The intersection of the Sierpinski Carpet with straight lines.

Anthony Manning1 Károly Simon2

1Mathematics Institute
University of Warwick
Coventry, CV4 7AL, UK
www.warwick.ac.uk/~marcq

2Department of Stochastics
Institute of Mathematics
Technical University of Budapest
www.math.bme.hu/~simonk

July 2009 / Strobl, Austria
Let F denote the Sierpinski carpet and let $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$ denote its intersection with the line of slope θ through $(0, a)$. We shall study the dimension of $E_{\theta,a}$, $a \in [0, 1]$, and $\tan \theta \in \mathbb{Q}$.

Figure: The intersection of the Sierpinski carpet with the line $y = \frac{2}{5} x + a$ for some $a \in [0, 1]$.
Let F denote the Sierpinski carpet and let $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$ denote its intersection with the line of slope θ through $(0, a)$. We shall study the dimension of $E_{\theta,a}$, $a \in [0, 1]$, and $\tan \theta \in \mathbb{Q}$.

![Figure: The intersection of the Sierpinski carpet with the line $y = \frac{2}{5}x + a$ for some $a \in [0, 1]$.](image)
Let F denote the Sierpinski carpet and let

$$E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$$

denote its intersection with the line of slope θ through $(0, a)$. We shall study the dimension of $E_{\theta,a}$, $a \in [0, 1]$, and $\tan \theta \in \mathbb{Q}$.

Figure: The intersection of the Sierpinski carpet with the line $y = \frac{2}{5}x + a$ for some $a \in [0, 1]$.
Theorem (Well known I.)

For all θ, for Leb_1 almost all a we have

$$\dim_H(E_{\theta,a}) \leq \dim_H F - 1. \quad (1)$$

Theorem (Well known II.)

$$\text{Leb}_2 \{(\theta, a) : \dim_H(E_{\theta,a}) = \dim_H F - 1\} > 0. \quad (2)$$

recall: F: Sierpinski carpet, $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$
History (old)

Theorem (Well known I.)

For all θ, for \mathcal{L}_{eb_1} almost all a we have

$$\dim_H(E_{\theta,a}) \leq \dim_H F - 1. \quad (1)$$

Theorem (Well known II.)

$$\mathcal{L}_{eb_2} \{(\theta, a) : \dim_H(E_{\theta,a}) = \dim_H(F) - 1\} > 0. \quad (2)$$

recall: F : Sierpinski carpet, $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$
Theorem (Liu, Xi and Zhao (2007))

If \(\tan(\theta) \in \mathbb{Q} \) then,

(a) for Lebesgue almost a,
\[\text{dim}_H(E_{\theta,a}) = \text{dim}_B(E_{\theta,a}) = \text{const}(\theta). \]

(b) The dimension of \(E_{\theta,a} \) is the same for almost all \(a \in [0, 1] \) and it can be expressed as the Lyapunov exponent of a certain random matrix product divided by \(\log 3 \).

recall: \[F : \text{Sierpinski carpet, } E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\} \]
History (recent)

Theorem (Liu, Xi and Zhao (2007))

If \(\tan(\theta) \in \mathbb{Q} \) then,

(a) for Lebesgue almost \(a \),
\[
\dim_H(E_{\theta,a}) = \dim_B(E_{\theta,a}) = \text{const}(\theta).
\]

(b) The dimension of \(E_{\theta,a} \) is the same for almost all \(a \in [0,1] \) and it can be expressed as the Lyapunov exponent of a certain random matrix product divided by \(\log 3 \).

recall: \(F \) : Sierpinski carpet, \(E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\} \)
Theorem (Liu, Xi and Zhao (2007))

If \(\tan(\theta) \in \mathbb{Q} \) then,

(a) for Lebesgue almost \(a \),
\[
\dim_H(E_{\theta,a}) = \dim_B(E_{\theta,a}) = \text{const}(\theta).
\]

(b) The dimension of \(E_{\theta,a} \) is the same for almost all \(a \in [0, 1] \) and it can be expressed as the Lyapunov exponent of a certain random matrix product divided by \(\log 3 \).

recall: \(F : \text{Sierpinski carpet}, \ E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\} \)
Conjecture (Liu, Xi and Zhao (2007))

For all \(\theta \) such that \(\tan \theta \in \mathbb{Q} \), for almost all \(a \) we have \(\dim_H(E_{\theta,a}) < \dim_H F - 1 \)

For \(\tan \theta \in \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\} \), this Conjecture was verified by Liu, Xi and Zhao.

recall: \(F \) : Sierpinski carpet, \(E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\} \)
Motivation

Conjecture (Liu, Xi and Zhao (2007))

For all \(\theta \) such that \(\tan \theta \in \mathbb{Q} \), for almost all \(a \) we have \(\dim_H(E_{\theta,a}) < \dim_H F - 1 \)

For \(\tan \theta \in \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\} \), this Conjecture was verified by Liu, Xi and Zhao.

recall: \(F \): Sierpinski carpet, \(E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\} \)
Motivation

Conjecture (Liu, Xi and Zhao (2007))

For all θ such that $\tan \theta \in \mathbb{Q}$, for almost all a we have $\dim_H(E_{\theta,a}) < \dim_H F - 1$

For $\tan \theta \in \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\}$, this Conjecture was verified by Liu, Xi and Zhao.

