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Laakso Spaces

Laakso Spaces

Figure: Outer Approximation

◮ This construction is from
[Laakso].

◮ Quotient Space of I × K k by
“wormholes.”

◮ Location of wormholes
determined by desired
dimension.

◮ DimH = Q = 1 + k
(

ln 2
ln(1/t)

)
.
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Laakso Spaces

Laakso Construction

◮ Fix a Q > 1 to be dimension.

◮ Let t ≥ 2 and k ≥ 1 be such that Q = 1 + k
(

ln 2
ln(1/t)

)
.

◮ Then if 1
j+1 ≤ 1

t
< 1

j
then

j

j + 1

m∏

i=1

j−1
i ≤ tm ≤ j + 1

j

m∏

i=1

j−1
i .

◮ The ji ∈ {j , j + 1} determine at each step how many subintervals to
divide an interval into with the boundaries being wormhole locations.

◮ Identify all the wormholes and call the quotient L.

Theorem (Laakso)
With the geodesic metric and for all choices of k , ji L is not bi-Lipschitz
embedable in any R

n.
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Laakso Spaces

A picture
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Figure: Level 6 approximation when all ji = 2
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Laakso Spaces

Minimal Generalized Upper Gradients

Definition
On a metric measure space a minimal generalized upper gradient for a
rectifiable function u is a non-negative function pu with the following
property:

|u(x) − u(y)| ≤
∫

γ

pu dm

Where γ is any continuous, rectifiable path from x to y and any other
function with this property is almost everywhere greater than or equal to
pu and dm is the measure induced by γ [Cheeger].

Theorem (Cheeger)
If X is a geodesic measure-metric space satisfying the Vitali covering
theorem then generalized upper gradients exist for Lipschitz functions
and if 1 < p < ∞ there is a unique minimal one in Lp.
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Laakso Spaces

Properties of Laakso Spaces
Definition
The weak (1, 1)−Poincaré inequality is:

∫

B

|u − uB | dµ ≤ C (diam(B))

(∫

CB

pu dµ

)
.

Where B ⊂ L is a ball, µ is the measure on L, and C is a constant.

Definition
A metric measure space, X , is Q Ahlfors regular if there exists two
positive constants c , c ′ such that:

crQ ≤ µ(Br ) ≤ c ′rQ

For any r ≤ diam(X ) where Br is a ball of radius r in the geodesic metric.

Theorem (Laakso)
The space L is a connected metric measure space which is Alfors regular
of dimension Q supporting a (1, 1)−Poincaré inequality.
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Laakso Spaces

Sobolov Spaces

This definition is from [Cheeger].

Definition
The Sobolev space H1,2 ⊂ L2 is defined to be
H1,2 = {u ∈ L2|∃pu , pu ∈ L2} Where pu is the minimal upper gradient of
u. H1,2 is given the graph norm:

‖u‖ =

(∫
u2

)1/2

+

(∫
p2

u

)1/2

.

Are there functions for which pu can be hand computed?
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Laakso Spaces

Definition of G

Definition
If f ∈ C (L) it can be pulled back to a function f̂ (x , w) ∈ C (I × K k). If
a, b are any wormhole locations one of which is n′th level and the other
lower level and Kn is any n−cell of K k and f̂ (x , w) is constant for fixed
x ∈ [a, b] and is continuously differentiable for fixed w ∈ Kn then we say
that f ∈ Gn.
Define G =

⋃
∞

n=0 Gn.

Lemma (S)
If f ∈ Gn then p̂f =

∣∣ ∂f
∂x

∣∣ . And this is genuinely the pull back of a
function from L2(L).
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Laakso Spaces

A Dirichlet form

Definition
For f ∈ G define

E(f , f ) =

∫

L

p2
f dµ.

Theorem (S)
The form (E ,G) is a local, regular Dirichlet form.

This is proved by showing the existence of a self-adjoint non-positive

definite operator, A such that
(∣∣ ∂

∂x

∣∣)2
f = −Af and then setting

E(f , g) =

∫

L

(
√
−Af )(

√
−Ag) dµ.
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Inverse Limit Systems

Definition
An inverse system of topological spaces is a family of topological spaces
{Fi} along with a family of continuous projection maps φi : Fi+1 → Fi .
The system can also have a family of compatible measures µi such that if
A is µi measurable then µi (A) = µi+1(φ

−1
i (A)).

Definition
The inverse limit of an inverse system is a subset of

∏
∞

i=0 Fi such that
there exist continuous maps Φn : lim← Fi → Fn such that
Φn = φn+1 ◦ Φn+1.
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Inverse Limits

Inverse Limit Systems 2

Figure: Diagram of an Inverse System
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Inverse Limit Systems 3

Theorem
There exists a unique topological space that is the inverse limit of the Fi .
If the masses of µi are bounded then there is also a unique measure µ∞
on the limit space lim← Fi .

