Iterated function systems with overlap

Karen L. Shuman

Grinnell College

July 7, 2009 Workshop on Fractals and Tilings Strobl, Austria

K. L. Shuman Iterated function systems with overlap

GRINNELL COLLEGE

3

イロト イポト イヨト イヨト

Collaborators and support

Joint work with

- Palle Jorgensen, University of Iowa
- Keri Kornelson, University of Oklahoma

Work on this project partially supported by

- University of Iowa Department of Mathematics NSF VIGRE Grant DMS-0602242
- NSF grant DMS-0701164
- Grinnell College Committee for the Support of Faculty Scholarship

GRINNELL COLLEGE

Exact measurements of overlap (due to Pengjun Shen)

In the summer of 2008, Pengjun Shen, Grinnell '11, extended the method Keri just described for the golden ratio to numbers λ of the form

$$1 = \lambda + \lambda^2 + \ldots + \lambda^m.$$

For each m > 1, $1 = \lambda + \lambda^2 + ... + \lambda^m$ has a root λ in $(\frac{1}{2}, 1)$, and as m gets larger, λ approaches $\frac{1}{2}$ from above.

For m = 3, $\lambda \approx 0.543869$. For m = 10, $\lambda \approx 0.500245$. For m = 15, $\lambda \approx 0.500008$.

GRINNELL COLLEGE

Exact measurements of overlap

Theorem (Pengjun Shen)

If λ is the real root of $1 = \lambda + \lambda^2 + \ldots + \lambda^m$ in $(\frac{1}{2}, 1)$, then

$$\mu_{\lambda}(\mathcal{O}) = \frac{1}{2^m - 1}.$$

Proof.

Along the same lines as the proof Keri described for $\lambda = \frac{\sqrt{5}-1}{2}$.

GRINNELL COLLEGE

3

Approximate measures of overlap (Pengjun Shen)

Figure: Values of $\mu_{\lambda}(\mathcal{O})$, with 50 sample points for $\lambda \in [\frac{1}{2}, 1]$.

Pengjun, with the help of Grinnell computer science faculty member John Stone, wrote a computer program to approximate the measure of the overlap. The program seems to be much more accurate for values of λ near $\frac{1}{2}$ than for values of λ near 1.

GRINNELL COLLEGE

The nature of the overlap Symmetry for μ_λ on the Sierpinski gaskets

Generating Sierpinski gaskets

Let
$$\mathbf{u}_0 = \begin{bmatrix} 0\\0 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} \frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{bmatrix}$, and $A = \begin{bmatrix} \lambda & 0\\0 & \lambda \end{bmatrix}$, with $\lambda \in [\frac{1}{2}, 1)$.

We work with the affine contractive IFS given by

$$\tau_0(\mathbf{x}) = A\mathbf{x},$$

$$\tau_1(\mathbf{x}) = A(\mathbf{x} + \mathbf{u}_1),$$

and

$$\tau_2(\mathbf{x}) = A(\mathbf{x} + \mathbf{u}_2).$$

K. L. Shuman Iterated function systems with overlap

GRINNELL COLLEGE

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Comparing one and two dimensions

We found a few surprises for the thickened Sierpinski gasket \mathcal{G}_{λ} for $\lambda \in (\frac{1}{2}, 1)$.

The cases are not as simple as in one dimension.

GRINNELL COLLEGE

3

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Recall: overlap in one dimension, $\lambda \in [rac{1}{2}, 1)$, is geometrically simple!

(a)
$$\lambda = \frac{1}{2}$$
: the attractor $X_{\frac{1}{2}}$ is an interval, and the overlap $\tau_0(X_{\frac{1}{2}}) \cap \tau_1(X_{\frac{1}{2}})$ is a single point.

(b) $\lambda \in (\frac{1}{2}, 1)$: the attractor X_{λ} and the overlap $\tau_0(X_{\lambda}) \cap \tau_1(X_{\lambda})$ are both intervals.