recall: F: Sierpinski carpet, $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$
The main theorem

We prove that the conjecture above holds:

Theorem (Manning, S. (2009))

For all \(\tan \theta \in \mathbb{Q} \), *for almost all* \(a \in [0, 1] \) *we have*

\[
\dim_{H}(E_{\theta,a}) < \dim_{H} F - 1
\]

recall : \(F : \) Sierpinski carpet, \(E_{\theta,a} := \{ (x, y) \in F : y - x \tan \theta = a \} \)
The main theorem

We prove that the conjecture above holds:

Theorem (Manning, S. (2009))

For all $\tan \theta \in \mathbb{Q}$, for almost all $a \in [0, 1]$ we have

$$\dim_H(E_{\theta,a}) < \dim_H F - 1$$

recall: F : Sierpinski carpet, $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$
We prove that the conjecture above holds:

Theorem (Manning, S. (2009))

For all $\tan \theta \in \mathbb{Q}$, *for almost all* $a \in [0, 1]$ *we have*

$$\dim_H(E_{\theta,a}) < \dim_H F - 1$$

recall: F: Sierpinski carpet, $E_{\theta,a} := \{(x, y) \in F : y - x \tan \theta = a\}$
Thm [MS]: $\tan \theta \in \mathbb{Q} \implies \dim_H (E_{\theta,a}) < \dim_H F - 1$ for a.a. a.

Some examples:

$$
\dim_H E_{0,1/2} = \dim_H E_{\pi/4,0} = \frac{\log 2}{\log 3} < \frac{\log 8}{\log 3} - 1 = \dim_H F - 1 < \dim_H E_{\pi/4,1/2} = \dim_H E_{0,0} = 1.
$$
Thm [MS]: \(\tan \theta \in \mathbb{Q} \implies \dim_H(E_{\theta,a}) < \dim_H F - 1 \) for a.a. \(a \).

We define three matrices \(A_0, A_1, A_2 \) then we consider the Lyapunov exponent of the random matrix product

\[
\gamma := \lim_{n \to \infty} \frac{1}{n} \log \| A_{i_1} \cdots A_{i_n} \|_1,
\]

where \(A_{i_k} \in \{ A_0, A_1, A_2 \} \) chosen independently in every step with probabilities \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \). Then we prove that

\[
\gamma < \frac{\log 8}{\log 3}.
\]
\[\tan \theta = \frac{2}{5} \]
From now we always write

\[\frac{M}{N} := \tan \theta \quad (M, N) = 1 \quad 3 \not| N, \]

where for symmetry without loss of generality we may assume that \(3 \not| N \). (Otherwise we take \(N/M \) and change the translation parameter \(a \) appropriately.)

There are \(K := 2N + M - 1 \) level zero shapes \(Q_1, \ldots, Q_K \). For each "horizontal" (I mean non-vertical) stripes \(S_0, S_1, S_2 \) we define the \(K \times K \) matrix \(A_0, A_1, A_2 \) respectively as follows:
$A_k(i, j) = 1$ iff the level zero shape i contains a level one shape j in stripe S_k.
All elements of the matrices A_0, A_1, A_2 are either zero or one.

Example (a): The non-zero elements of the first line of A_0 are in the following rows: 1, 2, 3, 5, 6, 7.

Example (b): $A_0(4, 2) = 1$, $\forall j \neq 2 : A_0(4, j) = 0$.

\[A_k(i, j) = 1 \text{ iff the level zero shape } i \text{ contains a level one shape } j \text{ in stripe } S_k. \]
$A_k(i, j) = 1$ iff the level zero shape i contains a level one shape j in stripe S_k.

\[
A_0 = \begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & \ldots
\end{pmatrix},
\]

\[
A_1 = \begin{pmatrix}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\ldots
\end{pmatrix}.
\]
$A_k(i, j) = 1$ iff the level zero shape i contains a level one shape j in stripe S_k.

\[A_0 = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\vdots \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},

\[A_1 = \begin{pmatrix}
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{pmatrix}.$
Why do we need this?

For an \(a = \sum_{k=1}^{\infty} a_k \cdot 3^{-k} \), with \(a_k \in \{0, 1, 2\} \):

Observation: \(A_{a_1 \ldots a_n}(i, j) \) is the number of level \(n \) non-deleted squares that intersect \(E_{\theta, a} \). So, the number of level \(n \)-squares needed to cover \(E_{\theta, a} \) is equal to \(\|A_{a_1} \cdots A_{a_n}\|_1 \), that is the sum of the elements of the non-negative \(K \times K \) matrix \(A_{a_1} \cdots A_{a_n} \). Since the size of the level \(n \) squares are \(\sqrt{2} \cdot 3^{-n} \) this yields that

\[
\dim_B(E_{\theta, a}) \leq \lim_{n \to \infty} \frac{1}{n} \log \|A_{a_1} \cdots A_{a_n}\|_1 \frac{1}{\log 3}, \quad \text{(3)}
\]
To estimate the dimension of $E_{\theta,a}$ we need to understand the exponential growth rate of the norm of $A_{a_1...a_n} := A_{a_1} \cdots A_{a_n}$ which is the **Lyapunov exponent** of the random matrix product where each term in the matrix product is chosen from $\{A_0, A_1, A_3\}$ with probability $1/3$ independently:

$$
\gamma := \lim_{n \to \infty} \frac{1}{n} \log \|A_{a_1...a_n}\|_1, \text{ for a.a. } (a_1, a_2, \ldots).
$$

