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Symmetry

Notation:

Ω = {u0,u1,u2}N

P 1
3

= Bernoulli measure on Ω

π : Ω→ G, the encoding map

µ equilibrium (Hutchinson) measure on G formed with equal
weights:

µ = P 1
3
◦ π−1 =

1

3

2∑
i=0

µ ◦ τ−1
i
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Symmetry

Notation:

Ω = {u0,u1,u2}N

P 1
3

= Bernoulli measure on Ω

π : Ω→ G, the encoding map

µ equilibrium (Hutchinson) measure on G formed with equal
weights µ = P 1

3
◦ π−1

T τ0(T ) ∪ τ1(T ) ∪ τ2(T )
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The measure of µ(τi(T ))

We can repeat the same argument from Keri’s talk, adjusted to
two dimensions, to show that

P 1
3
({ω ∈ Ω : π(ω) ∈ τ0(T )}) = P 1

3
({ω ∈ Ω : π(ω) ∈ τ1(T )})

and

P 1
3
({ω ∈ Ω : π(ω) ∈ τ0(T )}) = P 1

3
({ω ∈ Ω : π(ω) ∈ τ2(T )}).
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The measure of µ(τi(T ))

Therefore,

µ(τ0(T )) = µ(τ1(T )) = µ(τ2(T )).

In other words, we can think of the equilibrium measure being
distributed “evenly” over the three pieces which compose the first
iteration of the gasket Gλ.
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Symmetry for µλ on the Sierpinski gaskets

Symmetry, continued

Again, let Gλ be the thickened Sierpinski gasket. We define the
(i , j)th overlap OVi ,j as

OVi ,j := τi (Gλ) ∩ τj(Gλ).

In the special case λ =
√

5−1
2 , we can modify the one-dimensional

argument to show that µ(OVi ,j) = 1
24 for all pairs (i , j).
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Essential overlap

For every λ ∈ (1
2 , 1), both Xλ and Gλ have essential overlap.

Definition

Let {τi} be a contractive IFS with attractor X and equilibrium
measure µ. We say that the IFS has essential overlap when∑

i 6=j µ(τi (X ) ∩ τj(X )) 6= 0.

For all λ ∈ (1
2 , 1), essential overlap exists for both Xλ (one

dimension) and Gλ (two dimensions).
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Column isometries

Let H be a complex Hilbert space, and let {Fi : 1 ≤ i ≤ N} be a
set of bounded operators on H.

Definition

We say that (F1,F2, . . . ,FN) is a column isometry if the mapping

F : H →


H
⊕
.
.
.
⊕
H

 defined by F(ξ) =

F1(ξ)
...

FN(ξ)


is an isometry (in general not onto).
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The adjoint of F

The adjoint F∗ can be identifed as a row operator:

F∗ : H⊕ . . .⊕H → H

is given by

F∗(ξ1, . . . , ξN) =
N∑

i=1

F ∗i ξi .

Significance of the adjoint F∗: The column isometry F is onto if

and only if FF∗ is the identity on the direct sum



H
⊕
.
.
.
⊕
H

.
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The adjoint of F

The adjoint F∗ can be identifed as a row operator:

F∗ : H⊕ . . .⊕H → H

is given by

F∗(ξ1, . . . , ξN) =
N∑

i=1

F ∗i ξi .

Significance of the adjoint F∗: The column isometry F is onto if
and only if F defines a representation of the Cuntz algebra ON .
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The map FF∗

In general, we can associate a matrix with FF∗:

FF∗ = (FiF
∗
j )N

i ,j=1,

and

FiF
∗
j =

N∑
k=1

(FiF
∗
k )(FkF ∗j ).

So, FF∗ is the identity if and only if the cross-terms for unequal
indices disappear.
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Connection to IFSs

Theorem

Let (X ,B, µ) be finite measure space, and suppose {τ1, . . . τN} are
measurable endomorphisms on X .
Then µ is an equal-weight equilibrium measure for the IFS
generated by {τ1, . . . τN} if and only if the operators (F1, . . . ,FN)
defined by

Fi : L2(µ)→ L2(µ)

Fi (f ) =
1√
N

f ◦ τi

form a column isometry.
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Connection to essential overlap

Theorem

Suppose F = (F1, . . . ,FN) is the column isometry defined by
sufficiently nice τ maps.

Then F maps onto



L2(µ)
⊕
.
.
.
⊕

L2(µ)

 if and only if the IFS has zero essential

overlap.
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Key tools in the proof

Partitioning τ(X ) into {E1, . . . ,Ek} so that there are
measurable mappings σi : Ei → X such that on Ei , σi ◦ τ is
the identity

Calculating the Radon-Nikodym derivatives

dµ ◦ τ−1
i

dµ

The composition operators are bounded when the RN
derivatives are L∞.

Showing that the Radon-Nikodym derivatives are supported
on the images of X under the τ maps
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