Spacings and pair correlations for finite Bernoulli convolutions

Boris Solomyak (joint work with Itai Benjamini)

Strobl, Fractals and Tilings, July 6-10, 2009

Suppose a sequence $\{\theta_n\}$ is equidistributed in [0, 1), that is, for every $[a, b] \subset [0, 1)$,

$$\lim_{N\to\infty} N^{-1}\#\{n\leq N: \theta_n\in [a,b]\}=b-a.$$

We order the first N elements of the sequence:

$$\theta_{1,N} \leq \theta_{2,N} \leq \cdots \leq \theta_{N,N},$$

and then consider the normalized spacings

$$\delta_n^{(N)} := N(\theta_{n+1,N} - \theta_{n,N}).$$

More generally, for any fixed $\ell \geq 1$,

$$\delta_{\ell,n}^{(N)} := N(\theta_{n+\ell,N} - \theta_{n,N}).$$

A function $P_{\ell}(s)$ is called the **limiting distribution function** of $\{\delta_{\ell,n}^{(N)}\}$ as $N \to \infty$ if, for any interval $[a, b] \subset (0, \infty)$,

$$\lim_{N\to\infty}\frac{1}{N}\#\left\{n\leq N: \ \delta_{n,\ell}^{(N)}\in [a,b]\right\}=\int_a^b P_\ell(s)\,ds.$$

If θ_n are i.i.d. uniform on [0, 1], we get the **Poisson model**, with

$$P_\ell(s)=rac{s^{(\ell-1)}}{(\ell-1)!}e^{-s}, \ \ ext{for all} \ \ell\geq 1.$$

The pair correlation function for the sequence $\{\theta_n\}$ is defined by

$$R_2(s, \{\theta_n\}, N) = \frac{1}{N} \# \Big\{ (n, m) : n \neq m, n, m \leq N, |\theta_{n,N} - \theta_{m,N}| \leq s \Big\}.$$

In the Poisson model we have $R_2(s, \{\theta_n\}, N) \to 2s$, as $N \to \infty$. Similarly are defined higher level correlations. It is well-known that all local spacing measures are determined by the correlation functions (of all levels).

- The spacing distributions of αn^d mod 1, for α ∉ Q and d ≥ 2, have been studied in a number of papers (Rudnick, Sarnak, Zaharescu, Boca) since 1990's, motivated in part by Quantum Chaos.
- It is conjectured that for α badly approximable by rationals the spacing distribution is Poissonian.
- ▶ For a.e. α , the pair correlations converge to 2s as $N \to \infty$.
- For some irrational α (well-approximable by certain rationals) the behavior of spacings is not Poissonian.

For $\lambda \in (\frac{1}{2}, 1)$ let

$$A_N(\lambda) = \left\{ (1-\lambda) \sum_{n=0}^{N-1} a_n \lambda^n : a_n \in \{0,1\} \right\}$$

We are interested in the randomness properties of these sets as $N \to \infty$. Note that a point in $A_N(\lambda)$ may have more than one representation. This will happen whenever λ is a zero of a polynomial with coefficients $\{-1, 0, 1\}$. In this case we take the point "with multiplicity," so that our sequence always has size 2^N . Consider the uniform measure ν_{λ}^N on $A_N(\lambda)$; this is a discrete measure, with a point in $A_N(\lambda)$ having mass 2^{-N} times the number of representations.

The measures ν_{λ}^{N} converge vaguely to the **infinite Bernoulli** convolution measure ν_{λ} , defined as the distribution of the random series $\sum_{n=0}^{\infty} \omega_n (1-\lambda) \lambda^n$, where ω_n are i.i.d. Bernoulli random variables taking the values 0, 1 with equal probability.

- ν_{λ} is continuous and has "pure type" for all λ
- ▶ ν_{λ} is singular for all $\lambda < \frac{1}{2}$ and a.c. for a.e. $\lambda \in (\frac{1}{2}, 1)$
- PV reciprocal λ : the only known singular ν_{λ} for $\lambda \in (\frac{1}{2}, 1)$.
- Garsia numbers: the only explicitly known λ with a.c. ν_{λ} .

Let $\{\xi_{j,N}\}_{j=1}^{2^N}$ be the ordering of $A_N(\lambda)$, counting with multiplicity, so that

$$0 = \xi_{1,N} \leq \xi_{2,N} \leq \cdots \leq \xi_{2^N,N} = 1 - \lambda^N.$$

Spacing statistics provide a measure of randomness for the sequences $\{\xi_{n,N}\}$ approximating ν_{λ} . Numerical evidence seems to indicate that, for a typical λ , there exist level spacing distributions. However, we first need to rescale the sequence. Let

These sequences are uniformly distributed modulo one.

Conjecture 1. For almost every $\lambda \in (\frac{1}{2}, 1)$ the rescaled sequences $\widetilde{\xi}_{n,N}$ are distributed according to the Poisson model.

- A key difficulty is that very few measures ν_λ are known explicitly.
- We have numerical evidence in support of this conjecture. In simulations, we used for rescaling the CDF of one of the few explicitly known cases: λ = 2^{-1/2} ≈ 0.7017, for the whole range of parameters λ. This doesn't affect the histograms too much, mostly just by "smoothing" them a little.

