Multiple tilings defined by generalized β -transformations

Wolfgang Steiner LIAFA, CNRS, Université Paris 7

(joint work with Charlene Kalle, Universiteit Utrecht)

July 9, 2009 Fractals and Tilings, St. Wolfgang

Aperiodic tilings of \mathbb{R}^{d-1} and lattice tilings $\{\widehat{X} + \mathbf{z}\}_{\mathbf{z} \in \mathbb{Z}^d}$

Example:

Transformations generating digital expansions in base β

- ▶ Let $\beta > 1$ be a real number.
- ▶ Let A be a finite set of real numbers, the digit set.
- ▶ For each $a \in A$, let $X_a = [\ell_a, r_a)$ be a half open interval, such that $r_a \le \ell_b$ for a < b. Set $X = \bigcup_{a \in A} X_a$.
- ▶ Define the transformation $T: X \rightarrow X$ by

$$T(x) = \beta x - a$$
 if $x \in X_a$.

▶ Define the digit sequence $b(x) = b_1(x)b_2(x)\cdots$ by

$$b_k(x) = a$$
 if $T^{k-1}(x) \in X_a$.

Transformations generating digital expansions in base β

- ▶ Let $\beta > 1$ be a real number.
- ▶ Let A be a finite set of real numbers, the digit set.
- ▶ For each $a \in A$, let $X_a = [\ell_a, r_a)$ be a half open interval, such that $r_a \le \ell_b$ for a < b. Set $X = \bigcup_{a \in A} X_a$.
- ▶ Define the transformation $T: X \rightarrow X$ by

$$T(x) = \beta x - a$$
 if $x \in X_a$.

▶ Define the digit sequence $b(x) = b_1(x)b_2(x)\cdots$ by

$$b_k(x) = a$$
 if $T^{k-1}(x) \in X_a$.

Then

$$x = \frac{b_1(x)}{\beta} + \frac{T(x)}{\beta} = \frac{b_1(x)}{\beta} + \frac{b_2(x)}{\beta^2} + \frac{T^2(x)}{\beta} = \cdots = \sum_{k=1}^{\infty} \frac{b_k(x)}{\beta^k},$$

and we call b(x) the T-expansion of x.

greedy expansion:

$$X_0 = [0, 1/\beta)$$

$$X_1 = [1/\beta, 1)$$

greedy expansion:

$$X_0 = [0, 1/\beta)$$

 $X_1 = [1/\beta, 1)$

lazy expansion:

$$X_0 = \left(\frac{2-\beta}{\beta-1}, \frac{1}{\beta(\beta-1)}\right]$$

$$X_1 = \left(\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}\right]$$

greedy expansion:

$$X_0 = [0, 1/\beta)$$

 $X_1 = [1/\beta, 1)$

lazy expansion:

$$X_0 = \left(\frac{2-\beta}{\beta-1}, \frac{1}{\beta(\beta-1)}\right]$$

$$X_1 = \left(\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}\right]$$

intermediate expansions different alphabets

Conditions on β , companion matrix, eigenvectors

Let $\beta>1$ be a Pisot unit, i.e., an algebraic integer with minimal polynomial of the form $X^d-c_1X^{d-1}-c_2X^{d-2}-\cdots-c_d\in\mathbb{Z}[X]$, $|\beta_j|<1$ for every other root β_2,\ldots,β_d of the minimal polynomial, and $c_d\in\{-1,1\}$.

Let M be the companion matrix

$$M = \begin{pmatrix} c_1 & c_2 & \cdots & c_{d-1} & c_d \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

Note that $|\det M| = |c_d| = 1$. Let $\mathbf{v}_j \in \mathbb{C}(\beta_j^{d-1}, \dots, \beta_j, 1)^t$, $1 \le j \le d$, be a right eigenvector of M to the eigenvalue β_j (with $\beta_1 = \beta$) such that $\sum_{i=1}^d \mathbf{v}_i = \mathbf{e}_1 = (1, 0, \dots, 0)^t$.