(4)

The limit exists (sub additive E.T.) and

$$
\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{a_1...a_n} \frac{1}{3^n} \log \|A_{i_1...i_n}\|_1.
$$

(5)
Essentially what we need to prove it is that

\[\gamma < \log \frac{8}{3} \]

holds. Namely, by (3) \(\dim_B(E_\theta, a) \leq \frac{\gamma}{\log 3} \) and hence \(\gamma < \log \frac{8}{3} \) is equivalent to

\[\dim_B(E_\theta, a) \leq \frac{\gamma}{\log 3} < \frac{\log 8/3}{\log 3} = \frac{\log 8}{\log 3} - 1 = \dim_H(F) - 1. \]
Essentially what we need to prove it is that

\[\gamma < \log \frac{8}{3} \] \hspace{1cm} (6)

holds. Namely, by (3) \(\overline{\dim}_B(E_{\theta,a}) \leq \frac{\gamma}{\log 3} \) and hence \(\gamma < \log \frac{8}{3} \) is equivalent to

\[
\overline{\dim}_B(E_{\theta,a}) \leq \frac{\gamma}{\log 3} < \frac{\log 8/3}{\log 3} = \frac{\log 8}{\log 3} - 1 = \dim_H(F) - 1.
\]
Essentially what we need to prove it is that
\[\gamma < \log \frac{8}{3} \]
holds. Namely, by (3) \(\overline{\dim}_B(E_{\theta,a}) \leq \frac{\gamma}{\log 3} \) and hence \(\gamma < \log \frac{8}{3} \) is equivalent to
\[\overline{\dim}_B(E_{\theta,a}) \leq \frac{\gamma}{\log 3} < \frac{\log 8/3}{\log 3} = \frac{\log 8}{\log 3} - 1 = \dim_H(F) - 1. \]
Clearly, \(\gamma \leq \log \frac{8}{3} \) holds. Namely, for

\[A_s := A_0 + A_1 + A_2 : \]

\[
\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \| A_{i_1 \ldots i_n} \|_1
\]

\[
\leq \lim_{n \to \infty} \frac{1}{n} \log \frac{\sum \| A_{i_1 \ldots i_n} \|_1}{3^n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{\| A_s^n \|_1}{3^n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.
\]
Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$A_s := A_0 + A_1 + A_2 :$$

$$\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \| A_{i_1 \ldots i_n} \|_1$$

$$\leq \lim_{n \to \infty} \frac{1}{n} \log \frac{\sum_{i_1 \ldots i_n} \| A_{i_1 \ldots i_n} \|_1}{3^n}$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \| A_s^n \|_1$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.$$
Clearly, \(\gamma \leq \log \frac{8}{3} \) holds. Namely, for \(A_s := A_0 + A_1 + A_2 : \)

\[
\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \| A_{i_1 \ldots i_n} \|_1
\]

\[
\leq \lim_{n \to \infty} \frac{1}{n} \log \frac{\sum_{i_1 \ldots i_n} \| A_{i_1 \ldots i_n} \|_1}{3^n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{\| A_s^n \|_1}{3^n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.
\]
Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$A_s := A_0 + A_1 + A_2 :$$

$$\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \|A_{i_1 \ldots i_n}\|_1$$

$$\leq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{i_1 \ldots i_n} \|A_{i_1 \ldots i_n}\|_1 / 3^n\right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{\|A_s^n\|_1}{3^n}$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.$$
Clearly, \(\gamma \leq \log \frac{8}{3} \) holds. Namely, for

\[A_s := A_0 + A_1 + A_2 : \]

\[
\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \| A_{i_1 \ldots i_n} \|_1
\]

\[
\leq \lim_{n \to \infty} \frac{1}{n} \log \left(\sum_{i_1 \ldots i_n} \| A_{i_1 \ldots i_n} \|_1 \right)
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{\| A_s^n \|_1}{3^n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.
\]
Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$A_s := A_0 + A_1 + A_2 :$$

$$\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{i_1 \ldots i_n} \frac{1}{3^n} \log \| A_{i_1 \ldots i_n} \|_1$$

$$\leq \lim_{n \to \infty} \frac{1}{n} \log \frac{\sum_{i_1 \ldots i_n} \| A_{i_1 \ldots i_n} \|_1}{3^n}$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \| A_s^n \|_1 \frac{1}{3^n}$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{8^n}{3^n} = \log \frac{8}{3}.$$
We needed to take higher iterates of the system (to get a system that is contracting on average in the projective distance) to prove the strict inequality.
- **CA**: the set of $K \times K$ non-negative, column allowable (all columns contain non-zero elements) matrices.

- **CA$_p$**: the set of those element of CA for which every row vector is either all positive or all zero.

We prove that $\exists n_0$ and $(a'_1, \ldots, a'_{n_0}) \in \{0, 1, 2\}^{n_0}$ s.t.

$$B_1 := A_{a'_1} \cdots A_{a'_{n_0}} \in CA_p.$$

Clearly, $A_{i_1} \cdots A_{i_{n_0}} \in CA$ holds for all $(i_1, \ldots i_{n_0})$.
\textbf{\(\mathcal{CA} \):} the set of \(K \times K \) non-negative, column allowable (all columns contain non-zero elements) matrices.

