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1. Signal and Image processing

(a) A systematic study of bases in Hilbert spaces built on
fractals suggests a common theme: A hierarchical
multiscale structure. A well-known instance of the
self-similarity is reflected in the scaling rules from wavelet
theory.

(b) The best known instances: the dyadic wavelets in L2(R),
built by two functions ϕ and ψ; subject to the relation

ϕ(x) = 2
∑

hnϕ(2x − n), and ψ(x) = 2
∑

gnϕ(2x − n).

(1)
where (hn) and (gn) are fixed and carefully chosen
sequences.



1. Signal and Image processing - cont’d

(d) The function ϕ is called the scaling function, or the father
function, and ψ is called the mother function.

(e) The best known choice of pairs of filter coefficients (hn),
(gn) is the following: Pick (hn) ⊂ R subject to the two
conditions

∑

n∈Z
hn = 1 and

∑

n∈Z
hnhn+2l = 1

2δ0,l . Then
set gn := (−1)nh1−n, n ∈ Z.

(f) The convention is that (hn) is 0 outside some specified
range.



1. Signal and Image processing - cont’d

(g) The associated double indexed family
ψjk (x) = 2i/2ψ(2jx − k), j , k ,∈ Z will be a wavelet basis for
L2(R).

(h) This is the best known wavelet construction also known by
the name multi-resolution analysis (MRA). The reason for
this is that the father function ϕ generates a subspace V0

of L2(R) which represents a choice of resolution for
wavelet decomposition.



1. Signal and Image processing - cont’d

Definition
Take V0 to be the closed span of all the translates (ϕ(· − k)),
k ∈ Z in L2(R). From (1), it follows that the scaling operator
Uf (x) = 2−1/2f (x

2 ) maps the space V0 into itself; and that
Uψ ∈ V0.

With suitable modification this idea also works for wavelet
bases in L2(Rd), and in Hilbert spaces built on fractals.



2.1 Selfsimilarity

(a) For Julia sets X in complex analysis for example, U could
be implemented by a rational function z 7→ r(z).

(b) When r is given, X will be a compact subset of C which is
determined by the dynamics of rn = r ◦ · · · ◦ r

︸ ︷︷ ︸

n times

. Specifically,

C\X = ∪{O|O open, (r (n)|O) is normal}. (2)

(c) Interested in showing that these non-linear fractals are
related to more traditional wavelets, i.e., those of L2(Rd ).
We want to extend the R

d -analysis both to fractals and to
discrete hierarchical models.



2.2 Computational Features

(a) Approximation of the father or mother functions by
subdivision schemes.

(b) Matrix formulas for the wavelet coefficients. For fractals,
L2-convergence is more restrictive than is the case for
L2(Rd)-wavelets.

A unifying approach to wavelets, dynamical systems, iterated
function systems, self-similarity and fractals may be based on
the systematic use of operator analysis and representation
theory.



3.1 Operator Theoretic Models

(a) Motivation: hierarchical models and multiscaling, operators
of multiplication, and dilations, and more general weighted
composition operators are studied. Scaling is implemented
by non-linear and non-invertible transformations. This
generalizes affine trasformations of variables from wavelet
analysis and analysis on affine fractals.

(b) The properties of dynamical and iterated function systems,
defined by these transformations, govern the spectral
properties and corresponding subspace decompositions.



3.1 Operator Theoretic Models - cont’d

(c) The interplay between dynamical and iterated function
systems and actions of groups and semigroups on one
side, and operator algebras on the other side, yield new
results and methods for wavelets and fractal analysis and
geometry.

(d) Wavelets, signals and information may be realized as
vectors in a real or complex Hilbert space. In the case of
images, this may be worked out using wavelet and filter
functions, e.g. corresponding to ordinary Cantor fractal
subsets of R, as well as for fractal measure spaces of
Sierpinski Gasket fractals.



3.2 Operators and Hilbert Space

(a) Operator algebra constructions of covariant
representations are used in the analysis of orthogonality in
wavelet theory, in the construction of super-wavelets, and
orthogonal Fourier bases for affine fractal measures.

(b) In signal processing, time-series, or matrices of pixel
numbers may similarly be realized by vectors in Hilbert
space H.

(c) In signal/image processing, because of aliasing, it is
practical to generalize the notion of ONB, and this takes
the form of what is “a system of frame vectors.”



3.2 Operators and Hilbert Space - cont’d

(d) One particular such ONB goes under the name “the
Karhunen-Loève basis.”

(e) Motivation comes from the consideration of the optimal
choices of bases for certain analogue-to-digital (A-to-D)
problems we encountered in the use of wavelet bases in
image-processing.



