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Outline



Let F denote the Sierpinski carpet and let
Eθ,a := {(x , y) ∈ F : y − x tan θ = a} denote its
intersection with the line of slope θ through
(0,a). We shall study the dimension of Eθ,a,
a ∈ [0,1], and tan θ ∈ Q
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Figure: The intersection of the Sierpinski carpet with the
line y = 2

5x + a for some a ∈ [0,1].
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History (old)

Theorem (Well known I.)
For all θ , for Leb1 almost all a we have

dimH(Eθ,a) ≤ dimH F − 1. (1)

Theorem (Well known II.)

Leb2 {(θ, a) : dimH(Eθ,a) = dimH(F )− 1} > 0.
(2)

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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History (recent)

Theorem (Liu, Xi and Zhao (2007))
If tan(θ) ∈ Q then,

(a) for Lebesgue almost a,
dimH(Eθ,a) = dimB(Eθ,a) = const(θ).

(b) The dimension of Eθ,a is the same for
almost all a ∈ [0,1] and it can be
expressed as the Lyapunov exponent
of a certain random matrix product
divided by log 3.

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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Motivation

Conjecture (Liu, Xi and Zhao (2007))
For all θ such that tan θ ∈ Q , for almost all a we
have dimH(Eθ,a) < dimH F − 1

For tan θ ∈
{

1, 1
2 ,

1
3 ,

1
4

}
, this Conjecture was

verified by Liu, Xi and Zhao.

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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The main theorem

We prove that the conjecture above holds:

Theorem (Manning, S. (2009) )
For all tan θ ∈ Q, for almost all a ∈ [0,1] we have

dimH(Eθ,a) < dimH F − 1

.
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Thm [MS]: tan θ ∈ Q =⇒ dimH(Eθ,a)<dimH F − 1 for a.a. a.

Some examples:

dimH E0,1/2 = dimH Eπ/4,0 =
log 2
log 3

< log 8
log 3 − 1 = dimH F − 1

< dimH Eπ/4,1/2 = dimH E0,0 = 1.



Thm [MS]: tan θ ∈ Q =⇒ dimH(Eθ,a)<dimH F − 1 for a.a. a.

We define three matrices A0,A1,A2 then we
consider the Lyapunov exponent of the random
matrix product

γ := lim
n→∞

1
n

log ‖Ai1 · · ·Ain‖1,

where Aik ∈ {A0,A1,A2} chosen independently
in every step with probabilities (1

3 ,
1
3 ,

1
3). Then we

prove that

γ< log8
log 3 .
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From now we always write

M
N

:= tan θ (M,N) = 1 3 6 |N,

where for symmetry without loss of generality
we may assume that 3 6 |N. (Otherwise we take
N/M and change the translation parameter a
appropriately.)
There are K:=2N+M-1 level zero shapes
Q1, . . . ,QK . For each "horizontal" (I mean
non-vertical) stripes S0,S1,S2 we define the
K × K matrix A0,A1,A2 respectively as follows:
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Ak(i , j) = 1 iff the level zero shape i contains a
level one shape j in stripe Sk .
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All elements of the matrices A0, A1, A2 are either zero or one.
Example (a): The non zero elements of the first line of A0
are in the following rows: 1, 2, 3, 5, 6, 7.
Example (b): A0(4, 2) = 1, ∀j 6= 2 : A0(4, j) = 0.
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The intersection of S0 and Shape 1

Ak(i , j) = 1 iff the level zero shape i contains a
level one shape j in stripe Sk .



Ak(i , j) = 1 iff the level zero shape i
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1 1 1 0 1 1 1 0 0 0 0
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1 0 0 0 0 0 0 1 1 0 1
. . .
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Sk .

A0 =
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 ,
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Why do we need this?
For an a =

∞∑
k=1

ak · 3−k , with ak ∈ {0,1,2}:
Observation: Aa1...an(i , j) is the number of level
n non-deleted squares that intersect Eθ,a. So,
the number of level n-squares needed to cover
Eθ,a is equal to ‖Aa1 · · ·Aan‖1, that is the sum of
the elements of the non-negative K × K matrix
Aa1 · · ·Aan. Since the size of the level n squares
are
√

2 · 3−n this yields that

dimB(Eθ,a) ≤

γ︷ ︸︸ ︷
lim

n→∞
1
n

log ‖Aa1 · · ·Aan‖1

log 3
, (3)



To estimate the dimension of Eθ,a we need to
understand the exponential growth rate of the
norm of Aa1...an := Aa1 · · ·Aan which is the
Lyapunov exponent of the random matrix
product where each term in the matrix product
is chosen from {A0,A1,A3} with probability 1/3
independently:

γ := lim
n→∞

1
n

log ‖Aa1...an‖1, for a.a. (a1,a2, . . . ).