\textbf{\(\mathcal{CA}_p \):} the set of those element of \(\mathcal{CA} \) for which every row vector is either all positive or all zero.

We prove that \(\exists n_0 \) and \((a'_1, \ldots, a'_n) \in \{0, 1, 2\}^{n_0}\) s.t.

\[B_1 := A_{a'_1} \cdots A_{a'_n} \in \mathcal{CA}_p. \]

Clearly, \(A_{i_1} \cdots A_{i_{n_0}} \in \mathcal{CA} \) holds for all \((i_1, \ldots, i_{n_0})\).
\[\mathcal{CA} : \text{the set of } K \times K \text{ non-negative, column allowable (all columns contain non-zero elements) matrices.} \]

\[\mathcal{CA}_p : \text{the set of those element of } \mathcal{CA} \text{ for which every row vector is either all positive or all zero.} \]

\[\text{We prove that } \exists n_0 \text{ and } (a'_1, \ldots, a'_{n_0}) \in \{0, 1, 2\}^{n_0} \text{ s.t. } \]

\[B_1 := A_{a'_1} \cdots A_{a'_{n_0}} \in \mathcal{CA}_p. \]

Clearly, \(A_{i_1} \cdots A_{i_{n_0}} \in \mathcal{CA} \) holds for all \((i_1, \ldots i_{n_0}).\)
Let $T := 3^{n_0}$, we have already defined the matrix B_1 now we define B_2, \ldots, B_T:

$$\{B_1, \ldots, B_T\} := \left\{A_{a_1 \ldots a_{n_0}}\right\}_{a_1 \ldots a_{n_0} \in \{0,1,2\}^{n_0}}.$$

For the vectors with all elements positive $\mathbf{x} = (x_1, \ldots, x_K) > \mathbf{0}$ and $\mathbf{y} = (y_1, \ldots, y_K) > \mathbf{0}$ we define the pseudo-metric

$$d(\mathbf{x}, \mathbf{y}) := \log \left[\frac{\max_i (x_i/y_i)}{\min_j (x_j/y_j)} \right].$$
\[d(x, y) := \log \left[\frac{\max_i (x_i / y_i)}{\min_j (x_j / y_j)} \right] \]

\(d \) defines a metric on the simplex:

\[\Delta := \left\{ \mathbf{x} = (x_1, \ldots, x_K) \in \mathbb{R}^K : x_i > 0 \text{ and } \sum_{i=1}^{K} x_i = 1 \right\} \]

We call it projective distance. For all \(A \in \mathcal{A} \) we define

\[\tilde{A} : \Delta \rightarrow \Delta \quad \tilde{A}(\mathbf{x}) := \frac{\mathbf{x}^T \cdot A}{\| \mathbf{x}^T \cdot A \|_1} . \]
\[d(x, y) := \log \left[\frac{\max_i (x_i/y_i)}{\min_j (x_j/y_j)} \right] \]

\(d\) defines a metric on the simplex:

\[\Delta := \left\{ x = (x_1, \ldots, x_K) \in \mathbb{R}^K : x_i > 0 \text{ and } \sum_{i=1}^K x_i = 1 \right\} \]

We call it \textit{projective distance}. For all \(A \in \mathcal{A} \) we define

\[\tilde{A} : \Delta \rightarrow \Delta \quad \tilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1}. \]
\[d(x, y) := \log \left[\frac{\max_i (x_i/y_i)}{\min_j (x_j/y_j)} \right] \]

\(d\) defines a metric on the simplex:

\[\Delta := \left\{ x = (x_1, \ldots, x_K) \in \mathbb{R}^K : x_i > 0 \text{ and } \sum_{i=1}^{K} x_i = 1 \right\} \]

We call it **projective distance**. For all \(A \in \mathcal{CA} \) we define

\[\tilde{A} : \Delta \rightarrow \Delta \quad \tilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} . \]
\[\tilde{A} : \Delta \rightarrow \Delta \]
\[\tilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} \]

For \(A \in \mathcal{A} \): the Birkhoff contraction coefficient \(\tau_B(A) \) is defined as the Lipschitz constant for \(\tilde{A} \):

\[\tau_B(A) := \sup_{x, y \in \Delta, \, x \neq y} \frac{d(x^T \cdot A, y^T \cdot A)}{d(x, y)} . \]

Lemma (Well known)

(a) For \(\forall i = 1, \ldots, 3^n \): \(\tau(B_i) \leq 1 \).

(b) The map \(B_1 \) is a strict contraction in the projective distance:

\[h = \tau(B_1) < 1 . \]
\[\tilde{\mathbf{A}} : \Delta \rightarrow \Delta \]
\[\tilde{\mathbf{A}}(\mathbf{x}) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} \]

For \(A \in \mathcal{C} \mathcal{A} \): the Birkhoff contraction coefficient \(\tau_B(A) \) is defined as the Lipschitz constant for \(\tilde{\mathbf{A}} \):

\[\tau_B(A) := \sup_{\mathbf{x}, \mathbf{y} \in \Delta, \mathbf{x} \neq \mathbf{y}} \frac{d(\mathbf{x}^T \cdot A, \mathbf{y}^T \cdot A)}{d(\mathbf{x}, \mathbf{y})}. \]

Lemma (Well known)

(a) For \(\forall i = 1, \ldots, 3^n \): \(\tau(B_i) \leq 1 \).