Tiles in the contractive hyperplane

Let H be the hyperplane of \mathbb{R}^d spanned by the real and imaginary parts of $\mathbf{v}_2, \dots, \mathbf{v}_d$. Define the map

$$\Phi: \mathbb{Q}(\beta) \to H, \quad x \mapsto \sum_{j=2}^d x^{(j)} \mathbf{v}_j,$$

where $x^{(j)} \in \mathbb{Q}(\beta_j)$ is defined by $(P(\beta))^{(j)} = P(\beta_j)$ for $P \in \mathbb{Q}[X]$.

Assume that $A \subset \mathbb{Q}(\beta)$. For $x \in \mathbb{Q}(\beta) \cap X$, define the tile

$$\mathcal{T}_{x} = \lim_{n \to \infty} \Phi(\beta^{n} T^{-n}(x)) = \lim_{n \to \infty} M^{n} \Phi(T^{-n}(x)),$$

where Lim denotes the Hausdorff limit.

Tiles in the contractive hyperplane

Let H be the hyperplane of \mathbb{R}^d spanned by the real and imaginary parts of $\mathbf{v}_2, \dots, \mathbf{v}_d$. Define the map

$$\Phi: \mathbb{Q}(\beta) \to H, \quad x \mapsto \sum_{j=2}^d x^{(j)} \mathbf{v}_j,$$

where $x^{(j)} \in \mathbb{Q}(\beta_j)$ is defined by $(P(\beta))^{(j)} = P(\beta_j)$ for $P \in \mathbb{Q}[X]$.

Assume that $A \subset \mathbb{Q}(\beta)$. For $x \in \mathbb{Q}(\beta) \cap X$, define the tile

$$\mathcal{T}_{x} = \lim_{n \to \infty} \Phi(\beta^{n} T^{-n}(x)) = \lim_{n \to \infty} M^{n} \Phi(T^{-n}(x)),$$

where Lim denotes the Hausdorff limit. If $y \in T^{-n}(x)$, then

$$\beta^{n} y = \beta^{n} \left(\sum_{k=1}^{n} \frac{b_{k}(y)}{\beta^{k}} + \frac{T^{n}(y)}{\beta^{n}} \right) = b_{1}(y)\beta^{n-1} + \dots + b_{n}(y)\beta^{0} + x,$$

$$\Phi(\beta^{n} y) = M^{n-1} \Phi(b_{1}(y)) + \dots + M^{0} \Phi(b_{n}(y)) + \Phi(x).$$

Structure of the tiles \mathcal{T}_{x}

$$\begin{split} \mathcal{T}_{x} &= \lim_{n \to \infty} \Phi \left(\beta^{n} T^{-n}(x)\right) \\ &= \Phi(x) + \underbrace{\lim_{n \to \infty} \left\{ M^{n-1} \Phi \left(b_{1}(y)\right) + \dots + \Phi \left(b_{n}(y)\right) \; \middle| \; T^{n}(y) = x \right\}}_{\mathcal{D}_{x}} \\ \mathcal{D}_{x} &= \left\{ \left. \sum_{n \to \infty} M^{k} \Phi \left(u_{-k}\right) \; \middle| \; \dots u_{-1} u_{0} b_{1}(x) b_{2}(x) \dots \in \mathcal{S} \right\}, \end{split}$$

where S denotes the set of two-sided sequences $u = (u_k)_{k \in \mathbb{Z}} \in A^{\mathbb{Z}}$ such that every suffix of u is a T-expansion of some $y \in X$:

$$\mathcal{S} = \{ u \in A^{\mathbb{Z}} \mid u_k u_{k+1} \dots \in b(X) \text{ for all } k \in \mathbb{Z} \}$$

M is contracting on H, $\{\cdots u_{-1}u_0 \mid \cdots u_{-1}u_0b_1(x)b_2(x)\cdots \in \mathcal{S}\}$ is compact for every $x\in X\Longrightarrow \mathcal{D}_x$ is compact as the image of a compact set by a continuous map

Structure of T-expansions

Define
$$\widetilde{X}_a=(\ell_a,r_a]$$
, $\widetilde{X}=\bigcup_{a\in A}\widetilde{X}_a$, $\widetilde{T}:\widetilde{X}\to\widetilde{X}$ with

$$\widetilde{T}(x) = \beta x - a \text{ if } x \in \widetilde{X}_a,$$

$$\tilde{b}(x) = \tilde{b}_1(x)\tilde{b}_2(x)\cdots$$
 with

$$\widetilde{b}_k(x) = a$$
 if $\widetilde{T}^{k-1}(x) \in \widetilde{X}_a$.