(4)
The limit exists (sub additive E.T.) and

γ = lim
n→∞

1
n

∑
a1...an

1
3n log ‖Ai1...in‖1. (5)



Essentially what we need to prove it is that

γ < log
8
3

(6)

holds. Namely, by (3) dimB(Eθ,a) ≤ γ
log 3 and

hence γ < log 8
3 is equivalent to

dimB(Eθ,a) ≤ γ

log 3

<
log 8/3
log 3

=
log 8
log 3

− 1 = dimH(F )− 1.
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Clearly, γ≤ log 8
3 holds. Namely, for

As := A0 + A1 + A2 :
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1
n log

∑
i1...in
‖Ai1...in‖1

3n

γ = lim
n→∞

1
n log

‖As
n‖1

3n

γ = lim
n→∞

1
n log 8n

3n = log 8
3 .
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We needed to take higher iterates of the system
(to get a system that is contracting on average
in the projective distance) to prove the strict
inequality.



I CA: the set of K × K non-negative, column
allowable (all columns contain non-zero
elements) matrices.

I CAp: the set of those element of CA for
which every row vector is either all positive
or all zero.

I We prove that ∃n0 and
(a′1, . . . ,a

′
n0

) ∈ {0,1,2}n0 s.t.

B1 := Aa′1 · · ·Aa′n0
∈ CAp.

Clearly, Ai1 · · ·Ain0
∈ CA holds for all

(i1, . . . in0).
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Let T := 3n0, we have already defined the matrix
B1 now we define B2, . . . ,BT :

{B1, . . . ,BT} :=
{

Aa1...an0

}
a1...an0∈{0,1,2}

n0
.

For the vectors with all elements positive
x = (x1, . . . , xK ) > 0 and y = (y1, . . . , yK ) > 0 we
define the pseudo-metric

d(x,y) := log
[

maxi(xi/yi)

minj(xj/yj)

]
.



d(x,y) := log
[

maxi(xi/yi)
minj(xj/yj)

]
d defines a metric on the simplex:

∆ :=

{
x = (x1, . . . , xK ) ∈ RK : xi > 0 and

K∑
i=1

xi = 1

}
.

We call it projective distance. For all A ∈ CA we
define

Ã : ∆→ ∆ Ã(x) :=
xT · A
‖xT · A‖1

.
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Ã : ∆→ ∆ Ã(x) := xT ·A
‖xT ·A‖1

For A ∈ CA: the Birkhoff contraction coefficient
τB(A) is defined as the Lipschitz constant for Ã:

τB(A) := sup
x,y∈∆, x6=y

d(xT · A,yT · A)

d(x,y)
.

Lemma (Well known)

(a) For ∀ i = 1, . . . ,3n0: τ(Bi) ≤ 1.
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Ã : ∆→ ∆ Ã(x) := xT ·A
‖xT ·A‖1

For A ∈ CA: the Birkhoff contraction coefficient
τB(A) is defined as the Lipschitz constant for Ã:
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Corollary of the Lemma:
So, the following IFS acting on the non-compact
metric space (∆,d) is contracting on average:{

B̃1, . . . , B̃T

}
in the strong sense that the average of the
Lipschitz constants is less than one.
recall : ∆ : is the simplex:

∆ :=

{
x = (x1, . . . , xK ) ∈ RK : xi > 0 and

K∑
i=1

xi = 1
}

d(x,y) := log
[

maxi (xi/yi )
minj (xj/yj )

]
the projective distance on ∆.

B̃ : ∆→ ∆ B̃(x) := xT ·B
‖xT ·B‖1
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Definition
Suggested by a paper of Kravchenko (2006), on
the complete metric space (∆,d) we write M(∆)
for the set of all probability measures on ∆ for
which µ(φ) <∞ holds for all real valued
Lipschitz functions φ defined on (∆,d). After
Kantorovich, Rubinstein we define the distance
of µ, ν ∈ M(∆) by

L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} .

