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Introduction

The Mandelbrot set for a pair of linear maps
(Barnsley)

h0(z) = βz, h1(z) = βz + 1

This IFS has an attractor Aβ.
The Mandelbrot set for a pair of linear maps is

{

β ∈ D : Aβ is connected
}

The properties of this set has been studied by: Barnsley,
Harrington, Bousch, Bandt, Solomyak, Xu, Shmerkin.
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Here we consider the IFS:

f0(z) = βz, f1(z) = β2z + 1.

Its attractor is

R(β) =

{

∞
∑

i=0

aiβ
i : a0 . . . an ∈ L holds for each n

}

,

where L is the Fibonacci or golden-mean language.

If β = τ = 1−
√

5

2
then R(τ) = [−1,− 1

τ
].
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Fibo-Mandelbrot Set

M = M(2) := {β ∈ D : R(β) is connected}

Topological properties of M(2)?
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Fibo-Mandelbrot Set

M = M(2) := {β ∈ D : R(β) is connected}

Topological properties of M(2)?

Generalization to the k-bonacci IFS:

f0(z) = βz, f1(z) = 1+β2z, . . . , fk−1(z) = 1+β+· · ·+βk−2+βkz.

R(β) =

{

∞
∑

i=0

aiβ
i : a0 . . . an ∈ L(k) holds for each n

}

,

here L(k) is the k-bonacci language and we define M(k) in
a similar manner.
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Fibo-Mandelbrot Set
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Properties ofM(2)

If β < |τ | then R(β) is totally disconnected.

If β >
√

|τ | then R(β) is connected.

In other words

{β ∈ D : |β| >
√

|τ |} ⊂ M ⊂ {β ∈ D : |β| > |τ |}.
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Characterization of M

M =

(
β ∈ D : ∃(ci)i≥2 ∈ eL∞ and a ∈ {0, 1} such that 1 − aβ +

∞X

i=2

ciβ
i = 0

)

where eL is the difference language of L.
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Characterization of M

M =

(
β ∈ D : ∃(ci)i≥2 ∈ eL∞ and a ∈ {0, 1} such that 1 − aβ +

∞X

i=2

ciβ
i = 0

)

where eL is the difference language of L.

The Fibonacci automaton and its difference automaton

0, 0 0, 1

1, 01, 1

0

0

1

0

−1
−110

0

0 10

1

0

V. Sirvent - J. Thuswaldner Strobl: Fractals and Tilings July 2009 – p.



Theorem 1. The set M(k) is connected and locally connected.

We adapt Bousch’s proof to our case.

V. Sirvent - J. Thuswaldner Strobl: Fractals and Tilings July 2009 – p.



Open problems

Generalize previous constructions and results for sofic
systems, i.e., when L is given by a sofic system.

Does M(k) have “lakes”?

Is M(k) (apart from the obvious antennas) the closure
of its interior? Can one describe the “root” of the
antennas as it was done for the case of the full shift by
Solomyak?

If β ∈ int(M) then the IFS {f0, f1} has overlaps?

Describe the set of all parameters β for which Rβ is not
totally disconnected.
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Open problems — cont.

Do there exist cusps?

Characterize the Julia sets that are “dendrites”?

Characterize the Julia sets having nonempty interior?

Characterize the Julia sets that are homeomorphic to a
closed disk?
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