Theorem

A sequence $u=u_1u_2\cdots\in A^\omega$ is the T-expansion of some $x\in X$, i.e. u=b(x), if and only if

$$b(\ell_{u_k}) \leq_{\text{lex}} u_k u_{k+1} \cdots <_{\text{lex}} \tilde{b}(r_{u_k})$$
 for all $n \geq 1$.

The closure \bar{S} of S is a sofic shift if $b(\ell_a)$ and $\tilde{b}(r_a)$ are eventually periodic for every $a \in A$. If \bar{S} is a sofic shift and T(X) = X, then $b(\ell_a)$ and $\tilde{b}(r_a)$ are eventually periodic for every $a \in A$.

When is $\mathcal{D}_x = \mathcal{D}_y$?

It follows from the lexicographic condition for T-expansions that $\mathcal{D}_x = \mathcal{D}_y$, x < y, if no suffix s of a word $b(\ell_a)$ or $\tilde{b}(r_a)$, $a \in A$, satisfies $b(x) <_{\text{lex}} s \leq_{\text{lex}} b(y)$.

We can say more: Assume T(X) = X and set

$$\mathcal{V} = \bigcup_{1 \leq k < m_a, a \in A: \ r_a \in X} \left\{ \widetilde{T}^k(r_a), \ T^k(r_a) \right\} \cup \left\{ \ell_a \notin \widetilde{X} \right\} \cup \left\{ r_a \notin X \right\},$$

where m_a is the minimal positive integer such that

$$\widetilde{T}^{m_a}(r_a) = T^{m_a}(r_a),$$

with $m_a = \infty$ if $\widetilde{T}^k r_a \neq T^k r_a$ for all $k \geq 1$.

Proposition

If x < y and no $s \in \mathcal{V}$ satisfies $b(x) <_{\text{lex}} s \leq_{\text{lex}} b(y)$, then $\mathcal{D}_x = \mathcal{D}_y$.

Proposition

If x < y and no $s \in \mathcal{V}$ satisfies $b(x) <_{\text{lex}} s \leq_{\text{lex}} b(y)$, then $\mathcal{D}_x = \mathcal{D}_y$.

Idea: If $\cdots u_{-1}u_0b(x) \in \mathcal{S}$, but $\cdots u_{-1}u_0b(y) \notin \mathcal{S}$, then there exists an $n \geq 0$ and an $a \in A$ with $r_a \in X$ such that

- $> s = \widetilde{b}_{n+2}(r_a)\widetilde{b}_{n+3}(r_a)\cdots = \widetilde{b}(\widetilde{T}^{n+1}(r_a))$
- $b(x) <_{\text{lex}} s \leq_{\text{lex}} b(y).$

Since $s \notin \mathcal{V}$, we have $\widetilde{T}^{n+1}(r_a) = T^{n+1}(r_a)$, thus

$$M^n\Phi\big(\tilde{b}_1(r_a)\big)+\cdots+\Phi\big(\tilde{b}_{n+1}(r_a)\big)=M^n\Phi\big(b_1(r_a)\big)+\cdots+\Phi\big(b_{n+1}(r_a)\big).$$

If $\cdots u_{-n-2}u_{-n-1}b_1(r_a)\cdots b_{n+1}(r_a)b(y)\in \mathcal{S}$, then we have shown $\sum_{k=0}^{\infty}M^k\Phi(u_{-k})\in \mathcal{D}_y$. Otherwise, iterate with $x=T^{n+1}(r_a)$.

Consequence: The number of different sets \mathcal{D}_x , $x \in X$, is bounded by the number of elements in \mathcal{V} . (Often, it is $\#\mathcal{V}-1$).