Of course, while the actual overlap set is simple, the harmonic analysis for even this case is not simple at all!

GRINNELL COLLEGE

- 4 同 6 4 日 6 4 日 6

Overlap in two dimensions: more subtleties!

In two dimensions, there are 5 cases to consider. Case 1: the "usual" Sierpinski gasket $\mathcal{G}_{\frac{1}{2}}$.

Figure: One iteration. Picture from Keri Kornelson.

- Overlap occurs only at the vertices of the triangles.
- The overlap in $\mathcal{G}_{\frac{1}{2}}$ is a countable set of singleton points.

GRINNELL COLLEGE

イロト イポト イヨト イヨト

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Overlap at level n

Overlap at level *n* helps us study the overlap at the n^{th} stage in the generation of the attractor \mathcal{G}_{λ} .

Overlap pictures generated by Brian Treadway on Mathematica.

GRINNELL COLLEGE

3

The nature of the overlap Symmetry for μ_λ on the Sierpinski gaskets

Overlap at level n

Overlap of level *n*, or $\mathbf{ov}(\tau^n(T))$, refers to overlap of monomials in the τ_i s of degree *n*. For example,

$$ov(\tau^{1}(T)) = (\tau_{0}(T) \cap \tau_{1}(T)) \cup (\tau_{0}(T) \cap \tau_{2}(T)) \cup (\tau_{1}(T) \cap \tau_{2}(T)),$$

and

 $\begin{aligned}
\mathbf{ov}(\tau^{2}(T)) &= (\tau_{0}\tau_{0}(T) \cap \tau_{0}\tau_{1}(T)) \cup (\tau_{0}\tau_{0}(T) \cap \tau_{0}\tau_{2}(T)) \cup (\tau_{0}\tau_{1}(T) \cap \tau_{0}\tau_{2}(T)) \\
&\cup (\tau_{1}\tau_{0}(T) \cap \tau_{1}\tau_{1}(T)) \cup (\tau_{1}\tau_{0}(T) \cap \tau_{1}\tau_{2}(T)) \cup (\tau_{1}\tau_{1}(T) \cap \tau_{1}\tau_{2}(T)) \\
&\cup (\tau_{2}\tau_{0}(T) \cap \tau_{2}\tau_{1}(T)) \cup (\tau_{2}\tau_{0}(T) \cap \tau_{2}\tau_{2}(T)) \cup (\tau_{2}\tau_{1}(T) \cap \tau_{2}\tau_{2}(T)).
\end{aligned}$

-

・ 同 ト ・ ヨ ト ・ ヨ ト …

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Second case: $\lambda \in (\frac{1}{2}, \frac{\sqrt{5}-1}{2})$

In
$$\mathcal{G}_{\lambda}$$
, $\lambda \in (\frac{1}{2}, \frac{\sqrt{5}-1}{2})$,

$$\mathbf{ov}(\tau^n(T)) \cap \mathbf{ov}(\tau^{n+1}(T)) = \emptyset.$$

For example, n = 1:

 $\mathbf{ov}(\tau^1(T))$

 $\mathbf{ov}(\tau^2(\mathcal{T}))$: the smaller shaded triangles

イロン イボン イヨン イヨン

The nature of the overlap Symmetry for μ_λ on the Sierpinski gaskets

Third case:
$$\lambda = \frac{\sqrt{5}-1}{2}$$

The nature of the overlaps **changes** at the critical point $\lambda = \frac{\sqrt{5}-1}{2}$. For example, we see that $\mathbf{ov}(\tau^1(T))$ and $\mathbf{ov}(\tau^2(T))$ have non-trivial intersection.

GRINNELL COLLEGE

伺 と く ヨ と く ヨ と

 $\mathbf{ov}(\tau^1(T))$ $\mathbf{ov}(\tau^1(T)) \cup \mathbf{ov}(\tau^2(T))$ The small triangles share at least one vertex each with the larger shaded triangles.