Let C (Fi ) be the continuous functions on Fi then then can be pulled
back onto lim← Fi using Φi . So f ∈ C (Fi ) gets mapped to
f ◦ Φ−1

i ∈ C (lim← Fi ). This can be done for any family of function
spaces on Fi and get a function space on the limit space as well.

Also families of operators can be constructed on the {Fi} with the same
property as the measures, the operators have a limit on the limit space as
well.
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Vermiculated Spaces

Figure: Level 3, ji = 2 Approximation

◮ From [Barlow-Evans]

◮ Projective limit of quantum
graphs

◮ Location of vertices
determined by the sequence
{ji}.

◮ Construction includes Markov
Processes.

Theorem (Barlow-Evans)
This fractal is connected, compact, metric- measure space.
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Vermiculated Spaces

Vermiculated Graphs

Figure: Vermiculated Approximations to a Laakso space
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Construction of Vermiculated Spaces

◮ Assume 1 < Q < 2 for simplicity.

◮ Start with a base space F0 = [0, 1]. An indexing set Gn = {0, 1},
and locations Bn.

◮ Form F0 × G1 and identify at the points specified in Bn, these are
the same locations as the level one wormholes for Laakso.

◮ This gives {Fi} and continuous projections from Fn → Fn−1. This is
a projective system which has a limit lim← Fi .

◮ Since each Fi has a probability measure the measures limit uniquely
to some probability measure µ∞ with nice compatibility with
projections back onto the Fi .
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Vermiculated Spaces

Markov Processes on Vermiculated Spaces

◮ Begin with a process on F0, say X 0 this can be pieced together to
form processes on the Fi , say X i .

Theorem (Barlow-Evans)
Given mild assumptions ∃ a MP, X , on lim← Fi built from X 0 on F0.

Lemma (S)
In the Laakso space construction the process X is symmetric if and only
if the process X 0 is symmetric.

By the general theory of Dirichlet forms and Markov processes, this
process Xt is associated to some Dirichlet form on L.
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Laakso and Vermiculated

Equivalence of Constructions I

Figure: Use of the Universal Property

◮ Projective limits like tensor
products have a universal
property.

◮ Φ̃n : L → Fn by collapsing the
cantor sets down to only 2n

points are continuous.

◮ By Univ Prop
∃!η : L → lim← Fi .
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Laakso and Vermiculated

Equivalence of Constructions II

Lemma
η is a homeomorphism, so L = lim← Fi topologically.

Lemma
η is an measure preserving isometry.

Theorem (S)
The space from the Laakso construction L and lim← Fi from the
vermiculated construction can be used interchangeably and so can
functions spaces on them by identifying elements of the spaces through η.

Theorem (S)
The Dirichlet forms and Markov processes constructed in the Laakso and
the vermiculated construction with Brownian motion on the interval
coincide. That is, same generator with same domain.
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Analysis of Laplacian

Approaching the Spectrum of A

◮ Projective limit construction
much better suited to this
than Laakso’s quotient
construction.

◮ On the n′th approximating
quantum graph the process X i

t

has infinitesimal generator of
negative twice differentiation
on each line segment, so
eigenfunctions and eigenvalues
are easy to compute

0 0.2 0.4 0.6 0.8 10
0.5

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure: ji = 2, n = 3: An

eigenfunction with eigenvalue of 4π
2
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The Spectrum of A

The idea: A dense set of G are functions pulled back to L from the
approximating quantum graphs.

Definition
Let Dn ⊂ Dom(A) ⊂ G be those functions in Dom(A) that are pull backs
of functions on the n′th approximating graph but not a pull back of a
function on the n − 1′st graph.

◮ Dn are disjoint.

◮

⋃
∞

n=0 Dn is dense in Dom(A). dn =
∏n

i=1 j1i

σ(A) =
∞⋃

n=0

∞⋃

k=0

{
k2π2

d2
n

}
∪
∞⋃

n=2

∞⋃

k=1

{
k2π2

4d2
n

}
∪
∞⋃

n=1

∞⋃

k=0

{
(2k + 1)2π2

4d2
n

}



Spectrum of a Laplacian on Laakso Spaces

Analysis of Laplacian

M. Barlow and S. Evans. Markov processes on vermiculated spaces.
Random walks and geometry, (ed. V. Kaimanovich), de Gruyter,
Berlin, 2004.

J. Cheeger, Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517.

T.J. Laakso. Ahlfors Q−regular spaces with arbitrary Q > 1
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