Remark: The set V is finite if and only if, for each $a \in A$ such that $r_a \in X$, $b(r_a)$ and $\tilde{b}(r_a)$ are eventually periodic or $m_a < \infty$.

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite.

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite. Every tile subdivides into contracted copies of other tiles:

$$\mathcal{T}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} M \, \mathcal{T}_{\mathsf{y}}, \quad \mathcal{D}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} \Big(M \, \mathcal{D}_{\mathsf{y}} + \Phi \big(b_1(\mathsf{y}) \big) \Big)$$

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite. Every tile subdivides into contracted copies of other tiles:

$$\mathcal{T}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} M \, \mathcal{T}_{\mathsf{y}}, \quad \mathcal{D}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} \Big(M \, \mathcal{D}_{\mathsf{y}} + \Phi \big(b_1(\mathsf{y}) \big) \Big)$$

If $\mathcal V$ is finite, this gives a GIFS, the union is disjoint up to a set of measure zero, $\lambda^{d-1}(\partial \mathcal T_x)=0$, and $\{\mathcal T_x\}_{x\in\mathbb Z[\beta]\cap X}$ is quasi-periodic.

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite. Every tile subdivides into contracted copies of other tiles:

$$\mathcal{T}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} M \, \mathcal{T}_{\mathsf{y}}, \quad \mathcal{D}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} \Big(M \, \mathcal{D}_{\mathsf{y}} + \Phi \big(b_1(\mathsf{y}) \big) \Big)$$

If $\mathcal V$ is finite, this gives a GIFS, the union is disjoint up to a set of measure zero, $\lambda^{d-1}(\partial \mathcal T_x)=0$, and $\{\mathcal T_x\}_{x\in\mathbb Z[\beta]\cap X}$ is quasi-periodic. If every tile has positive measure, then every tile is the closure of its interior.

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite. Every tile subdivides into contracted copies of other tiles:

$$\mathcal{T}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} M \, \mathcal{T}_{\mathsf{y}}, \quad \mathcal{D}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} \Big(M \, \mathcal{D}_{\mathsf{y}} + \Phi \big(b_1(\mathsf{y}) \big) \Big)$$

If \mathcal{V} is finite, this gives a GIFS, the union is disjoint up to a set of measure zero, $\lambda^{d-1}(\partial \mathcal{T}_x) = 0$, and $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is quasi-periodic.

If every tile has positive measure, then every tile is the closure of its interior.

Theorem

If β is a Pisot unit, $A \subset \mathbb{Z}[\beta]$, \mathcal{V} is finite, then $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a multiple tiling of H. (There exists some $m \geq 1$ such that almost every point of H lies in exactly m tiles \mathcal{T}_x , $x \in \mathbb{Z}[\beta] \cap X$.)

cf. Thurston (1989), Praggastis (1999), Akiyama (1999, 2002), Ito-Rao (2006), Berthé-Siegel (2005)

 $\Phi(\mathbb{Z}[\beta] \cap X)$ is a Delone set (uniformly discrete, relatively dense).

The tiles are uniformly bounded, thus $\{\mathcal{T}_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is locally finite.

Every tile subdivides into contracted copies of other tiles:

$$\mathcal{T}_{\mathsf{X}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} M \, \mathcal{T}_{\mathsf{y}}, \quad \mathcal{D}_{\mathsf{x}} = \bigcup_{\mathsf{y} \in \mathcal{T}^{-1}(\mathsf{x})} \Big(M \, \mathcal{D}_{\mathsf{y}} + \Phi \big(b_1(\mathsf{y}) \big) \Big)$$

If \mathcal{V} is finite, this gives a GIFS, the union is disjoint up to a set of measure zero, $\lambda^{d-1}(\partial \mathcal{T}_x) = 0$, and $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is quasi-periodic.

Theorem

If β is a Pisot unit, $A \subset \mathbb{Z}[\beta]$, \mathcal{V} is finite, then $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a multiple tiling of H. (There exists some $m \geq 1$ such that almost every point of H lies in exactly m tiles \mathcal{T}_x , $x \in \mathbb{Z}[\beta] \cap X$.)