Figure: non-rescaled, $\lambda = 0.6429$, $\ell = 1$, N = 22

Figure: rescaled, $\lambda = 0.6429$, $\ell = 1$, N = 22

Figure: rescaled, $\lambda = 0.6429$, $\ell = 2$, N = 22

Figure: rescaled, $\lambda = 0.6429$, $\ell = 3$, N = 22

Figure: rescaled, $\lambda = 0.7088$, $\ell = 1$, N = 22

Figure: rescaled, $\lambda = 0.7088$, $\ell = 2$, N = 22

Figure: rescaled, $\lambda = 0.7088$, $\ell = 3$, N = 22

We mostly focus on the pair correlation function for the non-rescaled sequences

$$R_2(s,\lambda,2^N):=\frac{1}{2^N}\#\Big\{(x,y):\ x\neq y,\ x,y\in A_N(\lambda),\ |x-y|\leq \frac{s}{2^N}\Big\}$$

which provide information about the variance of average spacings.

Conjecture 2. For almost every $\lambda \in (\frac{1}{2}, 1)$, there exist c, C > 0 such that

$$cs \leq R_2(s, \lambda, 2^N) \leq Cs$$
 for all N and $s > 0$.

This would mean that our sequences exhibit **no attraction** and **no repulsion**. Our main results make a step in this direction, but we have to do averaging over the parameter λ .

Results I

Theorem

Let
$$J = [\lambda_0, \lambda_1] \subset (\frac{1}{2}, 0.668)$$
. Then $\exists C_1 = C_1(J)$ such that
 $\forall N \ge 1, \forall s > 0, \int_J R_2(s, \lambda, 2^N) d\lambda \le C_1 s,$

Remarks.

- The appearance of the number 0.668 is due to "transversality".
- By Fatou's Lemma, ∫_J lim inf_{N→∞} R₂(s, λ, 2^N) dλ ≤ C₁s for s > 0. This shows that, on average, our spacing distributions exhibit no attraction, at least in the liminf sense.
- ▶ By Borel-Cantelli, for any $\varepsilon > 0$, for a.e. $\lambda \in (\frac{1}{2}, 0.668)$,

 $\forall s > 0, R_2(s, \lambda, 2^N) \leq sN^{1+\varepsilon}$ for all N sufficiently large.

Theorem

For any $\lambda_0 \in (\frac{1}{2}, 1)$, $\varepsilon \in (0, 1 - \lambda_0)$, and L > 0, there exists $C_2 = C_2(\lambda_0, \varepsilon) > 0$ such that

$$\forall N \geq 1, \ \forall s \in (0, L), \quad \int_{\lambda_0 - \varepsilon}^{\lambda_0 + \varepsilon} R_2(s, \lambda, 2^N) \, d\lambda \geq C_2 s.$$

Attraction. Let $\theta = 1/\lambda$ be a PV number, that is, an algebraic integer > 1 whose conjugates are all less than one in modulus.

- Such ν_λ, with λ ∈ (¹/₂, 1), are the only singular infinite Bernoulli convolutions known [Erdős 1939].
- Spacings between distinct points in A_N(λ) are all bounded below by C · λ^N, which implies that there are "massive" coincidences, since 2^N − C · λ^{−N} spacings are zeros.
- ► This is an extreme case of attraction. Something similar happens for all zeros of {0, ±1} polynomials.

Theorem

(i) For any λ_0 which is a zero of a $\{0, \pm 1\}$ polynomial, there exists $\rho = \rho(\lambda_0) < 2$ and C_3 such that

$$R_2(0, \lambda_0, 2^N) \ge C_3^{-1}(2/\rho)^N.$$

(ii) For any interval $J \subset (\frac{1}{2}, 1)$ and $\varepsilon > 0$, there is an uncountable set $\mathcal{E}_J \subset J$, such that for $\lambda \in \mathcal{E}_J$

$$\forall s > 0, R_2(s, \lambda, 2^N) \ge 2^{N^{1-\varepsilon}}$$
 for infinitely many N.

Remarks.

- ► The points in *E_J* are extremely well approximable by zeros of {0, ±1} polynomials.
- Our construction yields \mathcal{E}_J of zero Hausdorff dimension.

Repulsion. Let $\theta = 1/\lambda$ be a **Garsia** number, that is, a zero of a monic polynomial with integer coefficients and constant term ± 2 , whose conjugates are all greater than one in modulus.

- By Garsia's Lemma, the spacings between points in A_N(λ) are bounded below by C ⋅ 2^{-N}, and there are no coincidences. This is an extreme case of repulsion.
- Such ν_λ, with λ ∈ (¹/₂, 1), are the only explicitly known a.c. known [Garsia 1960], and moreover, they have bounded density.
- Garsia reciprocals include 2^{-1/k} for k ≥ 2, but also many other numbers (e.g. the reciprocal of the positive root of x³ 2x 2 = 0, which is about .5652, or the reciprocal of the positive root of x³ x² 2 = 0, which is about .5898).

- Some spacings have very high multiplicity (producing "spikes" in the distribution of non-rescaled spacings). This may be explained by the fact that every spacing g is a zero of a {0,±1} polynomial. For every such polynomial with k zero coefficients, the same difference between points in A_N(λ) will be achieved 2^k times. If g is a very small number, it is likely to be a spacing, and if N k is small, we will see a "spike."
- The smallest spacing between points of A_N(λ), for a.e. λ in a transversality interval, is bounded below by 3^{-N}N^{-1-ε}, for infinitely many N, for any ε > 0, which is much larger than (2^{-N})² which we would get if the points were sampled randomly and independently from the uniform distribution.