(b) The map \(B_1 \) is a strict contraction in the projective distance:

\[h := \tau(B_1) < 1. \]
\[\widetilde{A} : \Delta \to \Delta \quad \widetilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} \]

For \(A \in \mathcal{CA} \): the Birkhoff contraction coefficient \(\tau_B(A) \) is defined as the Lipschitz constant for \(\tilde{A} \):

\[
\tau_B(A) := \sup_{x,y \in \Delta, \ x \neq y} \frac{d(x^T \cdot A, y^T \cdot A)}{d(x, y)}.
\]

Lemma (Well known)

(a) For all \(i = 1, \ldots, 3^{n_0} \): \(\tau(B_i) \leq 1 \).
(b) The map \(B_1 \) is a strict contraction in the projective distance:

\[
h := \tau(B_1) < 1.
\]
\(\tilde{A} : \Delta \rightarrow \Delta \quad \tilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} \)

For \(A \in \mathcal{A} \): the Birkhoff contraction coefficient \(\tau_B(A) \) is defined as the Lipschitz constant for \(\tilde{A} \):

\[
\tau_B(A) := \sup_{x, y \in \Delta, \ x \neq y} \frac{d(x^T \cdot A, y^T \cdot A)}{d(x, y)}.
\]

Lemma (Well known)

(a) For \(\forall \ i = 1, \ldots, 3^{n_0} \): \(\tau(B_i) \leq 1 \).

(b) The map \(B_1 \) is a strict contraction in the projective distance:

\[
h := \tau(B_1) < 1.
\]
\[\tilde{A}: \Delta \rightarrow \Delta \quad \tilde{A}(x) := \frac{x^T \cdot A}{\|x^T \cdot A\|_1} \]

For \(A \in \mathcal{A} \): the Birkhoff contraction coefficient \(\tau_B(A) \) is defined as the Lipschitz constant for \(\tilde{A} \):

\[\tau_B(A) := \sup_{x, y \in \Delta, x \neq y} \frac{d(x^T \cdot A, y^T \cdot A)}{d(x, y)}. \]

Lemma (Well known)

(a) For all \(i = 1, \ldots, 3^{n_0} \): \(\tau(B_i) \leq 1 \).

(b) The map \(B_1 \) is a strict contraction in the projective distance:

\[h := \tau(B_1) < 1. \]
Corollary of the Lemma:

So, the following IFS acting on the non-compact metric space (Δ, d) is contracting on average:

$$\left\{ \widetilde{B}_1, \ldots, \widetilde{B}_T \right\}$$

in the strong sense that the average of the Lipschitz constants is less than one.

recall: Δ is the simplex:

$$\Delta := \left\{ \mathbf{x} = (x_1, \ldots, x_K) \in \mathbb{R}^K : x_i > 0 \text{ and } \sum_{i=1}^{K} x_i = 1 \right\}$$

$$d(\mathbf{x}, \mathbf{y}) := \log \left[\frac{\max_i(x_i/y_i)}{\min_j(x_j/y_j)} \right]$$

the projective distance on Δ.

$$\tilde{B} : \Delta \to \Delta \quad \tilde{B}(\mathbf{x}) := \frac{\mathbf{x}^T \cdot \mathbf{B}}{||\mathbf{x}^T \cdot \mathbf{B}||_1}$$
Corollary of the Lemma:

So, the following IFS acting on the non-compact metric space \((\Delta, d)\) is contracting on average:

\[\{\tilde{B}_1, \ldots, \tilde{B}_T\}\]

in the strong sense that the average of the Lipschitz constants is less than one.

recall:
\(\Delta\) is the simplex:
\[
\Delta := \left\{ \mathbf{x} = (x_1, \ldots, x_K) \in \mathbb{R}^K : x_i > 0 \text{ and } \sum_{i=1}^K x_i = 1 \right\}
\]

\[d(\mathbf{x}, \mathbf{y}) := \log \left[\frac{\max_i (x_i/y_i)}{\min_j (x_j/y_j)} \right] \text{ the projective distance on } \Delta.\]

\[\tilde{B} : \Delta \rightarrow \Delta \quad \tilde{B}(\mathbf{x}) := \frac{\mathbf{x}^T \cdot B}{\|\mathbf{x}^T \cdot B\|_1}\]
Definition
Suggested by a paper of Kravchenko (2006), on the complete metric space \((\Delta, d)\) we write \(M(\Delta)\) for the set of all probability measures on \(\Delta\) for which \(\mu(\phi) < \infty\) holds for all real valued Lipschitz functions \(\phi\) defined on \((\Delta, d)\). After Kantorovich, Rubinstein we define the distance of \(\mu, \nu \in M(\Delta)\) by

\[
L(\mu, \nu) := \sup \{\mu(\phi) - \nu(\phi) | \phi : \Delta \rightarrow \mathbb{R}, \text{Lip}(\phi) \leq 1\}.
\]

Kravchenko (2006):
Proposition
The metric space \((M(\Delta), L)\) is complete.
Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi) < \infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by

$$L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \text{Lip}(\phi) \leq 1 \}.$$