K. L. Shuman Iterated function systems with overlap

The nature of the overlap Symmetry for μ_λ on the Sierpinski gaskets

Third case:
$$\lambda = \frac{\sqrt{5-1}}{2}$$

Furthermore, at stage *n*, one of two things can occur:

- the intersection of the interiors of **ov**(τⁿ(T)) and triangles of **ov**(τⁿ⁺²(T)) is empty
- triangles of **ov**(τⁿ⁺²(T)) are completely contained within **ov**(τⁿ(T))

 $ov(\tau^1(T))$

 $| |_{n-1}^3 \operatorname{ov}(\tau^n(T))$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

GRINNELL COLLEGE

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Fourth case:
$$\lambda \in \left(\frac{\sqrt{5}-1}{2}, \frac{2}{3}\right)$$

For $\lambda \in (\frac{\sqrt{5}-1}{2}, \frac{2}{3})$, $\mathbf{ov}(\tau^n(T)) \cap \mathbf{ov}(\tau^{n+1}(T))$ is uncountable. For example, n = 1 again:

$\mathbf{ov}(\tau^1(T))$ But notice that there are still gaps!

 $\mathbf{ov}(\tau^1(T)) \cup \mathbf{ov}(\tau^2(T))$

GRINNELL COLLEGE

3

伺 と く ヨ と く ヨ と

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

Fifth case: $\lambda \in \left[\frac{2}{3}, 1\right)$

Finally, when $\lambda \in [\frac{2}{3}, 1)$, the gaps close, but the overlap still remains.

Figure: Four iterations for $\mathcal{G}_{\frac{3}{4}}$. No gaps!

GRINNELL COLLEGE

3

伺 と く ヨ と く ヨ と

Symmetry

Notation:

•
$$\Omega = \{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2\}^{\mathbb{N}}$$

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

GRINNELL COLLEGE 👹 《□》《書》《書》 볼》 의 Q ⓒ

Symmetry

Notation:

• $\Omega = \{u_0, u_1, u_2\}^{\mathbb{N}}$ Ω is the set of infinite strings

$$\omega = (\mathbf{u}_{i_1}, \mathbf{u}_{i_2}, \ldots, \mathbf{u}_{i_n}, \ldots).$$

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

GRINNELL COLLEGE

3

イロト 不得 トイヨト イヨト

Symmetry

Notation:

- $\Omega = \{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2\}^{\mathbb{N}}$
- $P_{\frac{1}{3}} =$ Bernoulli measure on Ω

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

GRINNELL COLLEGE

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Symmetry

Notation:

- $\Omega = \{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2\}^{\mathbb{N}}$
- P_{1/3} = Bernoulli measure on Ω Define P_{1/3} on cylinders and extend to all of Ω. Cylinders are determined by finitely many elements at the beginning of a word ω ∈ Ω. If w = (w₁, w₂,..., w_n) is a finite word, then a cylinder in Ω is

$$\Omega(w) = \{ \omega \in \Omega : \omega_1 = w_1, \omega_2 = w_2, \dots, \omega_n = w_n \}.$$

Then

$$P_{\frac{1}{3}}(\Omega(w))=\frac{1}{3^n}$$

GRINNELL COLLEGE

э

(4月) (日) (日)

Symmetry for μ_{λ} on the Sierpinski gaskets

Symmetry

Notation:

- $\Omega = \{\boldsymbol{u}_0, \boldsymbol{u}_1, \boldsymbol{u}_2\}^{\mathbb{N}}$
- $P_{\frac{1}{2}} =$ Bernoulli measure on Ω
- $\pi:\Omega \to \mathcal{G}$, the encoding map
- μ equilibrium (Hutchinson) measure on ${\cal G}$ formed with equal weights

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

GRINNELL COLLEGE

3

イロト イポト イヨト イヨト

Symmetry

Notation:

- $\Omega = \{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2\}^{\mathbb{N}}$
- $P_{\frac{1}{2}} =$ Bernoulli measure on Ω
- $\pi:\Omega
 ightarrow\mathcal{G}$, the encoding map
- μ equilibrium (Hutchinson) measure on \mathcal{G} formed with equal weights:

$$\mu = P_{\frac{1}{3}} \circ \pi^{-1} = \frac{1}{3} \sum_{i=0}^{2} \mu \circ \tau_{i}^{-1}$$

GRINNELL COLLEGE

3

イロト イポト イヨト イヨト

Symmetry for μ_{λ} on the Sierpinski gaskets

Symmetry

Notation:

۵

- $\Omega = \{\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2\}^{\mathbb{N}}$
- $P_{\frac{1}{2}} =$ Bernoulli measure on Ω
- $\pi:\Omega \to \mathcal{G}$, the encoding map

Т

• μ equilibrium (Hutchinson) measure on ${\cal G}$ formed with equal weights $\mu=P_{\frac{1}{2}}\circ\pi^{-1}$

Symmetry for μ_{λ} on the Sierpinski gaskets

 $\tau_0(T) \cup \tau_1(T) \cup \tau_2(T)$ GRINNELL COLLEGE

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

The measure of $\mu(\tau_i(T))$

We can repeat the same argument from Keri's talk, adjusted to two dimensions, to show that

$$P_{\frac{1}{3}}(\{\omega \in \Omega : \pi(\omega) \in \tau_0(T)\}) = P_{\frac{1}{3}}(\{\omega \in \Omega : \pi(\omega) \in \tau_1(T)\})$$

and

$$P_{\frac{1}{3}}(\{\omega\in\Omega:\pi(\omega)\in\tau_0(T)\})=P_{\frac{1}{3}}(\{\omega\in\Omega:\pi(\omega)\in\tau_2(T)\}).$$

GRINNELL COLLEGE

3

The nature of the overlap Symmetry for μ_{λ} on the Sierpinski gaskets

The measure of $\mu(\tau_i(T))$

Therefore,

$$\mu(\tau_0(T)) = \mu(\tau_1(T)) = \mu(\tau_2(T)).$$

In other words, we can think of the equilibrium measure being distributed "evenly" over the three pieces which compose the first iteration of the gasket \mathcal{G}_{λ} .

GRINNELL COLLEGE

3

(4 同) (4 回) (4 \Pi) (4 \Pi)

The nature of the overlap Symmetry for μ_λ on the Sierpinski gaskets

Symmetry, continued

Again, let \mathcal{G}_{λ} be the thickened Sierpinski gasket. We define the $(i,j)^{\text{th}}$ overlap $OV_{i,j}$ as

$$OV_{i,j} := \tau_i(\mathcal{G}_\lambda) \cap \tau_j(\mathcal{G}_\lambda).$$

In the special case $\lambda = \frac{\sqrt{5}-1}{2}$, we can modify the one-dimensional argument to show that $\mu(OV_{i,j}) = \frac{1}{24}$ for all pairs (i,j).

GRINNELL COLLEGE

Essential overlap

For every $\lambda \in (\frac{1}{2}, 1)$, both X_{λ} and \mathcal{G}_{λ} have **essential** overlap.

Definition

Let $\{\tau_i\}$ be a contractive IFS with attractor X and equilibrium measure μ . We say that the IFS has **essential overlap** when $\sum_{i \neq j} \mu(\tau_i(X) \cap \tau_j(X)) \neq 0$.

For all $\lambda \in (\frac{1}{2}, 1)$, essential overlap exists for both X_{λ} (one dimension) and \mathcal{G}_{λ} (two dimensions).

GRINNELL COLLEGE

- 4 同 2 4 回 2 4 回 2 4

Column isometries

Let \mathcal{H} be a complex Hilbert space, and let $\{F_i : 1 \leq i \leq N\}$ be a set of bounded operators on \mathcal{H} .