3.2 Operators and Hilbert Space - cont’d

Definition
For every finite n, a representation of the Cuntz algebra On is a
system of isometries Si : H → H such that

(a) S∗
i Sj = δij I ; orthogonality, and

(b)
∑

i SiS∗

i = I (perfect reconstruction).



+

S0* S0

S1* S1

Analysis Synthesis

low-pass filter dual low-pass filter

high-pass filter dual high-pass filter

Signal In Signal Out

ξ ξ

down-sampling up-sampling

Figure: Examples of operators in signal image processing.



4. Slanted Matrix Representations

Definition
If (hn)n∈Z is a double infinite sequence of complex numbers,
i.e., hn ∈ C, for all n ∈ Z; set

(S0x)(m) =
√

2
∑

n∈Z

hm−2nx(n) (3)

and adjoint

(S∗
0x)(m) =

√
2

∑

n∈Z

h̄n−2mx(n); for all m ∈ Z. (4)



4. Slanted Matrix Representations - cont’d

Then

(a) The ∞×∞ matrix representations (3) and (4) have the
following slanted forms

S0  : S*0 : . .
.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.

Figure: S0 and S∗

0 .



4. Slanted Matrix Representations - cont’d

(b) The set of non-zero numbers in (hn)n∈Z is finite if and only
if the two matrices in Figure are banded.

(c) Relative to the inner product

〈x |y〉l2 :=
∑

n∈Z

x̄nyn in l2

(i.e., conjugate-linear in the first variable), the operator S0

is isometric if and only if

∑

n∈Z

h̄nhn+2p =
1
2
δ0,p, for all p ∈ Z. (5)



4. Slanted Matrix Representations - cont’d

(d) If (5) holds, and

(S1x)(m) =
√

2
∑

n∈Z

gm−2nx(n), (6)

then
S0S∗

0 + S1S∗
1 = Il2 (7)

S∗
kSl = δk ,l Il2 for all k , l ∈ {0,1} (8)

(the Cuntz relations) holds for

gn := (−1)nh̄1−n, n ∈ Z.



Figure: Outline of the wavelet image compression process.



5. Image Decomposition using Forward Wavelet
Transform

A 1-level wavelet transform of an N × M image can be
represented as

f 7→





a1 | h1

−− −−
v1 | d1





where the subimages h1,d1,a1 and v1 each have the
dimension of N/2 by M/2.



5. Image Decomposition using Forward Wavelet
Transform-cont’d

a1 = V 1
m ⊗ V 1

n : ϕA(x , y) = ϕ(x)ϕ(y)
=

∑

i
∑

j hihjϕ(2x − i)ϕ(2y − j)
h1 = W 1

m ⊗ V 1
n : ψH(x , y) = ψ(x)ϕ(y)

=
∑

i
∑

j gihjϕ(2x − i)ϕ(2y − j)
v1 = V 1

m ⊗ W 1
n : ψV (x , y) = ϕ(x)ψ(y)

=
∑

i
∑

j higjϕ(2x − i)ϕ(2y − j)
d1 = W 1

m ⊗ W 1
n : ψD(x , y) = ψ(x)ψ(y)

=
∑

i
∑

j gigjϕ(2x − i)ϕ(2y − j)

ϕ : the father function in sense of wavelet.
ψ : is the mother function in sense of wavelet.

V space : the average space and the from multiresolution analysis
(MRA).

W space : the difference space from MRA.
h : low-pass filter coefficients
g : high-pass filter coefficients.



Test Image

Figure: Prof. Jorgensen in his office.



First-level Decomposition

Figure: 1-level Haar Wavelet Decomposition of Prof. Jorgensen



Second-level Decomposition

Figure: 2-level Haar Wavelet Decomposition of Prof. Jorgensen



6.1 Entropy Encoding

◮ Entropy encoding further compresses the quantized values
in lossless manner which gives better compression in
overall.

◮ It uses a model to accurately determine the probabilities for
each quantized value and produces an appropriate code
based on these probabilities so that the resultant output
code stream will be smaller than the input stream.



6.1 Entropy Encoding-Example

An example with letters in the text would better depict how the
mechanism works. Suppose we have a text with letters a, e, f,
q, r with the following probability distribution:

Letter Probability
a 0.3
e 0.2
f 0.2
q 0.2
r 0.1



Example-cont’d

Then applying the Shannon-Fano entropy encoding scheme on
the above table gives us the following assignment.

Letter Probability code
a 0.3 00
e 0.2 01
f 0.2 100
q 0.2 101
r 0.1 110

Note that instead of using 8-bits to represent a letter, 2 or 3-bits
are being used to represent the letters in this case.



6.2 Karhunen-Loève Transform

◮ Karhunen-Loève transform is an operator theoretic tool
which has proved effective and versatile in the analysis of
stochastic processes (Xt).