Kravchenko (2006):
Proposition
The metric space (M(∆),L) is complete.
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We introduce the operator F : M(∆)→ M(∆)

Fν(H) :=
1
T
·

T∑
i=1

ν
(

B̃−1
i (H)

)
.

for a Borel set H ⊂ ∆. Using ν ∈ M(∆), for
every Lipschitz function φ we have

Fν(φ) = 1
T ·

T∑
i=1

ν(φ ◦ B̃i).
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Lemma
(a) F is a contraction on the metric space

(M(∆),L).
(b) There is a unique fixed point

ν ∈ M(∆) of F and for all µ ∈ M(∆)
we have L(ν,Fnµ)→ 0.
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From now on we always write ν ∈ M(∆) for the
unique fixed point of the operator F on M(∆).
That is

ν(φ) =
1

T n ·
∑
i1...in

ν(φ ◦ B̃i1...in). (7)

holds for all Lipschitz functions φ and n ≥ 1.
Following an idea of Furstenberg, it is a key
point of our argument that we would like to give
an integral representation of the Lyapunov
exponent γB as an integral of a function ϕ to be
introduced below against the measure ν.
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Lemma
Let γB be the Lyapunov exponent of the random
matrix product formed from the matrices
B1, . . . ,BT taking each of the matrices with
equal weight independently in every step. Then

n0γ = γB =

∫
∆

ϕ(x)dν(x)

where ϕ : ∆→ R is defined by

ϕ(x) :=
1
T
·

T∑
k=1

log ‖x · Bk‖1, x ∈ ∆. (8)

recall: ν is the unique invariant measure for the IFS
{

B̃1, . . . , B̃m

}



A good piece of news:

Lemma
We have Lip(ϕ) ≤ 1 on the metric space (∆,d).

recall : ϕ : ∆→ R, ϕ(x) := 1
T ·
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We need to prove that:

γB < n0 · log
8
3

(9)

where γB = n0 · γ is the Lyapunov exponent for
the random matrix product formed from the
matrices B1, . . . ,BT each chosen independently
with equal probabilities.



Let w ∈ RK be the center of the simplex ∆:

w :=
1
K
· e where e := (1, . . . ,1) ∈ RK .

We define the sequence of measures νn ∈M1

by ν0 := δw and for H ⊂ ∆:

νn(H) := (Fnν0)(H) =
1

T n ·
∑
i1...in

ν0(B̃−1
i1...in(H)),

recall : Fν(H) := 1
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)
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We prove that ∃ε′ s.t. for every m big enough:∫
∆

ϕ(x)dνm(x) =
1

T m ·
∑
|i|=m

1
T

T∑
j=1

log
‖Bj · Bi‖1

‖Bi‖1

≤ n0 · log
8
3
− ε′

Then

lim
n→∞

∫
∆

ϕ(x)dνn(x) =

∫
∆

ϕ(x)dν(x) = γB

which completes the proof.
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On the complete separable metric space (X , ρ)
letM1 be the set of Borel regular probability
measures on X with bounded support and let

L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} .
In the paper Hutchinson 1981 Indiana Math. J.
on p.733 it is claimed that for a strictly
contracting IFS (all Lipschitz constant are
smaller than one) for given weights there is a
unique invariant measure. Although it is not
spelled out directly, but the proof makes use of
the claim that the metric space

(
M1,L

)
is

complete. However, this is false since whenever
(X , ρ) is unbonded then

(
M1,L

)
is not

complete. (Counter example with discrete
measures.)
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This was fixed for Rd by Akerlund-Biström
(1997) Random Comput Dynam. and then for
the general case by A.S. Kravchenko (2006)
Siberian Mathematical J. Let M(X ) be the set of
of Borel probability measures for which the
integral of every Lipchitz function is finite. Then
(M(X ),L) is a complete metric space. Working
on this space instead of (M1,L) the proof in
Hutchinson’s paper (p. 733) can be carried out.
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Kravchenko remarks the following:
The weak convergence of the measures is
related to the convergence of the integrals of
bounded continuous functions w.r.t. these
measures. If we restrict the weak convergence
of the measures to M(X ) then we get the same
topology as given by the metric L if X is
bounded. If X is unbounded then the topology
given by L is strictly finer than the weak topology
restricted to M(X ).