Kravchenko (2006):

Proposition

The metric space $(M(\Delta), L)$ is complete.
Definition
Suggested by a paper of Kravchenko (2006), on the complete metric space \((\Delta, d)\) we write \(M(\Delta)\) for the set of all probability measures on \(\Delta\) for which \(\mu(\phi) < \infty\) holds for all real valued Lipschitz functions \(\phi\) defined on \((\Delta, d)\). After Kantorovich, Rubinstein we define the distance of \(\mu, \nu \in M(\Delta)\) by

\[
L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \mbox{ Lip}(\phi) \leq 1 \} .
\]

Kravchenko (2006):

Proposition
The metric space \((M(\Delta), L)\) is complete.
Definition
Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi) < \infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by

$$L(\mu, \nu) := \sup \{\mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \text{ Lip}(\phi) \leq 1\}.$$

Kravchenko (2006):

Proposition
The metric space $(M(\Delta), L)$ is complete.
Definition
Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi) < \infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by

$$L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \text{Lip}(\phi) \leq 1 \}.$$

Kravchenko (2006):

Proposition

The metric space $(M(\Delta), L)$ is complete.
We introduce the operator $\mathcal{F} : M(\Delta) \rightarrow M(\Delta)$

$$\mathcal{F} \nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu \left(\tilde{B}_i^{-1}(H) \right).$$

for a Borel set $H \subset \Delta$. Using $\nu \in M(\Delta)$, for every Lipschitz function ϕ we have

$$\mathcal{F} \nu(\phi) = \frac{1}{T} \cdot \sum_{i=1}^{T} \nu(\phi \circ \tilde{B}_i).$$
We introduce the operator $\mathcal{F} : M(\Delta) \to M(\Delta)$

$$
\mathcal{F}_\nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu \left(\tilde{B}_i^{-1}(H) \right).
$$

for a Borel set $H \subset \Delta$. Using $\nu \in M(\Delta)$, for every Lipschitz function ϕ we have

$$
\mathcal{F}_\nu(\phi) = \frac{1}{T} \cdot \sum_{i=1}^{T} \nu(\phi \circ \tilde{B}_i).
$$
Lemma

(a) \(\mathcal{F} \) is a contraction on the metric space \((M(\Delta), L)\).

(b) There is a unique fixed point \(\nu \in M(\Delta) \) of \(\mathcal{F} \) and for all \(\mu \in M(\Delta) \) we have \(L(\nu, \mathcal{F}^n \mu) \to 0 \).

\[
\text{recall: } L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \ \text{Lip}(\phi) \leq 1 \},
\]

\[
\mathcal{F} \nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu \left(\tilde{B}_{i}^{-1}(H) \right).
\]
Lemma

(a) \(\mathcal{F} \) is a contraction on the metric space \((M(\Delta), L)\).

(b) There is a unique fixed point \(\nu \in M(\Delta) \) of \(\mathcal{F} \) and for all \(\mu \in M(\Delta) \) we have \(L(\nu, \mathcal{F}^n\mu) \to 0 \).

recall: \[
L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \operatorname{Lip}(\phi) \leq 1 \},
\]
\[
\mathcal{F}\nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu \left(\widetilde{B}^{-1}_i(H) \right).
\]
Lemma

(a) \(\mathcal{F} \) is a contraction on the metric space \((M(\Delta), L)\).

(b) There is a unique fixed point \(\nu \in M(\Delta) \) of \(\mathcal{F} \) and for all \(\mu \in M(\Delta) \) we have \(L(\nu, \mathcal{F}^n \mu) \to 0 \).

recall: \[
L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \ Lip(\phi) \leq 1 \},
\]

\[
\mathcal{F}_\nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu \left(\tilde{B}_{i-1}(H) \right).
\]
From now on we always write $\nu \in M(\Delta)$ for the unique fixed point of the operator \mathcal{F} on $M(\Delta)$. That is

$$
\nu(\phi) = \frac{1}{Tn} \sum_{i_1...i_n} \nu(\phi \circ \tilde{B}_{i_1...i_n}).
$$

(7)

holds for all Lipschitz functions ϕ and $n \geq 1$. Following an idea of Furstenberg, it is a key point of our argument that we would like to give an integral representation of the Lyapunov exponent γ_B as an integral of a function φ to be introduced below against the measure ν.
From now on we always write $\nu \in M(\Delta)$ for the unique fixed point of the operator \mathcal{F} on $M(\Delta)$. That is

$$\nu(\phi) = \frac{1}{T^n} \cdot \sum_{i_1 \ldots i_n} \nu(\phi \circ \widetilde{B}_{i_1 \ldots i_n}).$$

(7)

holds for all Lipschitz functions ϕ and $n \geq 1$. Following an idea of Furstenberg, it is a key point of our argument that we would like to give an integral representation of the Lyapunov exponent γ_B as an integral of a function φ to be introduced below against the measure ν.
Lemma

Let γ_B be the Lyapunov exponent of the random matrix product formed from the matrices B_1, \ldots, B_T taking each of the matrices with equal weight independently in every step. Then

$$n_0 \gamma = \gamma_B = \int_{\Delta} \varphi(x) d\nu(x)$$

where $\varphi : \Delta \rightarrow \mathbb{R}$ is defined by

$$\varphi(x) := \frac{1}{T} \cdot \sum_{k=1}^{T} \log \|x \cdot B_k\|_1, \quad x \in \Delta. \quad (8)$$

recall: ν is the unique invariant measure for the IFS $\{\widetilde{B}_1, \ldots, \widetilde{B}_m\}$
A good piece of news:

Lemma

We have $\text{Lip}(\varphi) \leq 1$ on the metric space (Δ, d).

recall:

$\varphi : \Delta \to \mathbb{R}$, $\varphi(x) := \frac{1}{T} \cdot \sum_{k=1}^{T} \log \|x \cdot B_k\|_1$, $x \in \Delta$.