The tiling need not be self affine (in the sense of Praggastis (1999)): If \bar{S} is not sofic, then there is no partition $\{X_i\}_{i\in I}$ of X with a finite set I such that \mathcal{D}_X does not change on X_i and the elements of $T^{-1}(X)$ belong to the same sets X_j for all $X \in X_i$.

Periodic *T*-expansions

Theorem

```
If \beta is a Pisot number and A \subset \mathbb{Q}(\beta), then b(x) is eventually periodic if and only if x \in \mathbb{Q}(\beta) \cap X. cf. Bertrand (1977), K. Schmidt (1980), Frank–Robinson (2008)
```

Periodic *T*-expansions

Theorem

```
If \beta is a Pisot number and A \subset \mathbb{Q}(\beta), then b(x) is eventually periodic if and only if x \in \mathbb{Q}(\beta) \cap X.
cf. Bertrand (1977), K. Schmidt (1980), Frank–Robinson (2008)
```

Theorem

```
If \beta is a Pisot unit and A \subset \mathbb{Q}(\beta), then b(x) is purely periodic if and only if x \in \mathbb{Q}(\beta) \cap X and \mathbf{0} \in \mathcal{T}_x. cf. Ito–Rao (2006), Berthé–Siegel (2005)
```

Periodic *T*-expansions

Theorem

If β is a Pisot number and $A \subset \mathbb{Q}(\beta)$, then b(x) is eventually periodic if and only if $x \in \mathbb{Q}(\beta) \cap X$. cf. Bertrand (1977), K. Schmidt (1980), Frank–Robinson (2008)

Theorem

If β is a Pisot unit and $A \subset \mathbb{Q}(\beta)$, then b(x) is purely periodic if and only if $x \in \mathbb{Q}(\beta) \cap X$ and $\mathbf{0} \in \mathcal{T}_x$. cf. Ito–Rao (2006), Berthé–Siegel (2005)

Equivalently: b(x) purely periodic $\iff x \in \mathbb{Q}(\beta)$ and $\Psi(x) \in \widehat{X}$,

$$\Psi: \mathbb{Q}(\beta) \to \mathbb{R}^d, \quad x \mapsto \sum_{j=1}^d x^{(j)} \mathbf{v}_j = x \mathbf{v}_1 + \Phi(x),$$

$$\widehat{X} = \bigcup (x \mathbf{v}_1 - \mathcal{D}_x), \quad x \mathbf{v}_1 - \mathcal{D}_x = \Psi(x) - \mathcal{T}_x \text{ if } x \in \mathbb{Q}(\beta) \cap X$$

Remark: $x \in \mathbb{Q} \Rightarrow \Psi(x) = (x, 0, \dots, 0)^t$

Properties of \widehat{X}

Theorem

If β is a Pisot unit, $A \subset \mathbb{Z}[\beta]$, \mathcal{V} is finite, then $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a tiling of H if and only if $\{\mathbf{z} + \widehat{X}\}_{\mathbf{z} \in \mathbb{Z}^d}$ is a tiling of \mathbb{R}^d . cf. Ito–Rao (2006)

Properties of \widehat{X}

Theorem

If β is a Pisot unit, $A \subset \mathbb{Z}[\beta]$, \mathcal{V} is finite, then $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a tiling of H if and only if $\{\mathbf{z} + \widehat{X}\}_{\mathbf{z} \in \mathbb{Z}^d}$ is a tiling of \mathbb{R}^d . cf. Ito–Rao (2006)

Set $\widehat{X}_a = \bigcup_{x \in X_a} (x \mathbf{v}_1 - \mathcal{D}_x)$ and define

$$\widehat{T}: \widehat{X} \to \widehat{X}, \quad \widehat{T}(\mathbf{x}) = M \mathbf{x} - \Psi(a) \quad \text{if } \mathbf{x} \in \widehat{X}_a,$$
 $\pi: \widehat{X} \to X, \quad \pi(\mathbf{x}) = x \quad \text{if } \mathbf{x} = x\mathbf{v}_1 - \mathbf{y}, \ \mathbf{y} \in H$