◮ The starting point in this is a spectral analysis of the
correlations E(XtXs). In models, this may represent, for
example, correlations of pixel values.

◮ The K-L analysis involves a variety of choices of bases
(ψI(t)) , including wavelet bases, and it leads to a
sequence (Zn) of independent random variables, and an
associated K-L expansion of the initial process (Xt).



6.2 Karhunen-Loève Transform - cont’d

◮ Given the values of their neighbors, pixels in smooth
regions can be predicted with substantial accuracy, so the
independent storage of pixels is unnecessary.

◮ Exploiting this spatial redundancy (correlation between
neighboring pixel values) enables us to acquire a
considerable improvement in performance over entropy
coding alone.

◮ Applying K-L transform to an image yields a set of
transform coefficients which are de-correlated, i.e., the
first-order linear redundancy in the pixels are eliminated.



6.2 Description of the Algorithm for Karhunen-Loève
transform entropy encoding

1. Perform the wavelet transform for the whole image. (i.e.,
wavelet decomposition.)

2. Do quantization to all coefficients in the image matrix,
except the average detail.

3. Subtract the mean: Subtract the mean from each of the
data dimensions. This produces a data set whose mean is
zero.

4. Compute the covariance matrix

cov(X ,Y ) =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )

n
.



6.2 Description of the Algorithm for Karhunen-Loève
transform entropy encoding - cont’d

5. Compute the eigenvectors and eigenvalues of the
covariance matrix.

6. Choose components and form a feature vector(matrix of
vectors),

(eig1, ...,eign).

Eigenvectors are listed in decreasing order of the
magnitude of their eigenvalues. Eigenvalues found in step
5 are different in values. The eigenvector with highest
eigenvalue is the principle component of the data set.

7. Derive the new data set.

Final Data = Row Feature Matrix × Row Data Adjust.



6.2 Description of the Algorithm for Karhunen-Loève
transform entropy encoding - cont’d

◮ Row Feature Matrix : the matrix that has the eigenvectors
in its rows with the most significant eigenvector (i.e., with
the greatest eigenvalue) at the top row of the matrix.

◮ Row Data Adjust : the matrix with mean-adjusted data
transposed. That is, the matrix contains the data items in
each column with each row having a separate dimension.



7.1 Wavelets and Fractals

(a) The simplest Julia sets come from a one parameter family
of quadratic polynomials ϕc(z) = z2 + c, where z is a
complex variable and where c is a fixed parameter.

(b) Consider the two branches of the inverse
β± = z 7→ ±

√
z − c. Then Jc is the unique minimal

non-empty compact subset of C, which is invariant under
{β±}.

(c) Interested in adapting and modifying the Haar wavelet, and
the other wavelet algorithms to the Julia sets.



7.1 Wavelets and Fractals - cont’d

(d) There was an initition of wavelet transforms for complex
fractals.

(e) These transforms have some parallels to traditional affine
fractals, but subtle non-linearities precluded from writing
down an analogue of Haar wavelets in these different
settings.

(f) Want to develop more refined algorithms taking these
difficulties into account.



7.1 Wavelets and Fractals - cont’d

A successful harmonic analysis on Julia sets, with their Brolin
measures, is likely to be more difficult than is the corresponding
situation for the affine fractals with their Hutchinson measures
(such as Cantor and Sierpinski constructs).
This difficulty in an analysis of Julia sets appears both in
wavelet constructions and in our search for Fourier bases.
The reason is that Julia iterations are by non-linear mappings,
while affine fractals are amenable to linear tools, or rather
systems of affine maps.
Still there is hope for the more non-linear case because of
intrinsic selfsimilarity.



7.2 Fractal Image Processing

(a) Unlike wavelets, fractal coders store images as a fixed
points of maps on the plane instead of a set of quantized
transform coefficients.

(b) Fractal compression is related to vector quantization, but
fractal coders use a self-referential vector codebook, drawn
from the image itself, instead of a fixed codebook.

(c) IFS theory motivates a broad class fractal compression
schemes but it does not show why particular fractal
schemes work well.

(d) A wavelet-based framework for analyzing fractal block
coders would simplify the analysis of these codes
considerably and give a clear picture of why they are
effective.



7.3 Image Decomposition using real Sierpinski-Gasket
filter

By Jonas D’Andrea, Kathy Merrill and Judy Packer (next 4
slides)



reconstruction using 10% of transform coefficients

Haar filter real SG filter



reconstruction using 3% of transform coefficients

Haar filter real SG filter



reconstruction using 0.1% of transform coefficients

real SG filter Haar filter
same as original



reconstruction using 0.01% of transform coefficients

real SG filter Haar filter
same as original
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