$n_0 \gamma = \gamma_B = \int_{\Delta} \varphi(x) d\nu(x)$
A good piece of news:

Lemma

We have $\text{Lip}(\varphi) \leq 1$ on the metric space (Δ, d).

recall:

\[\varphi : \Delta \to \mathbb{R}, \quad \varphi(x) := \frac{1}{T} \cdot \sum_{k=1}^{T} \log \|x \cdot B_k\|_1, \quad x \in \Delta. \]

\[n_0 \gamma = \gamma_B = \int_{\Delta} \varphi(x) d\nu(x) \]
A good piece of news:

Lemma

We have \(\text{Lip}(\varphi) \leq 1 \) *on the metric space* \((\Delta, d)\).

recall:

\[
\varphi : \Delta \rightarrow \mathbb{R}, \quad \varphi(x) := \frac{1}{T} \cdot \sum_{k=1}^{T} \log \|x \cdot B_k\|_1, \quad x \in \Delta.
\]

\[
n_0 \gamma = \gamma_B = \int_{\Delta} \varphi(x) d\nu(x)
\]
We need to prove that:

\[\gamma_B < n_0 \cdot \log \frac{8}{3} \quad (9) \]

where \(\gamma_B = n_0 \cdot \gamma \) is the Lyapunov exponent for the random matrix product formed from the matrices \(B_1, \ldots, B_T \) each chosen independently with equal probabilities.
Let \(w \in \mathbb{R}^K \) be the center of the simplex \(\Delta \):

\[
 w := \frac{1}{K} \cdot e \quad \text{where} \quad e := (1, \ldots, 1) \in \mathbb{R}^K.
\]

We define the sequence of measures \(\nu_n \in M^1 \) by \(\nu_0 := \delta_w \) and for \(H \subset \Delta \):

\[
 \nu_n(H) := (\mathcal{F}^n \nu_0)(H) = \frac{1}{T^n} \cdot \sum_{i_1 \ldots i_n} \nu_0(\tilde{B}^{-1}_{i_1 \ldots i_n}(H)),
\]

recall: \(\mathcal{F} \nu(H) := \frac{1}{T} \cdot \sum_{i=1}^T \nu \left(\tilde{B}^{-1}_i(H) \right) \).

\(\tilde{B} : \Delta \to \Delta \quad \tilde{B}(x) := \frac{x^T \cdot B}{\|x^T \cdot B\|_1} \)
Let \(w \in \mathbb{R}^K \) be the center of the simplex \(\Delta \):

\[
w := \frac{1}{K} \cdot e \text{ where } e := (1, \ldots, 1) \in \mathbb{R}^K.
\]

We define the sequence of measures \(\nu_n \in \mathcal{M}^1 \) by \(\nu_0 := \delta_w \) and for \(H \subset \Delta \):

\[
\nu_n(H) := (\mathcal{F}^n \nu_0)(H) = \frac{1}{T^n} \cdot \sum_{i_1 \ldots i_n} \nu_0(\tilde{B}_{i_1 \ldots i_n}^{-1}(H)),
\]

\(\mathcal{F} \nu(H) := \frac{1}{T} \cdot \sum_{i=1}^{T} \nu(\tilde{B}_i^{-1}(H)) \).

\(\tilde{B} : \Delta \rightarrow \Delta \quad \tilde{B}(x) := \frac{x^T \cdot B}{\|x^T \cdot B\|_1} \)
We prove that \(\exists \varepsilon' \) s.t. for every \(m \) big enough:

\[
\int_{\Delta} \varphi(x) d\nu_m(x) = \frac{1}{T^m} \cdot \sum_{|i|=m} \frac{1}{T} \sum_{j=1}^{T} \log \frac{\|B_j \cdot B_i\|_1}{\|B_i\|_1} \leq n_0 \cdot \log \frac{8}{3} - \varepsilon'
\]

Then

\[
\lim_{n \to \infty} \int_{\Delta} \varphi(x) d\nu_n(x) = \int_{\Delta} \varphi(x) d\nu(x) = \gamma_B
\]

which completes the proof.
We prove that $\exists \varepsilon'$ s.t. for every m big enough:

$$
\int_{\Delta} \varphi(x) d\nu_m(x) = \frac{1}{T^m} \cdot \sum_{|i|=m} \frac{1}{T} \sum_{j=1}^T \log \frac{\|B_j \cdot B_i\|_1}{\|B_i\|_1} \leq n_0 \cdot \log \frac{8}{3} - \varepsilon'
$$