Then \widehat{T} is bijective up to a set of measure zero, π is surjective,

$$\pi \circ \widehat{T} = T \circ \pi$$
 and $\bigvee_{k>0} \widehat{T}^k (\pi^{-1}(\mathcal{B})) = \widehat{\mathcal{B}},$

where \mathcal{B} and $\widehat{\mathcal{B}}$ are the Lebesgue σ -algebras on X and \widehat{X} resp. $\Rightarrow (\widehat{X}, \widehat{\mathcal{B}}, \widehat{T})$ is a natural extension of the dynamical system (X, \mathcal{B}, T) , λ^d is an invariant measure of $(\widehat{X}, \widehat{\mathcal{B}}, \widehat{T})$

Properties of \widehat{X}

Theorem

If β is a Pisot unit, $A \subset \mathbb{Z}[\beta]$, \mathcal{V} is finite, then $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a tiling of H if and only if $\{\mathbf{z} + \widehat{X}\}_{\mathbf{z} \in \mathbb{Z}^d}$ is a tiling of \mathbb{R}^d . cf. Ito–Rao (2006)

Set $\widehat{X}_a = \bigcup_{x \in X_a} (x \mathbf{v}_1 - \mathcal{D}_x)$ and define

$$\widehat{T}: \widehat{X} o \widehat{X}, \quad \widehat{T}(\mathbf{x}) = M \, \mathbf{x} - \Psi(a) \quad \text{if } \mathbf{x} \in \widehat{X}_a.$$

If $a \in \mathbb{Z}[\beta]$, then $\Psi(a) \in \mathbb{Z}^d$, hence

$$\widehat{T}(\mathbf{x}) \equiv M \mathbf{x} \pmod{\mathbb{Z}^d}.$$

Proposition

If $A \subset \mathbb{Z}[\beta]$ and $\mathbf{0} \in \mathcal{D}_x$, then $\beta^{k-1} x \mathbf{v_1} \in \widehat{X}_{b_k(x)}$ (mod \mathbb{Z}^d). If $\{\mathbf{z} + \widehat{X}\}_{\mathbf{z} \in \mathbb{Z}^d}$ is a tiling of \mathbb{R}^d and $\mathbf{0}$ is an inner point of \mathcal{D}_x for every $x \in X$, then

$$b_k(x) = a$$
 if and only if $\beta^{k-1} x \mathbf{v}_1 \in \widehat{X}_a$ (mod \mathbb{Z}^d).

Degree of the multiple tiling

Set
$$\varepsilon = \min_{x \in P} (r_{b_1(x)} - x)\beta$$
, where

$$P = \{x \in \mathbb{Z}[\beta] \cap X \mid b(x) \text{ is purely periodic}\}.$$

P is finite (since $\mathbf{0} \in \mathcal{T}_x$ for every $x \in P$), thus $\varepsilon > 0$.

Proposition

Let $z \in \mathbb{Z}[\beta] \cap [0, \infty)$ and $k \ge 0$ such that $\beta^{-k}z \in [0, \varepsilon)$.

Then $\Phi(z)$ lies exactly in the tiles $\mathcal{T}_{T^k(x+\beta^{-k}z)}$, $x \in P$.

 $\Phi(\mathbb{Z}[\beta] \cap [0,\infty)$ is dense in H. Consider two properties:

(F): P consists only of one element.

(W):
$$\exists y \in P : \forall x \in P \ \exists z \in \mathbb{Z}[\beta] \cap [0, \varepsilon), \ k \ge 0 :$$

 $T^k(x+z) = T^k(y+z) = y.$

Theorem

If $\{T_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is a multiple tiling, then $\{T_x\}_{x\in\mathbb{Z}[\beta]\cap X}$ is a tiling if and only if (W) holds.

cf. Akiyama (2002); (F)
$$\Rightarrow$$
 (W)

Example: $\beta=\frac{1+\sqrt{5}}{2}$ (the golden mean), $\beta^2=\beta+1$, $A=\{0,1\}$, greedy expansions.

Example: $\beta^3=\beta^2+\beta+1$ (Tribonacci number), $A=\{0,1\}$, greedy expansions.

Example: $\beta^3 = \beta + 1$ (smallest Pisot number), $A = \{0, 1\}$, greedy expansions.