Definition

We say that (F_1, F_2, \ldots, F_N) is a **column isometry** if the mapping

$$\mathbb{F}: \mathcal{H} \to \begin{pmatrix} \mathcal{H} \\ \oplus \\ \vdots \\ \oplus \\ \mathcal{H} \end{pmatrix} \quad \text{defined by} \quad \mathbb{F}(\xi) = \begin{pmatrix} F_1(\xi) \\ \vdots \\ F_N(\xi) \end{pmatrix}$$

is an **isometry** (in general not onto).

GRINNELL COLLEGE

・ 同 ト ・ ヨ ト ・ ヨ ト …

The adjoint of $\mathbb F$

The adjoint \mathbb{F}^* can be identifed as a row operator:

$$\mathbb{F}^*:\mathcal{H}\oplus\ldots\oplus\mathcal{H}\to\mathcal{H}$$

is given by

$$\mathbb{F}^*(\xi_1,\ldots,\xi_N)=\sum_{i=1}^N F_i^*\xi_i.$$

Significance of the adjoint \mathbb{F}^* : The column isometry \mathbb{F} is onto if and only if $\mathbb{F}\mathbb{F}^*$ is the identity on the direct sum $\begin{pmatrix} \mathcal{H} \\ \oplus \\ \vdots \\ \oplus \\ \mathcal{H} \end{pmatrix}$.

GRINNELL COLLEGE

The adjoint of $\mathbb F$

The adjoint \mathbb{F}^* can be identifed as a row operator:

$$\mathbb{F}^*:\mathcal{H}\oplus\ldots\oplus\mathcal{H}\to\mathcal{H}$$

is given by

$$\mathbb{F}^*(\xi_1,\ldots,\xi_N)=\sum_{i=1}^N F_i^*\xi_i.$$

Significance of the adjoint \mathbb{F}^* : The column isometry \mathbb{F} is onto if and only if \mathbb{F} defines a representation of the Cuntz algebra \mathcal{O}_N .

GRINNELL COLLEGE

・ 同 ト ・ ヨ ト ・ ヨ ト

The map $\mathbb{F}\mathbb{F}^*$

In general, we can associate a matrix with \mathbb{FF}^* :

$$\mathbb{F}\mathbb{F}^* = (F_i F_j^*)_{i,j=1}^N,$$

and

$$F_iF_j^* = \sum_{k=1}^N (F_iF_k^*)(F_kF_j^*).$$

So, \mathbb{FF}^* is the identity if and only if the cross-terms for unequal indices disappear.

GRINNELL COLLEGE

3

Connection to IFSs

Theorem

Let (X, \mathcal{B}, μ) be finite measure space, and suppose $\{\tau_1, \ldots, \tau_N\}$ are measurable endomorphisms on X.

Then μ is an equal-weight equilibrium measure for the IFS generated by $\{\tau_1, \ldots, \tau_N\}$ if and only if the operators (F_1, \ldots, F_N) defined by

$$F_i: L^2(\mu) \to L^2(\mu)$$

$$F_i(f) = \frac{1}{\sqrt{N}} f \circ \tau_i$$

form a column isometry.

GRINNELL COLLEGE

・ 同 ト ・ ヨ ト ・ ヨ ト

Connection to essential overlap

Theorem

Suppose $\mathbb{F} = (F_1, ..., F_N)$ is the column isometry defined by sufficiently nice τ maps. Then \mathbb{F} maps **onto** $\begin{pmatrix} L^{2(\mu)} \\ \oplus \\ \vdots \\ L^{2(\mu)} \end{pmatrix}$ if and only if the IFS has zero essential overlap.

GRINNELL COLLEGE

Key tools in the proof

- Partitioning τ(X) into {E₁,..., E_k} so that there are measurable mappings σ_i : E_i → X such that on E_i, σ_i ∘ τ is the identity
- Calculating the Radon-Nikodym derivatives

$$\frac{d\mu\circ\tau_i^{-1}}{d\mu}$$

- The composition operators are bounded when the RN derivatives are L^{∞} .
- Showing that the Radon-Nikodym derivatives are supported on the images of X under the τ maps

GRINNELL COLLEGE

・吊 ・ チョ・ ・ ヨ・