Then

$$
\lim_{n \to \infty} \int_{\Delta} \varphi(x) d\nu_n(x) = \int_{\Delta} \varphi(x) d\nu(x) = \gamma_B
$$

which completes the proof.
On the complete separable metric space \((X, \rho)\) let \(\mathcal{M}^1\) be the set of Borel regular probability measures on \(X\) with bounded support and let

\[L(\mu, \nu) := \sup \left\{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \text{Lip}(\phi) \leq 1 \right\} .\]

In the paper Hutchinson 1981 Indiana Math. J. on p.733 it is claimed that for a strictly contracting IFS (all Lipschitz constant are smaller than one) for given weights there is a unique invariant measure. Although it is not spelled out directly, but the proof makes use of the claim that the metric space \((\mathcal{M}^1, L)\) is complete. However, this is false since whenever \((X, \rho)\) is unbonded then \((\mathcal{M}^1, L)\) is not complete. (Counter example with discrete measures.)
On the complete separable metric space \((X, \rho)\) let \(M^1\) be the set of Borel regular probability measures on \(X\) with bounded support and let
\[
L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) \mid \phi : \Delta \to \mathbb{R}, \text{Lip}(\phi) \leq 1 \}.
\]

In the paper Hutchinson 1981 Indiana Math. J. on p.733 it is claimed that for a strictly contracting IFS (all Lipschitz constant are smaller than one) for given weights there is a unique invariant measure. Although it is not spelled out directly, but the proof makes use of the claim that the metric space \((M^1, L)\) is complete. However, this is false since whenever \((X, \rho)\) is unbonded then \((M^1, L)\) is not complete. (Counter example with discrete measures.)
On the complete separable metric space \((X, \rho)\) let \(\mathcal{M}^1\) be the set of Borel regular probability measures on \(X\) with bounded support and let

\[L(\mu, \nu) := \sup \{ \mu(\phi) - \nu(\phi) | \phi : \Delta \to \mathbb{R}, \text{Lip}(\phi) \leq 1 \} . \]

In the paper Hutchinson 1981 Indiana Math. J. on p.733 it is claimed that for a strictly contracting IFS (all Lipschitz constant are smaller than one) for given weights there is a unique invariant measure. Although it is not spelled out directly, but the proof makes use of the claim that the metric space \((\mathcal{M}^1, L)\) is complete. However, this is false since whenever \((X, \rho)\) is unbonded then \((\mathcal{M}^1, L)\) is not complete. (Counter example with discrete measures.)
On the complete separable metric space \((X, \rho)\) let \(\mathcal{M}^1\) be the set of Borel regular probability measures on \(X\) with bounded support and let

\[
L(\mu, \nu) := \sup \{\mu(\phi) - \nu(\phi) | \phi: \Delta \rightarrow \mathbb{R}, \ Lip(\phi) \leq 1\}.
\]

In the paper Hutchinson 1981 Indiana Math. J. on p.733 it is claimed that for a strictly contracting IFS (all Lipschitz constant are smaller than one) for given weights there is a unique invariant measure. Although it is not spelled out directly, but the proof makes use of the claim that the metric space \((\mathcal{M}^1, L)\) is complete. However, this is false since whenever \((X, \rho)\) is unbonded then \((\mathcal{M}^1, L)\) is not complete. (Counter example with discrete measures.)
This was fixed for \mathbb{R}^d by Akerlund-Biström (1997) Random Comput Dynam. and then for the general case by A.S. Kravchenko (2006) Siberian Mathematical J. Let $M(X)$ be the set of Borel probability measures for which the integral of every Lipchitz function is finite. Then $(M(X), L)$ is a complete metric space. Working on this space instead of (M^1, L) the proof in Hutchinson’s paper (p. 733) can be carried out.
This was fixed for \mathbb{R}^d by Akerlund-Biström (1997) Random Comput Dynam. and then for the general case by A.S. Kravchenko (2006) Siberian Mathematical J. Let $M(X)$ be the set of Borel probability measures for which the integral of every Lipchitz function is finite. Then $(M(X), L)$ is a complete metric space. Working on this space instead of (M^1, L) the proof in Hutchinson’s paper (p. 733) can be carried out.
This was fixed for \mathbb{R}^d by Akerlund-Biström (1997) Random Comput Dynam. and then for the general case by A.S. Kravchenko (2006) Siberian Mathematical J. Let $M(X)$ be the set of Borel probability measures for which the integral of every Lipchitz function is finite. Then $(M(X), L)$ is a complete metric space. Working on this space instead of (M^1, L) the proof in Hutchinson’s paper (p. 733) can be carried out.
This was fixed for \mathbb{R}^d by Akerlund-Biström (1997) Random Comput Dynam. and then for the general case by A.S. Kravchenko (2006) Siberian Mathematical J. Let $M(X)$ be the set of Borel probability measures for which the integral of every Lipschitz function is finite. Then $(M(X), L)$ is a complete metric space. Working on this space instead of (M^1, L) the proof in Hutchinson’s paper (p. 733) can be carried out.
Kravchenko remarks the following: The weak convergence of the measures is related to the convergence of the integrals of bounded continuous functions w.r.t. these measures. If we restrict the weak convergence of the measures to $M(X)$ then we get the same topology as given by the metric L if X is bounded. If X is unbounded then the topology given by L is strictly finer than the weak topology restricted to $M(X)$.