Example:
$$\beta = \frac{1+\sqrt{5}}{2}$$
 $A = \{-1,0,1\}$ $X_{-1} = [-\alpha \beta, -\alpha), \ X_0 = [-\alpha,\alpha)$ $X_1 = [\alpha,\alpha\beta), \ \text{any} \ \alpha \in \left(\frac{\beta}{\beta^2+1},\frac{1}{2}\right]$ $\Rightarrow \widetilde{T}^5(\pm\alpha) = T^5(\pm\alpha), \ \#\mathcal{V} = 16$ here: $\alpha = \frac{\beta+\beta^{-4}}{\beta^2+1}$

Example:
$$\beta = \frac{1+\sqrt{5}}{2}$$
 $A = \{-1,1\}$ $X_{-1} = [-1,0), \ X_1 = [0,1)$

 \Rightarrow multiple tiling of degree 4

Example: $\beta^3 = \beta^2 + \beta + 1$ (Tribonacci number), $A = \{-1, 0, 1\}$, $X_{-1} = [-\alpha \beta, -\alpha)$, $X_0 = [-\alpha, \alpha)$, $X_1 = [\alpha, \alpha \beta)$, $\alpha = 1/(\beta + 1)$

Example: $\beta^3 = \beta + 1$ (smallest Pisot number), $A = \{-1, 0, 1\}$, $X_{-1} = [-\alpha \beta, -\alpha)$, $X_0 = [-\alpha, \alpha)$, $X_1 = [\alpha, \alpha \beta)$, $\alpha = \beta^2/(\beta^2 + 1)$

Symmetric β -transformations (Akiyama–Scheicher (2007))

$$X = \left[-\frac{1}{2}, \frac{1}{2} \right), \ T(x) = \beta x - \left\lfloor \beta x + \frac{1}{2} \right\rfloor$$

$$\beta \le 3$$
: $A = \{-1, 0, 1\}$,

$$X_{-1} = \begin{bmatrix} -\frac{1}{2}, -\frac{1}{2\beta} \end{bmatrix}, X_0 = \begin{bmatrix} -\frac{1}{2\beta}, \frac{1}{2\beta} \end{bmatrix}, X_1 = \begin{bmatrix} \frac{1}{2\beta}, \frac{1}{2} \end{bmatrix}$$

Example: $\beta = \frac{1+\sqrt{5}}{2}$ (the golden mean) \Rightarrow tiling

symmetric $\beta\text{-transformation,}$ $\beta^3 = \beta^2 + \beta + 1$ $\Rightarrow \text{double tiling}$

 $\mathcal{T}_{.011111(1010)^{\circ}}^{\circ}$ $\mathcal{T}_{11111(1010)^{\circ}}^{\circ}$ $\mathcal{T}_{1111(1010)^{\circ}}^{\circ}$

 $\mathcal{T}_{3[0111](100)}$ $\mathcal{T}_{4[111](1010)}$ $\mathcal{T}_{4[1111](1010)}$

 $\begin{array}{l} {\rm symmetric} \\ \beta\text{-transformation,} \\ \beta^3=\beta^2+1 \end{array}$

⇒ tiling

Tell(1010)**

 $\mathcal{T}_{.ar{1}1ar{1}1(ar{1}010)^{\circ}}$ $\mathcal{T}_{ar{1}1(ar{1}010)^{\circ}}$ $\mathcal{T}_{ar{1}1(ar{1}010)}$

 $\mathcal{T}_{\mu 0 k 1 ar{1} 1 (ar{1} 0 k 0)^2}$

 $T_{
m peri_{ar{1}ar{1}}ar{1}(10ar{1}0)}, T_{
m peri_{ar{1}}ar{1}ar{1}(10ar{1}0)}, T_{
m peri_{ar{1}}ar{1}ar{1}(10ar{1}0)},$

 $\begin{array}{l} \text{symmetric} \\ \beta\text{-transformation,} \\ \beta^3 = \beta + 1 \\ \text{(smallest} \\ \text{Pisot number)} \end{array}$

 \Rightarrow double tiling

